IAG 150 Years pp 427-433 | Cite as

On the Use of Bistatic TanDEM-X Images to Quantify Volumetric Changes of Active Lava Domes

Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)


TanDEM-X is a recent SAR mission, consisting of two almost identical spacecraft flying in close formation. The small distance between the two radar satellites allows two images to be acquired at the same time (bistatic images), strongly reducing the influence of temporal decorrelation, which is one of the major sources of error in repeat-pass interferometric analyses. For the first time, we successfully apply TanDEM-X data to observe topographic changes at active volcanoes by using the image pairs to generate high-resolution digital surface models (DSMs) for each transit of the satellites. Taking the difference between two bistatic DSMs allows us to assess substantial topographic changes and/or sudden ground displacements above the 1 m level. As the first test case, we used bistatic TanDEM-X data to assess topographic change due to the major Merapi 2010 eruption. The preliminary estimated volumetric loss of 19 × 106 m3 is reasonable; however, strong phase noise due to geometrical decorrelation and resulting unwrapping errors affect the result. To demonstrate that much smaller topographic changes are observable with TanDEM-X, we further analyzed data acquired before and after a small explosion at Volcán de Colima in June 2011. The estimated volume loss of 2 × 105 m3 fits well to ground truth data.


Double differential DSMs InSAR Lava domes Merapi TanDEM-X Volcán de Colima Volume estimates 


  1. Calder E, Luckett R, Sparks R, Voight B (2002) Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufriere Hills Volcano, Montserrat. In: Druitt T, Kokelaar B (eds) The eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999, memoirs 21. Geological Society, London, pp 173–190Google Scholar
  2. Gonzáles MB, Ramírez J, Navarro C (2002) Summary of the historical eruptive activity of Volcán de Colima, Mexico 1519–2000. J Volcanol Geotherm Res 117:21–46. doi:10.1016/S0377-0273(02)00233-0CrossRefGoogle Scholar
  3. Hanssen RF (2001) Radar interferometry. Data interpretation and error analysis. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  4. Hutchinson W, Varley N, Pyle DM, Mather TA, Stevenson JA (2013) Airborne thermal remote sensing of the Volcán de Colima (Mexico) lava dome from 2007 to 2010. In: Pyle DM, Mather TA, Biggs J (eds) Remote-sensing of volcanoes and volcanic processes: integrating observation and modelling, vol 380. Geological Society Special Publication, pp 203–228. doi:10.1144/SP380.8Google Scholar
  5. James MR, Varley N (2012) Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophys Res Lett 39:L22303. doi:10.1029/2012GL054245CrossRefGoogle Scholar
  6. Kampes B, Hanssen R, Zbigniew P (2003) Radar interferometry with public domain tools. In: Proceedings of Fringe 2003 workshop, Frascati, 1–5 December 2003Google Scholar
  7. Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45:3317–3341. doi:10.1109/TGRS.2007.900693CrossRefGoogle Scholar
  8. Lu Z, Freymueller J (1998) Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska. J Geophys Res 103:29887–29894. doi:10.1029/98JB02410CrossRefGoogle Scholar
  9. Lu Z, Masterlark T, Dzurisin D (2005) Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: magma supply dynamics and postemplacement lava flow deformation. J Geophys Res 110:1–18. doi:10.1029/2004JB003148CrossRefGoogle Scholar
  10. Martone M, Bräutigam B, Rizzoli P, Gonzales C, Bachmann M, Krieger G (2012) Coherence evaluation of TanDEM-X interferometric data. ISPRS J Photogramm Remote Sens 73:21–29. doi:10.1016/j.isprsjprs.2012.06.006CrossRefGoogle Scholar
  11. Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570. doi:10.1038/375567a0CrossRefGoogle Scholar
  12. Newhall CG et al (2000) 10,000 years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50. doi:10.1016/S0377-0273(00)00132-3CrossRefGoogle Scholar
  13. Pallister J, Schneider D, Griswold J, Keeler R, Burton W, Noyles C, Newhall C, Ratdomopurbo A (2013) Merapi 2010 eruption – chronology and extrusion rates monitored with satellite radar used in eruption forecasting. J Volcanol Geotherm Res 261:144–152. doi:10.1016/j.jvolgeores.2012.07.012CrossRefGoogle Scholar
  14. Sparks RSJ et al (1998) Magma production and growth of the lava dome of the Soufrière Hills Volcano, Montserrat, West Indies: November 1995 to December 1997. Geophys Res Lett 25:3421–3424. doi:10.1029/98GL00639CrossRefGoogle Scholar
  15. Stevens N, Wadge G (2004) Towards operational repeat-pass SAR interferometry at active volcanoes. Nat Hazards 33:47–76. doi:10.1023/B:NHAZ.0000035005.45346.2bCrossRefGoogle Scholar
  16. Stevens NF, Wadge G, Williams CA (2001) Post-emplacement lava subsidence and the accuracy of ERS InSAR digital elevation models of volcanoes. Int J Remote Sens 22:819–828. doi:10.1080/01431160051060246CrossRefGoogle Scholar
  17. Surono et al (2012) The 2010 explosive eruption of Java’s Merapi volcano - a ‘100-year’ event. J Volcanol Geotherm Res 241–242:121–135. doi:10.1016/j.jvolgeores.2012.06.018Google Scholar
  18. Voight B, Constantine E, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138. doi:10.1016/S0377-0273(00)00134-7CrossRefGoogle Scholar
  19. Wadge G (2003) Measuring the rate of lava effusion by InSAR. In: Proceedings of Fringe 2003 workshop, Frascati 1–5 December 2003Google Scholar
  20. Wadge G, Cole P, Stinton A, Komorowski JC, Stewart R, Toombs A, Legendre Y (2011) Rapid topographic change measured by high-resolution satellite radar at Soufrière Hills Volcano, Montserrat, 2008–2010. J Volcanol Geotherm Res 199:142–152. doi:10.1016/j.jvolgeores.2010.10.011CrossRefGoogle Scholar
  21. Weigt M, Rizzoli P, Bachmann M, Bräutigam B, Schulze D (2012) TanDEM-X mission - interferometric performance and global DEM acquisition status. In: Radar 2012, IET international conference on radar systems, Glasgow, 22–25 October 2012Google Scholar
  22. Zebker HA, Amelung F, Jonsson S (2000) Remote sensing of volcano surface and internal processes using radar interferometry. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote sensing of active volcanism. Geophysical monograph series, vol 116. AGU, pp 179–205. doi:35400009795346.0100Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Julia Kubanek
    • 1
  • Malte Westerhaus
    • 1
  • Bernhard Heck
    • 1
  1. 1.Geodetic InstituteKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations