IAG 150 Years pp 183-191 | Cite as

SIRGAS Core Network Stability

  • L. SánchezEmail author
  • H. Drewes
  • C. Brunini
  • M. V. Mackern
  • W. Martínez-Díaz
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)


The main objective of SIRGAS (Sistema de Referencia Geocéntrico para las Américas) is to provide an accurate spatial and time-referenced infrastructure as a basis for Earth System research and to support scientific and practical applications based on high-precise positioning. Following this purpose, significant achievements related to the extension, analysis, and maintenance of this reference frame have been reached during the last years. However, there are still unresolved problems hindering the attainment of the best possible precision. In particular, the assimilation of seismic-related deformations and non-lineal station movements is very difficult and its omission considerably reduces the reliability of SIRGAS as a high precision reference frame. To advance in the solution of these inconveniences, this paper presents the first kinematic model of the SIRGAS reference frame computed after the strong earthquake occurred in the Chilean region of Maule in February 2010. This model is based on the combination of weekly free normal equations covering the time span from April 18, 2010 to June 15, 2013. Computed station positions and velocities refer to the IGb08 reference frame (the IGS realisation of the ITRF2008), epoch 2012.0. The averaged rms precision is ±1.4 mm horizontally and ±2.5 mm vertically for the station positions at the reference epoch, and ±0.8 mm/year horizontally and ±1.2 mm/year vertically for the constant velocities. Comparisons with reference frames based on measurements before the earthquake (like ITRF2008 or former SIRGAS solutions) make evident the strong deformation caused by this earthquake and the necessity of updating accordingly the reference frames in the affected region.


ITRF densifications Regional reference frames Seismic effects on reference frames SIRGAS 


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111, B02406. doi: 10.1029/2005JB003629 Google Scholar
  3. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20489–20502. doi: 10.1029/97JB01739 CrossRefGoogle Scholar
  4. Costa SMA, Silva AL, Vaz JA (2012a) Processing evaluation of SIRGAS-CON network by IBGE Analysis Center. In: Geodesy for Planet Earth, IAG Symposia, vol 136. pp 859–868. doi: 10.1007/978-3-642-20338-1_108
  5. Costa SMA, Silva AL, Vaz JA (2012) Report on the SIRGAS-CON combined solution by IBGE Analysis Center. In: Geodesy for Planet Earth, IAG Symposia, vol 136. pp 853–857. doi: 10.1007/978-3-642-20338-1_107
  6. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0 – Documentation. Astronomical Institute, University of Berne, Berne, 640 ppGoogle Scholar
  7. Dach R et al (2013) Bernese GPS Software: new features in version 5.2.
  8. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a hanging landscape of Global Navigation Satellite Systems. J Geod 83:191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  9. Drewes H, Kaniuth K, Voelksen C, Alves Costa SM, Souto Fortes LP (2005) Results of the SIRGAS campaign 2000 and coordinates variations with respect to the 1995 South American geocentric reference frame. In: A window on the future of geodesy, IAG Symposia, vol 128. pp 32–37. doi:10.1007/3-540-27432-4_6Google Scholar
  10. Herring TA, King RW, McClusky SC (2010) Introduction to GAMIT/GLOBK, Release 10.4, Massachusetts Institue of Technology.
  11. Letellier T (2004) Etude des ondes de marée sur les plateux continentaux. Thèse doctorale, Université de Toulouse III, Ecole Doctorale des Sciences de l'Univers, de l'Environnement et de l’Espace, 237 pp (in French)Google Scholar
  12. Natali MP, Mueller M, Fernández L, Brunini C (2009) CPLat: first operational experimental processing center for SIRGAS in Argentina. J Geodesy 83:219–226. doi: 10.1007/s00190-008-0270-5 CrossRefGoogle Scholar
  13. Petit G, Luzum B (eds) (2010) IERS Conventions 2010. IERS Technical Note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt a.MGoogle Scholar
  14. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solutions 16(4):483–494. doi: 10.1007/s10291-011-0248-2 CrossRefGoogle Scholar
  15. Sánchez L (2012) IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). Report of activities 2011, pp 107–115Google Scholar
  16. Sánchez L (2013) IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). International GNSS Service Technical Report 2012, pp 111–120Google Scholar
  17. Sánchez L, Brunini C (2009) Achievements and challenges of SIRGAS. In: Geodetic Reference Frames, IAG Symposia, vol 134. pp 161–166. doi: 10.1007/978-3-642-00860-3_25
  18. Sánchez L, Seitz M (2011) Recent activities of the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). DGFI Report No. 87Google Scholar
  19. Sánchez L, Seemüller W, Seitz M (2012) Combination of the weekly solutions delivered by the SIRGAS processing centres for the SIRGAS-CON reference frame. In: Geodesy for Planet Earth, IAG Symposia, vol 136. pp 845–851. doi: 10.1007/978-3-642-20338-1_106
  20. Sánchez L, Seemüller W, Drewes H, Mateo L, González G, Silva A, Pampillón J, Martínez W, Cioce V, Cisneros D, Cimbaro S (2013) Long-term stability of the SIRGAS reference frame and episodic station movements caused by the seismic activity in the SIRGAS region. In: Reference frames for applications in geosciences, IAG Symposia, vol 138. pp 153–161. doi: 10.1007/978-3-642-32998-2_24
  21. Schmid R (2011) Upcoming switch to IGS08/igs08.atx – Details on igs08.atx. IGSMAIL-6355. (
  22. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  23. Seemüller W, Sánchez L, Seitz M, Drewes H (2010) The position and velocity solution SIR10P01 of the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). DGFI Report No. 86Google Scholar
  24. Seemüller W, Seitz M, Sánchez L, Drewes H (2012) The new multi-year position and velocity solution SIR09P01 of the IGS Regional Network Associate Analysis Centre (IGS RNAAC SIR). In: Geodesy for Planet Earth, IAG Symposia, vol 136. pp 877–883. doi: 10.1007/978-3-642-20338-1_110Google Scholar
  25. SIRGAS (1997) SIRGAS Final Report; Working Groups I and II IBGE, Rio de Janeiro; 96 p.
  26. van Dam T, Ray R (2010) S1 and S2 atmospheric tide loading effects for geodetic applications. Accessed 1 June 2013

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • L. Sánchez
    • 1
    Email author
  • H. Drewes
    • 1
  • C. Brunini
    • 2
  • M. V. Mackern
    • 3
  • W. Martínez-Díaz
    • 4
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de la Plata (UNLP)La PlataArgentina
  3. 3.Universidad Nacional de Cuyo, Universidad Juan A. MazaMendozaArgentina
  4. 4.Instituto Geográfico Agustín CodazziBogotáColombia

Personalised recommendations