IAG 150 Years pp 355-365 | Cite as

Impact of Numerical Weather Models on Gravity Field Analysis

  • Maria Karbon
  • Johannes Böhm
  • Elisa Fagiolini
  • Frank Flechtner
  • Harald Schuh
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)


Atmospheric pressure variations are one of the major sources of gravity perturbations. Due to the high variability of the atmospheric masses and the sparse sampling of these by GRACE the signals alias into the observations taken by the satellites. The determination of accurate atmospheric gravity field coefficients (AGC) is indispensable for the elimination of these signals. For the determination of AGC it is state of the art to use high resolution Numerical Weather Prediction (NWP) models which take into account the time-variable three-dimensional distribution of the atmospheric mass. By subtracting the gravity spherical harmonics of a long term atmospheric mean field from the ones of the instantaneous atmosphere, the residual gravity spherical harmonic series is obtained. It describes the deviation of the actual gravity field from the mean gravity field due to atmospheric mass variations. NWP models are not perfect as they can show significant differences to in situ measurements. Further these models evolve and change throughout time, which can lead to changes in the pressure data and therefore in the AGC. In this study several aspects of NWP models are investigated, and the influence they have on the determination of the AGC is discussed. We present a strategy that was developed for dealing with changes in the NWP models, and compare our products to those of the GRACE Atmosphere and Ocean Dealiasing level-1B products and those provided by the Groupe de Recherche de Géodésie Spatiale (GRGS).


Atmospheric de-aliasing GRACE Gravity Numerical weather models 



We would like to thank the Austrian Science Fund (FWF) for supporting the project GGOS Atmosphere (P20902), and the ECMWF for providing the meteorological data. Special thanks go to Bruno Meurers from the University of Vienna for providing the in situ data at Conrad Observatory and to Pascal Gegout from the Géosciences Environnement Toulouse for providing the de-aliasing data. We also want to acknowledge the reviewers who helped to improve the manuscript.


  1. Boy JP, Chao BF (2005) Precise evaluation of atmospheric loading effects on earths time-variable gravity field. J Geophys Res 110:B08412. doi: 10.1029/2002JB002333 CrossRefGoogle Scholar
  2. Boy JP, Gegout P, Hinderer J (2001) Reduction of surface gravity data from global atmospheric pressure loading. Geophys J Int 149:534–545CrossRefGoogle Scholar
  3. Dash SK, Mohandas S (2005) Comparative study of different orographic representations with respect to the Indian summer monsoon simulation. Acta Geophys Polon 53(3):325Google Scholar
  4. Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselborn S, Sasgen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B rl05. J Geophys Res Ocean 118(7):3704–3711. doi: 10.1002/jgrc.20271 CrossRefGoogle Scholar
  5. Duan J, Shum CK, Guo J, Huang Z (2012) Uncovered spurious jumps in the grace atmospheric de-aliasing data: potential contamination of grace observed mass change. Geophys J Int 191(1):83–87. doi: 10.1111/j.1365-246X.2012.05640.x CrossRefGoogle Scholar
  6. Fagiolini E, Zenner L, Flechtner F, Gruber T, Schwarz G, Trautmann T, Wickert J (2007) The sensitivity of satellite gravity field determination to uncertainites in atmospheric models. Joint GSTM/SPP Kolloquium, Potsdam.
  7. Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3):761–797CrossRefGoogle Scholar
  8. Flechtner F, Dobslaw H (2013) AOD1B product description document for product release 05 (Rev. 4.0, Sept 9, 2013). Tech RepGoogle Scholar
  9. Forootan E, Didova O, Kusche J, Locher A (2013) Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations. J Geophys Res Solid EarthGoogle Scholar
  10. Gegout P (2009) Background models used in geodetic data processingGoogle Scholar
  11. Gegout P, Biancale R, Soudarin L (2011) Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere. J Geod 85(10):661–677. doi: 10.1007/s00190-011-0474-y CrossRefGoogle Scholar
  12. Han SC, Jekeli C, Shum C (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean grace gravity field. J Geophys Res Solid Earth (1978–2012) 109(B4)Google Scholar
  13. Karbon M (2013) Atmospheric effects on gravity space missions. Geowissenschaftliche Mitteilungen, vol 94/2013, Department of Geodesy and Geoinformation of the Vienna University of TechnologyGoogle Scholar
  14. Karbon M, Böhm J, Wijaya D, Schuh H (2013) Atmospheric effects on gravity space missions, Atmospheric effects in space geodesy. Springer, Berlin/Heidelberg, pp 159–180. doi: 10.1007/978-3-642-36932-2_5 CrossRefGoogle Scholar
  15. Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE data using Kalman filtering. Geophys Res Lett 36(17). doi: 10.1029/2009GL039564Google Scholar
  16. Miller M, Palmer T, Swinbank R (1989) Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteorol Atmos Phys 40(1-3):84–109. doi: 10.1007/BF01027469 CrossRefGoogle Scholar
  17. Navarra A, Stern W, Miyakoda K (1994) Reduction of the Gibbs oscillation in spectral model simulations. J Climate 7(8):1169–1183CrossRefGoogle Scholar
  18. Neumeyer J, Hagedorn J, Leitloff J, Schmidt T (2004) Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements. J Geodyn 38:437–450CrossRefGoogle Scholar
  19. Phillips NA (1960) Numerical weather prediction. Advances in computers, vol 1. Elsevier, pp 43–90. doi: 10.1016/S0065-2458(08)60606-3
  20. Plag H, Gross R, Rothacher M (2009) Global geodetic observing system for geohazards and global change. Geosciences 9:96–103Google Scholar
  21. Rabier F, Jrvinen H, Klinker E, Mahfouf JF, Simmons A (2000) The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics. Q J Roy Meteorol Soc 126(564):1143–1170. doi: 10.1002/qj.49712656415 CrossRefGoogle Scholar
  22. Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer K, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from grace: eigen-grace02s. J Geodyn 39(1):1–10CrossRefGoogle Scholar
  23. Rowlands D, Luthcke S, Klosko S, Lemoine F, Chinn D, McCarthy J, Cox C, Anderson O (2005) Resolving mass flux at high spatial and temporal resolution using grace intersatellite measurements. Geophys Res Lett 32(4):L04,310CrossRefGoogle Scholar
  24. Rutt IC, Thuburn J, Staniforth A (2006) A variational method for orographic filtering in NWP and climate models. Q J Roy Meteorol Soc 132(619):1795. doi: 10.1256/qj.05.133 CrossRefGoogle Scholar
  25. Schulz W (1954) Tabellen für die Normatmosphäre nach DIN 5450 bis 20 km Höhe. Braunschweig [Flughafen] Dt. Forschungsanstalt f. Luftfahrt e.VGoogle Scholar
  26. Shengjie G (2006) GPS radio occultation and the role of atmospheric pressure on spaceborne gravity estimation over Antarctica. PhD thesis, Ohio State UniversityGoogle Scholar
  27. Stockdale TN, Anderson DLT, Alves JOS, Balmaseda MA (1998) Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature 392:370–373. doi: 10.1038/32861 CrossRefGoogle Scholar
  28. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(L09607):4–9Google Scholar
  29. Trenberth KE, Smith L (2005) The mass of the atmosphere: a constraint on global analyses. J Climate 18(6)Google Scholar
  30. van Dam T, Altamimi Z, Collilieux X, Ray J (2010)Topographically induced height errors in predicted atmospheric loading effects. J Geophys Res Solid Earth (1978–2012) 115(B7)Google Scholar
  31. Velicogna I, Wahr J, Van den Dool H (2001) Can surface pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals? J Geophys Res 106(B8):16415–16434CrossRefGoogle Scholar
  32. White P (2000) IFS Documentation Part III: Dynamics and Numerical Procedures (CY21R4). Meteorol Bull M1.6/4 Google Scholar
  33. Zenner L, Gruber T, Jäggi A, Beutler G (2010) Propagation of atmospheric model errors to gravity potential harmonics – impact on GRACE De-aliasing. Geophys J Int 182(2):797–807CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maria Karbon
    • 1
  • Johannes Böhm
    • 2
  • Elisa Fagiolini
    • 3
  • Frank Flechtner
    • 1
  • Harald Schuh
    • 1
  1. 1.Deutsches GeoForschungsZentrum Potsdam, 1.1, GPS/Galileo Earth ObservationPotsdamGermany
  2. 2.Technische Universiät Wien, GEOWienAustria
  3. 3.Deutsches GeoForschungsZentrum Potsdam, 1.2 Global, Geomonitoring and Gravity FieldWeßlingGermany

Personalised recommendations