IAG 150 Years pp 175-181 | Cite as

DPOD2008: A DORIS-Oriented Terrestrial Reference Frame for Precise Orbit Determination

  • Pascal Willis
  • Nikita P. Zelensky
  • John Ries
  • Laurent Soudarin
  • Luca Cerri
  • Guilhem Moreaux
  • Frank G. Lemoine
  • Michiel Otten
  • Donald F. Argus
  • Michael B. Heflin
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)

Abstract

While accuracy of tracking station coordinates is of key importance for Precise Orbit Determination (POD) for altimeter satellites, reliability and operationality are also of great concern. In particular, while recent ITRF realizations should be the most accurate at the time of their computation, they cannot be directly used by the POD groups for operational consideration for several reasons such as new stations appearing in the network or new discontinuities affecting station coordinates. For POD purposes, we computed a new DORIS terrestrial frame called DPOD2008 derived from ITRF2008 (as previously done by DPOD2005 with regards to ITRF2005). In a first step, we will present the method used to validate the past ITRF2008 using more recent DORIS data and to derive new station positions and velocities, when needed. In particular, discontinuities in DORIS station positions and/or velocities are discussed. To derive new DORIS station coordinates, we used recent DORIS weekly time series of coordinates, recent GPS relevant time series at co-located sites and also dedicated GPS campaigns performed by IGN when installing new DORIS beacons. DPOD2008 also contains additional metadata that are useful when processing DORIS data, for example, periods during which DORIS data should not be used or at least for which data should be downweighted. In several cases, a physical explanation can be found for such temporary antenna instability. We then demonstrate improvements seen when using different reference frames, such as the original ITRF2008 solution, for precise orbit determination of altimeter satellites TOPEX/Poseidon and Jason-2 over selected periods spanning 1993–2013.

Keywords

DORIS Jason-2 Terrestrial Reference Frame Tracking network  

Notes

Acknowledgements

Part of this work was supported by the Centre National d’Etudes Spatiales (CNES). It is based on observations with DORIS receivers on the SPOT satellites, TOPEX/Poseidon, Envisat, Jason-2 and Cryosat-2. FG Lemoine and NP Zelensky were supported by the NASA Ocean Surface Topography Science Team (OSTST) and the NASA Interdisciplinary Research in Earth Science/Sea Level Change. The work of Don Argus and Mike Heflin was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration (NASA). This paper is IPGP contribution number 3477.

References

  1. Altamimi Z, Boucher C, Willis P (2005) Terrestrial reference frame requirements within GGOS perspective. J Geodyn 40(4–5):363–374CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Metivier L (2011) ITRF2008, an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473CrossRefGoogle Scholar
  3. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes R, Willis P, Peltier WR, Owen S (2010) The angular velocities of the plates and the velocity of the Earth’s Center from Space Geodesy. Geophys J Int 180(3):916–960CrossRefGoogle Scholar
  4. Auriol A, Tourain C (2010) DORIS system, the new age. Adv Space Res 46(12):1484–1496CrossRefGoogle Scholar
  5. Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34(14) art L14608. doi:10.1029/2007GL030002
  6. Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337CrossRefGoogle Scholar
  7. Briole P, Willis P, Dubois J, Charade O (2009) Potential volcanic applications of the DORIS system, a geodetic study of the Socorro Island (Mexico) coordinate time series. Geophys J Int 178(1):581--590 CrossRefGoogle Scholar
  8. Cerri L, Berthias JP, Bertiger WI, Haines BK, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason Series of Altimeter Missions. Marine Geod 33(S1):379–418CrossRefGoogle Scholar
  9. Eberhardt-Phillips D, Haeussler PJ, Freymueller JT, Frankel AD, Rubin CM, Craw P, Rathovski NA, Anderson G, Carver GA, Crone AJ, Dawson TE, Flectcher H, Hansen R, Harp EL, Harris RA, Hill DP, Hreinsdottir S, Jibson RW, Jones LM,Kayen R, Keefer DK, Larsen CF, Moran SC, Personius SF, Plafker G, Sherrod B, Sieh K, Sitar N, Wallace WK (2003) The 2002 Denali faul earthquake, Alaska, A large magnitude, slip-partitioned event. Science 300(5622):1113--1118 CrossRefGoogle Scholar
  10. Fagard H (2006) Twenty years of evolution of the DORIS permanent network, from its initial deployment to its renovation. J Geod 80(8–11):429–456CrossRefGoogle Scholar
  11. Fu LL, Haines BJ (2013) The challenges in long-term altimetry calibration for addressing the problem of global sea level change. Adv Space Res 51(8):1284–1300CrossRefGoogle Scholar
  12. Heflin MB, Moore AW, Owen SE (2011) Impact of ambiguity resolution on the global reference frame, AGU Fall Meeting Abstracts, 2011AGUFM.G53A0879HGoogle Scholar
  13. Lemoine FG, Zelensky N, Chinn D, Pavlis D, Beckley B, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit determination, TOPEX/Poseidon, Jason-1 and Jason-2. Adv Space Res 46(12):1513–1540CrossRefGoogle Scholar
  14. Morel L, Willis P (2002) Parameter sensitivity of TOPEX orbit and derived mean sea level to DORIS station coordinates. Adv Space Res 30(2):255–263CrossRefGoogle Scholar
  15. Morel L, Willis P (2005) Terrestrial reference frame effects on sea level rise determined by TOPEX/Poseidon. Adv Space Res 36(3):358–368CrossRefGoogle Scholar
  16. Perfettini H, Avouac JP, Ruegg JC (2005) Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake, Implications for the mechanics of the earthquake cycle along subduction zones. J Geophys Res 110(B9) art B09404. doi:10.1029/2004JB0003522
  17. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garaut B (2012) IGS08, the IGS realization of ITRF2008. GPS Solut 16(4):483–494CrossRefGoogle Scholar
  18. Seitz M, Angermann D, Blossfeld M, Drewes M, Gerstl M (2012) The 2008 DGFI realization of the ITRS, DTRF2008. J Geod 86(12):1097–1123CrossRefGoogle Scholar
  19. Stepanek P, Dousa J, Filler V (2013) SPOT-5 DORIS oscillator instability due to South Atlantic Anomaly, mapping the effect and application of data corrective model. Adv Space Res 52(7):1355--1365 CrossRefGoogle Scholar
  20. Tavernier G, Soudarin L, Larson K, Noll C, Ries JC, Willis P (2002) Current status of the DORIS Pilot Experiment and the future international DORIS Service. Adv Space Res 30(2):151–155CrossRefGoogle Scholar
  21. Valette JJ, Lemoine FG, Ferrage P, Yaya P, Altamimi Z, Willis P, Soudarin L (2010) IDS contribution to ITRF2008. Adv Space Res 46(12):1614–1632CrossRefGoogle Scholar
  22. Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod 80(8–11):525–539CrossRefGoogle Scholar
  23. Willis P, Ries JC (2005) Defining a DORIS core network for Jason-1 Precise Orbit Determination based on ITRF2000, methods and realization. J Geod 79(6–7):370–378CrossRefGoogle Scholar
  24. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. CR Geosci 336(9):839–846CrossRefGoogle Scholar
  25. Willis P, Ries JC, Zelensky NP, Soudarin L, Fagard H, Pavlis EC, Lemoine FG (2009) Realization of a DORIS terrestrial reference frame for precise orbit determination. Adv Space Res 44(5):535–544CrossRefGoogle Scholar
  26. Willis P, Boucher C, Fagard H, Garayt B, Gobinddass ML (2010a) Contributions of the French Institut Geographique National (IGN) to the International DORIS Service. Adv Space Res 45(12):1470–1480CrossRefGoogle Scholar
  27. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010b) The International DORIS Service (IDS), toward maturity. Adv Space Res 45(12):1408–1420CrossRefGoogle Scholar
  28. Willis P, Lemoine FG, Moreaux G, Soudarin L, Ferrage P, Ries J, Otten M, Saunier J, Noll C, Biancale R, Luzum B (in press) The International DORIS Service (IDS), recent developments in preparation of ITRF2013. In: IAG Symp 143, DOI: 10.1007/1345_2015_164Google Scholar
  29. Zelensky N, Lemoine FG, Chinn D, Rowlands D, Luthcke S, Beckley B, Pavlis D, Klosko S, Ziebart M, Sibthorpe AJ, Willis P, Luceri V (2010) DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res 46(12):1541–1558CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pascal Willis
    • 1
    • 2
  • Nikita P. Zelensky
    • 3
  • John Ries
    • 4
  • Laurent Soudarin
    • 5
  • Luca Cerri
    • 6
  • Guilhem Moreaux
    • 5
  • Frank G. Lemoine
    • 7
  • Michiel Otten
    • 8
  • Donald F. Argus
    • 9
  • Michael B. Heflin
    • 9
  1. 1.IGN, Direction de la Recherche et de l’EnseignementSaint-MandeFrance
  2. 2.IPGP, UMR 7154, Gravimétrie et géodésie, Université Paris Diderot, Sorbonne Paris CitéParisFrance
  3. 3.SGTGreenbeltUSA
  4. 4.University of Texas, Center for Space ResearchAustinUSA
  5. 5.CLSToulouseFrance
  6. 6.CNESToulouseFrance
  7. 7.GSFCGreenbeltUSA
  8. 8.ESADarmstadtGermany
  9. 9.JPL, CaltechPasadenaUSA

Personalised recommendations