Advertisement

REFAG 2014 pp 201-207 | Cite as

Towards Improved Lunar Reference Frames: LRO Orbit Determination

  • Anno LöcherEmail author
  • Franz Hofmann
  • Philipp Gläser
  • Isabel Haase
  • Jürgen Müller
  • Jürgen Kusche
  • Jürgen Oberst
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 146)

Abstract

Lunar reference systems are currently realized by sets of coordinates of the few laser reflectors deployed by Apollo astronauts and unmanned Soviet spacecrafts. Expanding this coordinate knowledge to other features identifiable in images of the lunar surface requires highly accurate orbits of the acquiring spacecraft. To support such activities using images and altimetry data from the Lunar Reconnaissance Orbiter (LRO), an independent processing facility for tracking observations to LRO has been established. We present orbits from 1 year radio Doppler, radio ranging and laser ranging data obtained by different combinations of data types. To obtain an external confirmation for the achieved orbit accuracy, coordinates of the Apollo 15 reflector were measured in LRO images by photogrammetric techniques and compared to reference values from Lunar Laser Ranging (LLR). Coordinate differences were found to be at the 10 m level.

Keywords

Lunar Laser Ranging Lunar Reconnaissance Orbiter Precise orbit determination 

Notes

Acknowledgements

This research was funded by the German Research Foundation (DFG) within the research unit FOR 1503 “Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space”. In addition, J. Oberst was hosted by MIIGAiK and supported by Russian Science Foundation, project #14-22-00197.

References

  1. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi:101029/2005JB003629Google Scholar
  2. Chin G, Brylow S, Foote M, Garvin J, Kasper J, Keller J, Litvak M, Mitrofanov M, Paige D, Raney K, Robinson M, Sanin A, Smith D, Spence H, Spudis P, Stern S, Zuber M (2007) Lunar Reconnaissance Orbiter overview: the instrument suite and mission. Space Sci Rev 129:391–419. doi:101007/s11214-007-9153-yGoogle Scholar
  3. Floberghagen R, Visser P, Weischede F (1999) Lunar albedo force modeling and its effect on low lunar orbit and gravity field determination. Adv Space Res 23(4):733–738. doi:101016/S0273-1177(99)00155-6Google Scholar
  4. GSFC (2010) Station raw tracking data. http://imbrium.mit.edu/ LRORS/DOCUMENT/LRO_ DESC_TRK.TXTGoogle Scholar
  5. Haase I, Oberst J, Scholten F, Wählisch M, Gläser P, Karachevtseva I, Robinson M (2012) Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter camera images and Apollo surface photography. J Geophys Res 117. doi:101029/2011JE003908Google Scholar
  6. Konopliv A, Park R, Yuan D, Asmar S, Watkins M, Williams J, Fahnestock E, Kruizinga G, Paik M, Strekalov D, Harvey N, Smith D, Zuber M (2013) The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J Geophys Res 118(7). doi:101002/jgre20097Google Scholar
  7. Maier A, Baur O, Krauss S (2014) POD of LRO and inferred gravity field information. Poster presented at European Planetary Science Congress, CascaisGoogle Scholar
  8. Mayer-Gürr T (2008) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, BonnGoogle Scholar
  9. Mazarico E, Rowlands D, Neumann G, Smith D, Torrence M, Lemoine F, Zuber M (2012) Orbit determination of the Lunar Reconnaissance Orbiter. J Geodesy 86(3):193–207CrossRefGoogle Scholar
  10. Mazarico E, Goossens S, Lemoine F, Neumann G, Torrence M, Rowlands D, Smith D, Zuber M (2013) Improved orbit determination of lunar orbiters with lunar gravity models obtained by the GRAIL mission. In: 44th Lunar and Planetary Science Conference, The WoodlandsGoogle Scholar
  11. Mendes V, Pavlis E (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602. doi:101029/2004GL020308Google Scholar
  12. Müller J, Biskupek L, Hofmann F, Mai E (2014) Lunar Laser Ranging and relativity. In: Kopeikin S (ed) Frontiers of relativistic celestial mechanics, vol 2. De Gruyter, Berlin, pp 103–156Google Scholar
  13. Nicholson A, Slojkowski S, Long A (2010) NASA GFSC Lunar Reconnaissance Orbiter (LRO) orbit estimation and prediction. In: SpaceOps 2010, HuntsvilleGoogle Scholar
  14. Petit G, Luzum B (2010) IERS Conventions. IERS Technical Note 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und GeodäsieGoogle Scholar
  15. Slojkowski S (2014) Lunar Reconnaissance Orbiter orbit determination accuracy analysis. In: 24th International Symposium on Space Flight Dynamics, LaurelGoogle Scholar
  16. Smith D, Zuber M, Lemoine F, Torrence M, Mazarico E (2008) Orbit determination of LRO at the moon. In: 16th International Workshop on Laser Ranging, PoznanGoogle Scholar
  17. Tooley C (2009) Lunar Reconnaissance Orbiter mission update. In: Wernher von Braun Memorial Symposium 2009, HuntsvilleGoogle Scholar
  18. Vondrak R, Keller J, Chin G, Garvin J (2010) Lunar Reconnaissance Orbiter (LRO): observations for lunar exploration and science. Space Sci Rev 150:7–22. doi:101007/s11214-010-9631-5Google Scholar
  19. Williams J, Boggs D, Folkner W (2008) DE421 lunar orbit, physical librations, and surface coordinates. JPL Interoffice Memorandum 335-JW,DB,WF-20080314-001Google Scholar
  20. Zuber M, Smith D, Lehman D, Hoffman T, Asmar S, Watkins M (2013) Gravity Recovery and Interior Laboratory (GRAIL): mapping the lunar interior from crust to core. Space Sci Rev 178:3–24. doi:101007/s11214-012-9952-7Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anno Löcher
    • 1
    Email author
  • Franz Hofmann
    • 2
  • Philipp Gläser
    • 3
  • Isabel Haase
    • 3
  • Jürgen Müller
    • 2
  • Jürgen Kusche
    • 1
  • Jürgen Oberst
    • 3
    • 4
  1. 1.Institut für Geodäsie und GeoinformationUniversität BonnBonnGermany
  2. 2.Institut für ErdmessungLeibniz Universität HannoverHannoverGermany
  3. 3.Institut für Geodäsie und GeoinformationstechnikTechnische Universität BerlinBerlinGermany
  4. 4.Moscow State University for Geodesy and Cartography (MIIGAiK)MoscowRussia

Personalised recommendations