Simulated VLBI Satellite Tracking of the GNSS Constellation: Observing Strategies

Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)

Abstract

Very Long Baseline Interferometry (VLBI) observations to satellite targets is a promising technique to improve future realizations of terrestrial reference frames (TRF). The high number of available satellites of Global Navigation Satellite Systems (GNSS) provides an attractive existing infrastructure that could be utilized for such observations. The Vienna VLBI Software (VieVS) was extended for the possibilities of scheduling, simulating, and processing VLBI observations to GNSS satellites, allowing to give information on expected accuracies of derived station coordinates. Assuming the GNSS signals to be measured with a precision of 30 ps, we find weekly station position repeatabilities at the centimeter level or better for simulated observations to satellite targets only. Adequate scheduling strategies have to be applied, e.g. in terms of a fast switching between the observed satellites. Even better solutions of about 5 mm in mean 3D position rms after one day are achieved when integrating the satellite observations into standard VLBI sessions to extragalactic radio sources. Further, this combined approach allows the determination of a frame tie between the satellite system and the VLBI system in terms of relative Earth rotation parameters and a scale with a precision of about 1–2 mm at the Earth’s surface.

Keywords

Co-location Inter-technique frame ties Very long baseline interferometry VLBI satellite tracking 

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473CrossRefGoogle Scholar
  2. Bar-Sever Y, Haines B, Bertiger W, Desai S, Wu S (2009) Geodetic reference antenna in space (GRASP) - a mission to enhance space-based geodesy. In: COSPAR Colloquium, Padua 2009Google Scholar
  3. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI software VieVS. In: IAG Symp 136, pp 1007–1011Google Scholar
  4. Counselman C, Gourevitch SA (1981) Miniature interferometer terminals for earth surveying: ambiguity and multipath with global positioning system. IEEE Trans Geosc Rem Sens GE-19(4):244–252CrossRefGoogle Scholar
  5. Dickey JM (2010) How and Why do VLBI on GPS. In: Proceedings of IVS 2010, pp 65–69, NASA/CP 2010-215864Google Scholar
  6. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198CrossRefGoogle Scholar
  7. Hanada H, et al. (2008) VLBI for better gravimetry in SELENE. Adv Space Res 42:341–346CrossRefGoogle Scholar
  8. Hase H (1999) Phase Centre Determinations at GPS-Satellites with VLBI. In: Proceedings of 13th EVGA, pp 273–277Google Scholar
  9. Huang Y, Hu X, Huang C, Jiang D, Zheng W, Zhang X (2006) Orbit determination of satellite “Tance 1” with VLBI data. Chin Astr Astroph 30:318–329CrossRefGoogle Scholar
  10. Huang Y, Hu X, Zhang X, Jiang D, Guo R, Wang H, Shi S (2011) Improvement of orbit determination for geostationary satellites with VLBI tracking. Chin Sci Bull 56:2765–2772CrossRefGoogle Scholar
  11. Klioner SA (1991) General relativistic model of VLBI observables. In: Proceedings of AGU Chapman Conference on Geodetic VLBI: Monitoring Global Change, pp 188–202, NOAA Techn Rep NOS 137 NGS 49Google Scholar
  12. Kodet J, Plötz C, Schreiber KU, Neidhardt A, Pogrebenko S, Haas R, Molera G, Prochazka I (2013) Co-location of space geodetic techniques in space and on the ground. In: Proceedings of 21st EVGA, pp 223–226Google Scholar
  13. Krásná H, Böhm J, Plank L, Nilsson T, Schuh H (2014) Atmospheric effects on VLBI-derived terrestrial and celestial reference frames. In: IAG Symposium 139. Doi: 10.1007/978-3-642-37222-3__26Google Scholar
  14. Nilsson T, Haas R, Elgered G (2007) Simulations of atmospheric path delays using turbulence models. In: Proceedings of 18th EVGA, pp 175–180Google Scholar
  15. Pany A, Böhm J, MacMillan DS, Schuh H, Nilsson T, Wresnik J (2010) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geod 85:1:39–50CrossRefGoogle Scholar
  16. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30:2:135–143CrossRefGoogle Scholar
  17. Petrov L, Gordon D, Gipson J, MacMillan D, Ma C, Fomalont E, Walker RC, Carabajal C (2009) Precise geodesy with the very long baseline array. J Geod 83:859–876CrossRefGoogle Scholar
  18. Plank L, Böhm J, Schuh H, (2014) Precise station positions from VLBI observations to satellites - a simulation study. J Geod. Doi:10.1007/s00190-014-0712-1Google Scholar
  19. Preston RA, et al. (1972) Interferometric observations of an artificial satellite. Science 178-4059:407–409Google Scholar
  20. Rosenbaum B (1972) The VLBI time delay function for synchronous orbits. NASA/TM-X-66122 GSFCGoogle Scholar
  21. Rothacher M, et al. (2009) The future global geodetic observing system. In: Plag HP, Pearlman M (eds) Global geodetic observing system. Springer, Berlin/Heidelberg, pp 237–272CrossRefGoogle Scholar
  22. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geod 61:68–80CrossRefGoogle Scholar
  23. Shabala S, McCallum J, Plank L, Böhm J (2014) Simulating the effects of quasar structure on parameters from geodetic VLBI. Submitted to J GeodGoogle Scholar
  24. Tornatore V, Haas R (2009) Considerations on the observation of GNSS-signals with the VLBI2010 system. In: Proceedings on 19th EVGA, pp 151–155Google Scholar
  25. Tornatore V, Haas R, Casey S, Duev D, Pogrebenko S, Molera Calvés G (2014) Direct VLBI observations of global navigation satellite system signals. In: IAG Symposium 139. Doi: 10.1007/978-3-642-3722-3__32Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.University of TasmaniaHobart 7001Australia
  3. 3.DeutschesGeoForschungsZentrum GFZ, TelegrafenbergPotsdamGermany

Personalised recommendations