IAG 150 Years pp 249-256 | Cite as

Accuracy Estimation of the IfE Gravimeters Micro-g LaCoste gPhone-98 and ZLS Burris Gravity Meter B-64

  • Manuel SchillingEmail author
  • Olga Gitlein
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)


Presently, modern spring gravimeters are the most flexible, technically simple, and comparatively cheap solution for recordings over extended time periods in contrast to superconducting gravimeters. We investigate the accuracy of the state-of-the-art spring gravimeters Micro-g LaCoste gPhone-98 and ZLS Burris Gravity Meter B-64 of the Institut für Erdmessung (IfE). With both instruments gravity was recorded for periods of several months at five stations with high and low microseismic noise. Simultaneous measurements with both instruments as well as the parallel recording of the ZLS Burris gravimeter with the GWR Instruments Observatory Superconducting Gravimeter OSG-054 in Onsala (Sweden) are investigated. Tidal analysis is used to assess the quality of the time series. Diurnal and semi-diurnal amplitude factors agree at the level of 1 Open image in new window  and better from recordings of Burris and OSG gravimeters in Onsala. In addition to gravity recordings a number of calibration experiments were carried out to test the long-term stability of the meters. The linear calibration factor of both gravimeters is stable to 3 × 10−4. The drift of the gPhone-98 decreased over time and is currently reduced with a linear factor of \(\approx 90\) nm/s2 per day. The instrumental drift of Burris B-64 on the other hand can currently not be reduced with a linear factor.


gPhone Instrumental accuracy Relative gravimetry Tidal analysis ZLS Burris 



This work was in part funded by the German Research Foundation (DFG, MU 1141/16-1). The Centre for Quantum Engineering and Space-Time-Research (QUEST) provided funding for the gPhone-98. The authors thank Hans-Georg Scherneck and the Onsala Space Observatory for hosting our instrument and providing gravity and environmental data, and the Leibniz Institute for Applied Geophysics for the cooperation in Hamburg.


  1. Jentzsch G (2008) The automated Burris Gravity Meter-a new instrument using an old principle. In: Proceedings of symposium on terrestrial gravimetry static and mobile measurements, St Petersburg, pp 20–23Google Scholar
  2. Jiang Z, Pálinkáš V, Francis O, Jousset P, Mäkinen J, Merlet S, Becker M, Coulomb A, Kessler-Schulz KU, Schulz HR, Rothleitner C, Tisserand L, Lequin D (2012) Relative gravity measurement campaign during the 8th International Comparison of Absolute Gravimeters (2009). Metrologia 49(1):95–107. doi:10.1088/0026-1394/49/1/014CrossRefGoogle Scholar
  3. LaCoste & Romberg, Inc. (2004) Instruction manual Model G and D gravity meters. LaCoste & Romberg, Inc., AustinGoogle Scholar
  4. Mammadov S, Jahr T, Jentzsch G, Kadirov F (2011) Primary results of new gravity station Shaki/Azerbaijan. Bull d’Inf Marées Terrest 147:11881–11890Google Scholar
  5. Micro-g LaCoste (2008) gPhone/P.E.T Hardware Manuel V1. Micro-g LaCoste, LafayetteGoogle Scholar
  6. Olsson PA, Scherneck HG, Ågren J (2009) Effects on gravity from non-tidal sea level variations in the Baltic Sea. J Geodyn 48(3–5):151–156. doi:10.1016/j.jog.2009.09.002CrossRefGoogle Scholar
  7. Riccardi U, Rosat S, Hinderer J (2011) Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series. Metrologia 48(1):28–39. doi:10.1088/0026-1394/48/1/003CrossRefGoogle Scholar
  8. Richter B, Wenzel HG (1991) Precise instrumental phase lag determination by the step response method. Bull d’Inf Marées Terrest 111:8032–8052Google Scholar
  9. Scherneck HG (2008) Status report to the Global Geodynamics Project: superconducting gravimeter station at the Onsala Space Observatory. The national facility for radio astronomy in Sweden. Technical Report, Onsala Space ObservatoryGoogle Scholar
  10. Timmen L (2010) Absolute and relative gravimetry. In: Xu G (ed) Sciences of geodesy - I. Springer, Berlin, pp 1–48. doi:http:10.1007/978-3-642-11741-1_1Google Scholar
  11. Timmen L, Gitlein O (2004) The capacity of the Scintrex Autograv CG-3M no. 4492 gravimeter for “absolute-scale” surveys. Revista Brasileira de Cartografia 56(2):89–95Google Scholar
  12. Timmen L, Wenzel HG (1995) Worldwide synthetic gravity tide parameters. In: Sünkel H, Marson I (eds) Gravity and geoid. International Association of Geodesy symposia, vol 113. Springer, Berlin, pp 92–101. doi:http:10.1007/978-3-642-79721-7_11Google Scholar
  13. Van Camp M, Vauterin P (2005) Tsoft: graphical and interactive software for the analysis of time series and earth tides. Comput Geosci 31(5):631–640CrossRefGoogle Scholar
  14. Wenzel HG (1996) The nanogal software: Earth tide data processing package ETERNA 3.30. Bull d’Inf Marées Terrest 124:9425–9439Google Scholar
  15. ZLS Corporation (2011) User guide: Burris Gravity Meter and UltraGrav control system. ZLS Corporation, AustinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für ErdmessungLeibniz Universität HannoverHannoverGermany

Personalised recommendations