REFAG 2014 pp 95-100 | Cite as

GGOS-SIM: Simulation of the Reference Frame for the Global Geodetic Observing System

  • Harald Schuh
  • Rolf König
  • Dimitrios Ampatzidis
  • Susanne Glaser
  • Frank Flechtner
  • Robert Heinkelmann
  • Tobias J. Nilsson
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 146)

Abstract

The accuracy and stability requirements for the International Terrestrial Reference Frame (ITRF) postulated by the Global Geodetic Observing System (GGOS) are not met so far. The GGOS–SIM project builds a software tool that by simulating the space geodetic infrastructure allows to assess the impact of technique upgrades, new sites, new satellites, local ties, and space ties on the ITRF accuracy and stability. As also the procedure for the combination of the techniques plays a fundamental role in the generation of an ITRF, we discuss peculiarities of current day approaches and draw conclusions relevant for this project. As the assessment of the accuracy of an ITRF is needed for checking against the GGOS requirements, we compile actual methods and present here a new measure of stability which is exemplarily applied to recent ITRFs.

Keywords

GGOS Global geodetic observing system ITRF International terrestrial reference frame 

References

  1. Altamimi Z, Dermanis A (2009) The choice of reference system in ITRF formulation. In: Sneeuw et al (eds) VII Hotine-Marussi symposium on mathematical geodesy. International Association of Geodesy Symposia Series, vol 137. Springer, Berlin, pp 329–334. http://link.springer.com/bookseries/1345
  2. Altamimi Z, Dermanis A (2013) Theoretical foundations of ITRF determination. The algebraic and the kinematic approach. In: Katsampalos KV, Rossikopoulos D, Spatalas S, Tokmakidis D (eds) On measurements of lands and constructions. Volume in honor of Prof. D. Vlachos, Publication of the School of Rural & Surveying Engineering, Aristotle University of Thessaloniki, pp 331–359Google Scholar
  3. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for Earth science applications. J Geophys Res 107(B10):2214CrossRefGoogle Scholar
  4. Altamimi Z, Sillard P, Boucher C (2003) The impact of a no-net-rotation condition on ITRF2000. Geophys Res Lett 30(2):1064CrossRefGoogle Scholar
  5. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112:B09401CrossRefGoogle Scholar
  6. Altamimi Z, Collilieux X, Metivier L (2011) ITRF 2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. http://link.springer.com/article/10.1007\%2Fs00190-011-0444-4 CrossRefGoogle Scholar
  7. Angermann D, Drewes H, Kelm R, Krügel M, Meisel B, Tesmer V (2004a) IERS combination research centre at DGFI. IERS Annual Report 2003, 112–113, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt a. M., 2004Google Scholar
  8. Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004b) ITRS combination centre at DGFI - A terrestrial reference frame realization 2003. Deutsche Geodätische Kommission, Reihe B, 313, MuenchenGoogle Scholar
  9. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI software VieVS. In: Geodesy for planet Earth, International Association of Geodesy Symposia Series, vol 136. Springer, Berlin, pp 1007–1011Google Scholar
  10. Davies P, Blewitt G (2000) Methodology for global geodetic time series estimation: a new tool for geodynamics. J Geophys Res 105(B5):11083–11100CrossRefGoogle Scholar
  11. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys Res Lett 21:2191–2194CrossRefGoogle Scholar
  12. Dermanis A (2001) Global reference frames: connecting observation to theory and geodesy to geophysics. IAG 2001 scientific assembly vistas for geodesy in the New Milennium 2–8 Sept. 2001, Budapest. http://der.topo.auth.gr/DERMANIS/PDFs/Derma-nis_Budapest.pdf. Accessed Feb 2015
  13. Dong D, Feng P (2007) ITRF origin: diagnosis of current realization. EGU General Assemply, Vienna, 15–20 Apr. 2007. http://itrf.ensg.ign.fr/doc_ITRF/egu2007/Dong-egu_070417.pdf. Accessed Feb 2015
  14. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems J Geod 83(3-4):191–198. http://link.springer.com/article/10.1007\%2Fs00190-008-0300-3 Google Scholar
  15. Kreemer C, Holt WE (2001) A no-net-rotation model of present-day surface motions. Geophys Res Lett 28:4407–4410CrossRefGoogle Scholar
  16. Kreemer C, Lavallée DA, Blewitt G, Holt WE (2006) On the stability of a geodetic no-net-rotation frame and its implication for the International Terrestrial Reference Frame. Geophys Res Lett 33:L17306, doi:10.1029/2006GL027058 CrossRefGoogle Scholar
  17. Lambeck K (1987) Geophysical Geodesy: The Slow Deformations of the Earth. Clarendon Press, Oxford http://onlinelibrary.wiley.com/doi/10.1029/GM060p0007/summary Google Scholar
  18. Ma C, Arias EF, Eubanks TM, Fey AL, Gontier A-M, Jacobs CS, Sovers OJ, Archinal BA, Charlot P (1998) The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry. Astron J 116:516–546. http://iopscience.iop.org/article/10.1086/300408/meta;jsessionid=2B5FF1BD4EF0F88AA55F9F1A9C08220A.c4.iopscience.cld.iop.org CrossRefGoogle Scholar
  19. Minster JB, Jordan TH, Molnar P, Haines E (1974) Numerical modelling of instantaneous plate tectonics. Geophys J R Astron Soc 36:541–576CrossRefGoogle Scholar
  20. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. http://www.sciencedirect.com/science/article/pii/S0273117702002776 CrossRefGoogle Scholar
  21. Petit G, Luzum B (eds) (2010) IERS Conventions. IERS Technical note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. ISBN 3-89888-989-6. http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html
  22. Plag H-P, Beutler G, Gross R, Herring T, Rizos C, Rummel R, Sahagian D, Zumberge J (2009) Global Geodetic Observing System. Springer, Berlin/Heidelberg. Chapter Introduction:1–13Google Scholar
  23. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123CrossRefGoogle Scholar
  24. Seitz M (2015) Comparison of different combination strategies applied for the computation of terrestrial reference and geodetic parameter series. In: The 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems (QuGOMS’11). International Association of Geodesy Symposia Series, vol 140. Springer, Berlin, pp 57–64. http://www.springer.com/us/book/9783319108278
  25. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80CrossRefGoogle Scholar
  26. Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2016) Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67:9 pp (Article ID 136). doi:10.1186/s40623-015-0307-y
  27. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette J-J (2010) The International DORIS Service (IDS): Toward Maturity. Adv Space Res 45(12):1408–1420. http://www.sciencedirect.com/science/article/pii/S0273117709007212 CrossRefGoogle Scholar
  28. Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE and GPS data. J Geodyn 78(1-2):103–108Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Harald Schuh
    • 1
    • 2
  • Rolf König
    • 2
  • Dimitrios Ampatzidis
    • 2
  • Susanne Glaser
    • 1
  • Frank Flechtner
    • 1
    • 2
  • Robert Heinkelmann
    • 2
  • Tobias J. Nilsson
    • 2
  1. 1.Institute of Geodesy and Geoinformation ScienceTechnische Universität BerlinBerlinGermany
  2. 2.GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations