Skip to main content

Evaluation of GOCE/GRACE GGMs Over Attica and Thessaloniki, Greece, and Wo Determination for Height System Unification

  • Conference paper
IGFS 2014

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 144))

Abstract

Within the frame of the Elevation project, recently acquired collocated GPS/Leveling observations over trigonometric benchmarks (BMs) have been used for the evaluation of the recent GOCE/GRACE Global Geopotential Models (GGMs) and the unification of the Greek Local Vertical Datum (LVD). To this extent all available satellite-only and combined GOCE/GRACE GGMs were evaluated to conclude on the possible improvement brought by GOCE in the determination of the geoid over Greece. At a second stage, the present work focuses on the determination of the zero-level geopotential value W LVD0 for the Greek LVD. The estimation of W LVD0 was carried out using a least squares adjustment of Helmert orthometric heights, surface gravity disturbances and geopotential values computed from EGM2008 and GOCE/GRACE GGMs over the available GPS/Levelling BMs. Moreover, given that the BMs used belong to two distinct areas, i.e., one over Attica and another in Thessaloniki, the W LVD0 determination was carried out for each region separately, to conclude on the possible biases of the Hellenic LVD itself. From the evaluation of the GOCE/GRACE models it was concluded that the latest releases provide a significant, compared to EGM2008, improvement in the comparisons with the GPS/Levelling data, by as much as 3 cm, in terms of the standard deviation. Furthermore, the W LVD0 determined for the Greek LVD indicates a bias of about −4.95 m2/s2 compared to the conventional value of 62,636,856.0 m2/s2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertella A, Savcenko R, Janjić T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the southern ocean from GOCE. Geophys J Int 190:922–930

    Article  Google Scholar 

  • Anastasiou D, Gaifillia D, Katsdourou A, Kolyvaki E, Papanikolaou X, Gianniou M, Vergos GS, Pagounis V (2013) First validation of the Hellenic vertical datum as a prerequisite for the efficient disaster and resources management: the “Elevation” project. FIG Commission 3 “Spatial Information, Informal Development, Property and Housing”, December 11–12, Athens, Greece

    Google Scholar 

  • Bruinsma SL et al (2010) GOCE gravity field recovery by means of the direct numerical method. Presented at the ESA Living Planet Symposium, Bergen, Norway, 27 June–2 July

    Google Scholar 

  • Bruinsma S et al (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40(14):3607–3612. doi:10.1002/grl.50716

    Article  Google Scholar 

  • IERS Conventions (2010). In: Petit G, Luzum B(eds) IERS technical note 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, p 179. ISBN 3-89888-989-6

    Google Scholar 

  • Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Geod 63(3):281–296

    Article  Google Scholar 

  • Förste C et al (2008) EIGEN-GL05C – a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abst 10:EGU2008-A-03426, SRef-ID: 16077962/gra/EGU2008-A-03426

    Google Scholar 

  • Förste C et al (2011) EIGEN-6 – a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys Res Abst 13:EGU2011-3242-2 (EGU General Assembly)

    Google Scholar 

  • Förste C et al (2012) A preliminary update of the direct approach GOCE processing and a new release of EIGEN-6C. Presented at the AGU Fall Meeting 3–7 Dec 2012 San Francisco, Abstract No. G31B-0923

    Google Scholar 

  • Fuchs MJ, Bouman J, Broerse T, Visser P, Vermeersen B (2013) Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. J Geophys Res 118(10):5712–5721

    Article  Google Scholar 

  • Goiginger H et al (2011) The combined satellite-only global gravity field model GOCO02S; presented at the 2011 General Assembly of the European Geosciences Union, Vienna, Austria, April 4–8

    Google Scholar 

  • Grigoriadis VN, Kotsakis C, Tziavos IN, Vergos GS (2014) Estimation of the geopotential value Wo for the local vertical datum of continental Greece using EGM08 and GPS/leveling data. IAG Symp 141:249–255

    Google Scholar 

  • Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85(11):845–860

    Article  Google Scholar 

  • Gruber T, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci 2(4):270–280. doi:10.2478/v10156-012-0001-y

    Google Scholar 

  • Hayden T, Amjadiparvar B, Rangelova E, Sideris MG (2012) Evaluation of W0 in Canada using tide gauges and GOCE gravity field models. J Geod Sci 2(4):257–269. doi:10.2478/v10156-012-0008-4

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman, San Francisco, p 895

    Google Scholar 

  • Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasi geoid heights. J Geod 85(10):723–740

    Article  Google Scholar 

  • Knudsen P, Bingham R, Andersen OB, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879

    Article  Google Scholar 

  • Mayer-Gürr T et al (2012) The new combined satellite only model GOCO03S. Presented at the IAG Commission 2 “gravity, geoid and height systems GGHS2012” conference, October 9th–12th, Venice, Italy

    Google Scholar 

  • Moritz H (1992) Geodetic reference system 1980. Bull Geod 66:187–192

    Article  Google Scholar 

  • Pail R et al (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi:10.1029/2010GL044906

    Article  Google Scholar 

  • Pail R et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    Article  Google Scholar 

  • Reguzzoni M, Sampietro D, Sans F (2013) Global Moho from the combination of the crust 2.0 model and GOCE data. Geophys J Int 195(1):222–237

    Article  Google Scholar 

  • Sánchez L (2009) Strategy to establish a global vertical reference system. In: Drewes H (ed) Geodetic reference systems. International association of geodesy symposia, vol 134. Springer, Switzerland, pp 273–278. doi:10.1007/978-3-642-00860-3_42

    Google Scholar 

  • Sánchez L, Dayoub N, Čunderlík R, Minarechová Z, Mikula K, Vatrt V, Vojtíšková M, Šíma M (2014) W0 estimates in the frame of the GGOS working group on vertical datum standardisation. IAG Symp 141:203–210

    Google Scholar 

  • Schall J, Eicker A, Kusche J (2014) The ITG-Goce02 gravity field model from GOCE orbit and gradiometer data based on the short arc approach. J Geod 88(4):403–409. doi:10.1007/s00190-014-0691-2

    Article  Google Scholar 

  • Šprlák M, Gerlach C, Pettersen PR (2012) Validation of GOCE global gravity field models using terrestrial gravity data in Norway. J Geod Sci 2(2):134–143

    Google Scholar 

  • Tenzer R, Dayoub N, Abdalla A (2013) Analysis of a relative offset between vertical datums at the North and South Islands of New Zealand. Appl Geomat 5:133–145

    Article  Google Scholar 

  • Tocho C, Vergos GS, Pacino MC (2014) Evaluation of the latest GOCE/GRACE derived global geopotential models over Argentina with collocated GPS/levelling observations. IAG Symp 141:75–83

    Google Scholar 

  • Tziavos IN, Vergos GS, Grigoriadis VN (2010) Investigation of topographic reductions and aliasing effects to gravity and the geoid over Greece based on various digital terrain models. Surv Geophys 31(3):23–67. doi:10.1007/s10712-009-9085-z

    Article  Google Scholar 

  • Tziavos IN, Vergos GS, Mertikas SP, Daskalakis A, Grigoriadis VN, Tripolitsiotis A (2013) The contribution of local gravimetric geoid models to the calibration of satellite altimetry data and an outlook~of the latest GOCE GGM performance in GAVDOS. Adv Space Res 51(8):1502–1522. doi:10.1016/j.asr.2012.06.013

    Article  Google Scholar 

  • Tziavos IN, Vergos GS, Grigoriadis VN, Tzanou EA, Natsiopoulos DA (in press) Validation of GOCE/GRACE satellite only and combined global geopotential models over Greece, in the frame of the GOCESeaComb Project. Accepted for Publication to the IAG Scientific Assembly 2013, International Association of Geodesy Symposia Vol. 143, Springer International Publishing Switzerland

    Google Scholar 

  • Vergos GS, Grigoriadis VN, Tziavos IN, Kotsakis C (2014) Evaluation of GOCE/GRACE global geopotential models over Greece with collocated GPS/levelling observations and local gravity data. IAG Symp 141:85–92

    Google Scholar 

  • Yi W, Rummel R, Gruber T (2013) Gravity field contribution analysis of GOCE gravitational gradient components. Stud Geophys Geod 57(2):174–202. doi:10.1007/s11200-011-1178-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the funding provided for this work, in the frame of the “Elevation” project, by the E.U. (European Social Fund) and Hellenic national funds under the Operational Program “Education and Lifelong Learning 2007–2013”, action “Archimedes III – Funding of research groups in T.E.I.”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Vergos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vergos, G.S., Andritsanos, V.D., Grigoriadis, V.N., Pagounis, V., Tziavos, I.N. (2015). Evaluation of GOCE/GRACE GGMs Over Attica and Thessaloniki, Greece, and Wo Determination for Height System Unification. In: Jin, S., Barzaghi, R. (eds) IGFS 2014. International Association of Geodesy Symposia, vol 144. Springer, Cham. https://doi.org/10.1007/1345_2015_53

Download citation

Publish with us

Policies and ethics