Detection of the Atmospheric S1Tide in VLBI Polar Motion Time Series

  • Anastasiia Girdiuk
  • Michael Schindelegger
  • Matthias Madzak
  • Johannes Böhm
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 147)


The contribution of the diurnal atmospheric S1 tide to Earth’s wobble is assessed by tidally analyzing hourly polar motion (PM) estimates from approximately 25 years of geodetic Very Long Baseline Interferometry (VLBI) observations. Special emphasis is placed on the dependency of S1 estimates on various settings in the a priori delay model and on the method of time series analysis in post-processing. The considered VLBI solutions differ with regard to the inclusion/exclusion of weak network geometries and the choice of a priori geophysical corrections such as thermal antenna deformation. Prograde PM coefficients \(\text{A}^{+} + i\text{B}^{+}\) of S1 are on the level of 9 + i10 μas (microarcseconds) for all solutions and none of the changes in the processing strategies perturbs this estimate beyond the twofold S1 standard deviation (\(\sim\) 2.6 μas). An independent validation of the deduced harmonics against excitation estimates from atmosphere-ocean models shows that space geodetic and geophysical accounts of the S1 effect in PM are still inconsistent by about 10 μas.


Atmospheric tides High-frequency Earth rotation Single session time series approach VLBI 



We kindly thank John Gipson for providing his tidal estimates, and we also appreciate the recommendations from three anonymous reviewers. Financial support for this study was made available by the Austrian Science Fund (FWF) under project ASPIRE (I1479-N29).


  1. Artz T, Tesmer S, Nothnagel A (2011) Assessment of periodic sub-diurnal Earth rotation variations at tidal frequencies through transformation of VLBI normal equation systems. J Geod 85:565–584CrossRefGoogle Scholar
  2. Behrend D (2013) Coordinating center report. In: Baver KD, Behrend D, Armstrong K (eds) International VLBI Service for Geodesy and Astrometry 2012 Annual Report, NASA/TP-2013-217511, pp 55–57Google Scholar
  3. Böhm S (2012) Tidal excitation of Earth rotation observed by VLBI and GNSS. Geowissenschaftliche Mitteilungen, Heft 90. Vienna University of Technology, Vienna, 167 ppGoogle Scholar
  4. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629Google Scholar
  5. Böhm S, Brzeziński A, Schuh H (2012a) Complex demodulation in VLBI estimation of high frequency Earth rotation components. J Geodyn 62:56–68Google Scholar
  6. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012b) The New Vienna VLBI Software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for Planet Earth. Springer Berlin Heidelberg, pp 1007–1011Google Scholar
  7. Brzeziński A (2011) Diurnal excitation of Earth rotation estimated from recent geophysical models. In: Capitaine N (ed) Proc Journées 2010 Systèmes de Référence Spatio-temporels, Observatoire de Paris, pp 131–136Google Scholar
  8. Brzeziński A, Ponte R, Ali A (2004) Nontidal oceanic excitation of nutation and diurnal/semidiurnal polar motion revisited. J Geophys Res 109:B11407. doi:10.1029/2004JB003054Google Scholar
  9. Brzeziński A, Dobslaw H, Thomas M, Ślusarczyk Ł (2012) Subdiurnal atmospheric and oceanic excitation of Earth rotation estimated from 3-hourly AAM and OAM data. Geophysical research abstracts 14, EGU2012-10530, EGU General Assembly 2012, Vienna, 22–27 AprilGoogle Scholar
  10. Capitaine N, Wallace P, Chapront J (2003) Expressions for IAU 2000 precession quantities. Astron Astrophys 412:567–586CrossRefGoogle Scholar
  11. Dermanis A, Mueller I (1978) Earth rotation and network geometry optimization for very long baseline interferometers. Bull Geod 52:131–158CrossRefGoogle Scholar
  12. Desai S (2002) Observing the pole tide with satellite altimetry. J Geophys Res Oceans 107:3186. doi:10.1029/2001JC001224CrossRefGoogle Scholar
  13. Fey A et al (2015) The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. Astron J 150:58. doi:10.1088/0004-6256/150/2/58CrossRefGoogle Scholar
  14. Gipson J (1996) Very long baseline interferometry determination of neglected tidal terms in high-frequency Earth orientation variation. J Geophys Res 101:28051–28064CrossRefGoogle Scholar
  15. Krásná H, Böhm J, Plank L, Nilsson T, Schuh H (2014) Atmospheric Effects on VLBI-Derived Terrestrial and Celestial Reference Frames. In: Rizos C, Willis P (eds) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia. Springer Berlin Heidelberg, pp 203–208Google Scholar
  16. Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40:1069–1073CrossRefGoogle Scholar
  17. Lott F, de Viron O, Viterbo P, Vial F (2008) Axial atmospheric angular momentum budget at diurnal and subdiurnal periodicities. J Atmos Sci 65:156–171CrossRefGoogle Scholar
  18. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. J Ocean Dyn 56:394–415CrossRefGoogle Scholar
  19. Malkin Z (2009) On comparison of the Earth orientation parameters obtained from different VLBI networks and observing programs. J Geod 83:547–556CrossRefGoogle Scholar
  20. Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107:B42068CrossRefGoogle Scholar
  21. Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83:787–792CrossRefGoogle Scholar
  22. Petit G, Luzum B (eds) (2010) IERS conventions (2010). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 179 ppGoogle Scholar
  23. Ray R, Egbert G (2004) The global S1 Tide. J Phys Oceanogr 34:1922–1935CrossRefGoogle Scholar
  24. Rienecker M, Suarez M, Gelaro R et al (2011) MERRA: NASA’s Modern-Era Retrospective Analysis for Research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1CrossRefGoogle Scholar
  25. Saha S, Moorthi S, Pan HL et al (2010) The NCEP Climate Forecast System Reanalysis. Bull Am Meteorol Soc 91:1015–1057CrossRefGoogle Scholar
  26. Schindelegger M (2014) Atmosphere-induced short period variations of Earth rotation. Geowissenschaftliche Mitteilungen, Heft 96. Vienna University of Technology, Vienna, 152 ppGoogle Scholar
  27. Schindelegger M, Einšpigel D, Salstein D, Böhm J (2016) The global S1 tide in Earth’s nutation. Surv Geophys 37:643–680CrossRefGoogle Scholar
  28. Schuh H, Böhm J (2013) Very Long Baselines Interferometry for Geodesy and Astronomy. In: Xu G (ed) Sciences of Geodesy–II: Innovations and Future Developments. Springer Berlin Heidelberg, pp 339–376CrossRefGoogle Scholar
  29. Simon J, Bretagnon P, Chapront J, Chapront-Touze M, Francou G, Laskar J (1994) Numerical expressions for precession formulae and mean elements for the Moon and the planets. Astron Astrophys 282:663–683Google Scholar
  30. Wijaya D, Böhm J, Karbon M, Krasna H, and Schuh H (2013) Atmospheric Pressure Loading. In: Böhm J, Schuh H (eds) Atmospheric Effects in Space Geodesy. Springer Berlin Heidelberg, pp 137–157CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anastasiia Girdiuk
    • 1
  • Michael Schindelegger
    • 1
  • Matthias Madzak
    • 1
  • Johannes Böhm
    • 1
  1. 1.Department of Geodesy and GeoinformationTU WienViennaAustria

Personalised recommendations