Advertisement

IGFS 2014 pp 189-197 | Cite as

Mass Variations in the Siberian Permafrost Region Based on New GRACE Results and Auxiliary Modeling

  • Akbar Shabanloui
  • Jürgen Müller
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 144)

Abstract

GRACE (Gravity Recovery And Climate Experiment) determines the integral mass variations in the Earth system with a high spatial-temporal resolution. These mass variations should be adequately separated for better understanding of the individual signal contributions. In Siberia, the temporal mass variations are related to hydrological processes including thawing of permafrost layers. Permafrost layers with different thickness cover about 80% of Siberia. These frozen sheets play an important role for sea level rise and the global hydrological water cycle. In this study, the integral mass variations in Siberia are precisely estimated based on the new release of GRACE (RL05a) from GeoForschungsZentrum (GFZ) in Potsdam. In addition, various hydrological contributions (lake level variation, river run-off, etc.) can be estimated from different models and specific data. Here, mass variations in the Siberian permafrost region based on GRACE results and different hydrological models/data [i.e., GLDAS (Global Land Data Assimilation System) and GPCP (Global Precipitation Climatology Project)] are jointly investigated.

Keywords

GRACE Mass variation Hydrological model GLDAS GPCP Permafrost thawing 

Notes

Acknowledgements

We would like to thank the GeoForschungsZentrum (GFZ) in Potsdam and the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100% of the raw telemetry and L2 data of the twin GRACE satellites.

References

  1. Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J Hydrometeor 4(6):1147–1167CrossRefGoogle Scholar
  2. Chao B, Wu Y, Zhang Z, Ogawa R (2011) Gravity variation in Siberia: GRACE observation and possible causes. Terr Atmos Ocean Sci 22(2):149–155. doi:10.3319/TAO.2010.07.26.03(TibXS)CrossRefGoogle Scholar
  3. Cheng M, Tapley BD, Ries JC (2013) Deceleration in the Earth’s oblateness. J Geophys Res Solid Earth 118(2):740–747. doi:10.1002/jgrb.50058CrossRefGoogle Scholar
  4. Davis JL, Tamisiea ME, Elsegui P, Mitrovica JX, Hill EM (2008) A statistical filtering approach for gravity recovery and climate experiment (GRACE) gravity data. J Geophys Res Solid Earth 113(B4). doi:10.1029/ 2007JB005043Google Scholar
  5. Flechtner F, Dobslaw H (2014) AOD1B product description document for product release 05 (Rev. 4.2, May 20, 2014). Technical Note, GFZ German Research Centre for Geosciences Department 1: Geodesy and Remote SensingGoogle Scholar
  6. Frappart F, Ramillien G, Biancamaria S, Mognard NM, Cazenave A (2006) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys Res Lett 33(2). doi:10.1029/2005GL024778Google Scholar
  7. Frappart F, Ramillien G, Famiglietti JS (2011) Water balance of the Arctic drainage system using grace gravimetry products. Int J Rem Sens 32(2):431–453. doi:10.1080/01431160903474954CrossRefGoogle Scholar
  8. Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Ohio State University, Department of Geodetic Science and Surveying, Report No. 327Google Scholar
  9. Jin S, Feng G (2013) Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Glob Planet Change 106:20–30. doi:10.1016/j.gloplacha.2013.02.008CrossRefGoogle Scholar
  10. Jin S, Hassan A, Feng G (2012) Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models. J Geodyn 62:40–48. doi:10.1016/j.jog.2012.01.009CrossRefGoogle Scholar
  11. Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175(2):417–432. doi:10.1111/j.1365-246X. 2008.03922.xCrossRefGoogle Scholar
  12. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable grace-type gravity field models. J Geodesy 81(11):733–749. doi:10.1007/s00190-007-0143-3CrossRefGoogle Scholar
  13. Landerer FW, Dickey JO, Güntner A (2010) Terrestrial water budget of the Eurasian pan-arctic from GRACE satellite measurements during 2003–2009. J Geophys Res Atmos 115(D23). doi:10.1029/2010JD014584Google Scholar
  14. Majhi I, Yang D (2008) Streamflow characteristics and changes in Kolyma basin in Siberia. J Hydrometeorol 9(2):267–279. doi:10.1175/2007JHM845. 1CrossRefGoogle Scholar
  15. Milly P, Betancourt J, Falkenmark M, Hirsch R, Kundzewicz Z, Lettenmaier D, Stouffer R (2008) Stationarity is dead: whither water management? Earth 4:20. doi:10.1126/science.1151915Google Scholar
  16. Muskett RR, Romanovsky VE (2009) Groundwater storage changes in Arctic permafrost watersheds from GRACE and in–situ measurements. Environ Res Lett 4(4):045009CrossRefGoogle Scholar
  17. Ogawa R (2010) Transient, seasonal and inter-annual gravity changes from GRACE data: geophysical modelings. Ph.D. thesis, Department of Natural History Sciences, Graduate School of Science, Hokkaido UniversityGoogle Scholar
  18. Ray RD, Rowlands DD, Egbert GD (2003) Tidal models in a new era of satellite gravimetry. Space Sci Rev 108(1–2):271–282. doi:10.1023/A: 1026223308107Google Scholar
  19. Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. doi:10.1175/BAMS-85-3-381CrossRefGoogle Scholar
  20. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999– 1002CrossRefGoogle Scholar
  21. Sasgen I, Konrad H, Ivins ER, Van den Broeke MR, Bamber JL, Martinec Z, Klemann V (2013) Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere 7(5):1499–1512. doi:10.5194/tc-7-1499-2013CrossRefGoogle Scholar
  22. Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res Solid Earth 113(B8). doi:10.1029/ 2007JB005363Google Scholar
  23. Seoane L, Ramillien G, Frappart F, Leblanc M (2013) Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation. Hydrol Earth Syst Sci 17(12):4925–4939. doi:10.5194/hess-17-4925-2013CrossRefGoogle Scholar
  24. Steffen H, Müller J, Peterseim N (2012) Mass variations in the Siberian permafrost region from GRACE. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for Planet Earth, vol 136. Springer, Berlin/Heidelberg, pp 597–603CrossRefGoogle Scholar
  25. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8):L08402. doi:10.1029/2005GL025285CrossRefGoogle Scholar
  26. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920CrossRefGoogle Scholar
  27. Tiwari V, Srinivas N, Singh B (2014) Hydrological changes and vertical crustal deformation in South India: inference from GRACE, GPS and absolute gravity data. Phys Earth Planetary In 231:74–80. doi:10.1016/j. pepi.2014.03.002CrossRefGoogle Scholar
  28. Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S (2014) Temperature and peat type control co2 and ch4 production in Alaskan permafrost peats. Glob Chang Biol 20(8):2674–2686. doi:10.1111/ gcb.12572CrossRefGoogle Scholar
  29. Velichko AA, Timireva SN, Kremenetski KV, MacDonald GM, Smith LC (2011) West Siberian plain as a late glacial desert. Quat Int 237(12):45–53. doi:10.1016/j.quaint.2011.01.013CrossRefGoogle Scholar
  30. Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40(12):3055–3063. doi:10.1002/grl.50527CrossRefGoogle Scholar
  31. Velicogna I, Tong J, Zhang T, Kimball JS (2012) Increasing subsurface water storage in discontinuous permafrost areas of the Lena river basin, Eurasia, detected from GRACE. Geophys Res Lett 39(9). doi:10.1029/ 2012GL051623Google Scholar
  32. Vey S, Steffen H, Müller J, Boike J (2013) Inter-annual water mass variations from GRACE in central Siberia. J Geodesy 87(3):287–299. doi:10.1007/ s00190-012-0597-9CrossRefGoogle Scholar
  33. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229. doi:10.1029/ 98JB02844CrossRefGoogle Scholar
  34. Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):1499–1515. doi:10.1111/j.1365-246X.2009.04355.xCrossRefGoogle Scholar
  35. Yang Z-p, Gao J-x, Zhao L, Xu X-l, Ouyang H (2013) Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet plateau. Plant Soil 367(1–2):687–700. doi:10.1007/s11104-012-1511-1CrossRefGoogle Scholar
  36. Zhang Z-Z, Chao BF, Lu Y, Hsu H-T (2009) An effective filtering for grace time-variable gravity: fan filter. Geophys Res Lett 36(17). doi:10.1029/ 2009GL039459Google Scholar
  37. Zhong M, Duan J, Xu H, Peng P, Yan H, Zhu Y (2009) Trend of China land water storage redistribution at medi- and large-spatial scales in recent five years by satellite gravity observations. Chin Sci Bull 54(5):816–821. doi:10.1007/s11434-008-0556-2Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of GeodesyUniversity of HannoverHannoverGermany

Personalised recommendations