Advertisement

Status of the IGS-TIGA Tide Gauge Data Reprocessing at GFZ

  • Zhiguo DengEmail author
  • Gerd Gendt
  • Tilo Schöne
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)

Abstract

The International GNSS Service (IGS) Tide Gauge Benchmark Monitoring Working Group (TIGA-WG) is responsible for analyzing GNSS data from stations at or near tide gauges (TG) on a preferably continuous basis and to provide information specifically for the vertical rates. The position and vertical velocity results of the stations can be applied in several geodetic and geophysical applications, such as global and regional sea-level change, calibration of satellite altimeters and the unification of height systems. As one of the TIGA Analysis Centers the German Research Centre for Geosciences (GFZ) is contributing to the IGS TIGA Reprocessing Campaign (TIGA REPRO2). The solutions of the GFZ TIGA REPRO2 will also contribute to IGS second Data Reprocessing Campaign (IGS REPRO2) with the GFZ IGS REPRO2 solution. Following the first IGS reprocessing finished in 2010 some improvements were implemented into the latest GFZ software version EPOS.P8: reference frame IGb08 based on ITRF2008, antenna calibration igs08.atx, geopotential model (EGM2008), higher-order ionospheric effects, new a priori meteorological model (GPT2), VMF mapping function, and other minor improvements. GNSS data of the globally distributed tracking network of 794 stations for the time span from 1994 until end of 2012 are used for the GFZ TIGA REPRO2. To handle such large networks a new processing strategy is developed and described in detail. In the GFZ TIGA REPRO2 the GNSS@TG data are processed in precise point positioning (PPP) mode to clean data using the GFZ IGS REPRO2 orbit and clock products. To validate the quality of the PPP coordinate results the rates of 80 GNSS@TG station vertical movement are estimated from the PPP results using Maximum Likelihood Estimation (MLE) method. The rates are compared with the solution of University of La Rochelle Consortium (ULR) (named ULR5). 56 of the 80 stations have a difference of the vertical velocities below 1 mm/year. The error bars of PPP rates are significantly larger than those of ULR5, which indicates large time correlated noise in the PPP solutions.

Keywords

PPP Reprocessing TIGA 

Notes

Acknowledgements

We would like to thank the IGS and the SONEL data center (www.sonel.org) for providing GNSS observation data.

References

  1. Bar-Sever Y (1996) A new model for GPS yaw attitude. J Geodesy 70(11):714–723. doi:10.1007/BF00867149CrossRefGoogle Scholar
  2. Boehm J, Kouba J, Schuh H (2008) Forecast Vienna mapping functions 1 for real-time analysis of space geodetic observations. J Geodesy. doi:10.1007/s00190-008-0216-yGoogle Scholar
  3. Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104:2797–2816CrossRefGoogle Scholar
  4. Petit G, Luzum B (2010) IERS technical note No 36. Technical Report, IERS Convention CentreGoogle Scholar
  5. Rodriguez-Solano C, Hugentobler U, Steigenberger P, Lutz S (2012) Impact of Earth radiation pressure on GPS position estimates. J Geodesy 86(5):309–317. doi:10.1007/s00190-011-0517-4CrossRefGoogle Scholar
  6. Rudenko S, Schön N, Uhlemann M, Gendt G (2013) Reprocessed height time series for GPS stations. Solid Earth 4(1):23–41. doi:10.5194/se-4-23-2013CrossRefGoogle Scholar
  7. Santamaría-Gómez A, Bouin MN, Wöppelmann G (2012a) Improved GPS data analysis strategy for tide gauge benchmark monitoring. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet Earth. International association of geodesy symposia, vol 136. Springer, Berlin/Heidelberg, pp 11–18. doi:10.1007/978-3-642-20338-1-2Google Scholar
  8. Santamaría-Gómez A, Gravelle M, Collilieux X, Guichard M, Martín Míguez B, Tiphaneau P, Wöppelmann G (2012b) Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Global Planet Chang 98-99:6–17. doi:j.gloplacha.2012.07.007Google Scholar
  9. Schöne T, Schön N, Thaller D (2009) IGS tide gauge benchmark monitoring pilot project (TIGA): scientific benefits. J Geodesy 83:249–261. doi:10.1007/s00190-008-0269-yCrossRefGoogle Scholar
  10. Uhlemann M, Rudenko S, Nischan T, Gendt G (2010) GFZ results of the first IGS data reprocessing campaign. IGS Workshop, Newcastle. ftp://stella.ncl.ac.uk/pub/IGSposters/Uhlemann.pdf
  11. Williams S (2008) Cats: GPS coordinate time series analysis software. GPS Solutions 12(2):147–153. doi:10.1007/s10291-007-0086-4CrossRefGoogle Scholar
  12. Wöppelmann G, Marcos M (2012) Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J Geophys Res Oceans 117(C1). doi:10.1029/2011JC007469Google Scholar
  13. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res Solid Earth 102(B8):18035–18055. doi:10.1029/97JB01380. http://dx.doi.org/10.1029/97JB01380

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Section 1.2: Global Geomonitoring and Gravity FieldHelmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Section 1.1: GPS/Galileo Earth Observation, Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations