Impact of Time Variable Gravity on Annual Sea Level Variability from Altimetry

  • Saskia Esselborn
  • Tilo Schöne
  • Sergei Rudenko
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)


This study investigates seasonal to interannual changes in regional sea level caused by the recent replacement of the geopotential model EIGEN-GL04S_annual by the model EIGEN-6S for the precise orbit determination of satellite altimeters. We have analysed the radial orbit components for the Envisat, ERS-2 and TOPEX missions originating from two orbit solutions processed at the GeoForschungsZentrum (GFZ). These orbits were computed almost identically except for the use of the two different geopotential models mentioned above. An alternative orbit solution for Envisat provided by the European Space Operations Centre based on the model EIGEN-6C has been analysed as well. Empirical Orthogonal Functions (EOF) of the detrended radial orbit differences have been applied to study the typical spatio-temporal scales. The dominant EOF modes for all orbit differences exhibit large-scale bipolar patterns with opposite phase suggestive of apparent shifts of the origins of the different orbit solutions. In case the geopotential model is replaced the detrended radial orbit differences for all three missions are dominated by annual oscillations. The spatial patterns of these annual oscillations are similar for all three missions, with the TOPEX patterns and the ERS-2/Envisat patterns being out of phase. The annual amplitude reaches 5 mm at its maxima which corresponds to up to ∼10% of the annual sea level signal itself for some locations. In addition, it accounts for annual changes of the height gradient between the two maxima of the first EOF-patterns of up to 1 cm with inverse changes for TOPEX and ERS-2/Envisat.


Altimetry Annual cycle Orbit errors Precise orbit determination Sea level Time variable gravity 



We thank the anonymous reviewers for their valuable comments. We thank ESOC for providing Envisat solution v8 orbits ( This work was partly supported by the European Space Agency within the Climate Change Initiative Sea Level Project, by the Helmholtz Climate Initiative REKLIM and by DFG within the project UHR-GravDat.


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Bertiger W, Desai SD, Dorsey A, Haines BJ, Harvey N, Kuang D, Sibthorpe A, Weiss JP (2010) Sub-centimeter precision orbit determination with GPS for ocean altimetry. Mar Geod 33:363–378. doi: 10.1080/01490419.2010.487800 CrossRefGoogle Scholar
  3. Cerri L, Berthias JP, Bertiger WI, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geod 33:379–418. doi: 10.1080/01490419.2010.488966 CrossRefGoogle Scholar
  4. IERS Conventions 2003 (2004). Dennis D. McCarthy and Grard Petit (eds). IERS technical note no. 32, Verlag des Bundesamts fr Kartographie und Geodsie, Frankfurt am Main, ISBN 3-89888-884-3 Google Scholar
  5. Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselborn S, Sasgen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL05. J Geophys Res Ocean 118:3704–37011. doi: 10.1002/jgrc.20271 CrossRefGoogle Scholar
  6. Doornbos E, Scharroo R, Klinkrad H, Zandbergen R, Fritsche B (2002) Improved modelling of surface forces in the orbit determination of ERS and ENVISAT. Can J Remote Sens 28:535–543. doi: 10.5589/m02-055 CrossRefGoogle Scholar
  7. Folkner WM, Williams JG, Boggs DH (2008) The planetary and lunar ephemeris DE 421. IPN Progress Report 42–178Google Scholar
  8. Förste C, Bruinsma S, Shako R, Marty J-C, Flechtner F, Abrykosov O, Dahle C, Lemoine J-M, Neumayer K-H, Biancale R (2011) EIGEN-6 – a new combined global gravity field model including GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. Geophys Res Abstr 13: EGU2011-3242-2 (EGU General Assembly. Conference Abstracts, p 3242)Google Scholar
  9. Fu L-L, Haines BJ (2013) The challenges in long-term altimetry calibration for addressing the problem of global sea level change. Adv Space Res 51:1284–1300. doi: 10.1016/j.asr.2012.06.005 CrossRefGoogle Scholar
  10. Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27:1119–1152. doi: 10.1002/joc.1499 CrossRefGoogle Scholar
  11. Hedin AE (1987) MSIS-86 thermospheric model. J Geophy Res Space Phys 92:4649–4662. doi: 10.1029/JA092iA05p04649 CrossRefGoogle Scholar
  12. Hedin AE (1991) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172. doi: 10.1029/90JA02125 CrossRefGoogle Scholar
  13. Knocke P, Ries J (1987) Earth radiation pressure effects on satellites. Technical Memorandum CSR-TM-87-01. Center for Space Research, the University of Texas at Austin, USAGoogle Scholar
  14. Larnicol G, Cazenave A, Faugère Y, Ablain M, Johannessen J, Stammer D, Timms G, Knudsen P, Cipolini P, Roca M, Rudenko S, Fernandes J, Balmaseda M, Guinle T, Benveniste J (2013) ESA sea level climate change initiative. Accessed Oct 2013
  15. Lemoine J-M, Bruinsma S, Loyer S, Biancale R, Marty J-C, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39:1620–1629. doi: 10.1016/j.asr.2007.03.062 CrossRefGoogle Scholar
  16. Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46:1513–1540. doi: 10.1016/j.asr.2010.05.007 CrossRefGoogle Scholar
  17. Lemoine F, Zelensky NP, Melachroinos S, Chin DS, Beckley BD, Rowlands DD, Luthcke SB (2011) GSFC OSTM (Jason-2), Jason-1 & TOPEX POD Update, OSTST Meeting, San Diego. Accessed Oct 2013
  18. Letellier T (2005) Etude des ondes de marée sur les plateaux continentaux. These doctorale, Universite de Toulouse III, Ecole Doctorale des Sciences de l’Univers, de l’Environnement et de l’Espace, p 237Google Scholar
  19. Mayer-Gürr T, Savcenko R, Bosch W, Daras I, Flechtner F, Dahle C (2012) Ocean tides from satellite altimetry and GRACE. J Geodyn 59–60:28–38. doi: 10.1016/j.jog.2011.10.009 CrossRefGoogle Scholar
  20. Melachroinos SA, Lemoine FG, Zelensky NP, Rowlands DD, Luthcke SB, Bordyugov O (2013) The effect of geocenter motion on Jason-2 orbits and the mean sea level. Adv Space Res 51:1323–1334. doi: 10.1016/j.asr.2012.06.004 CrossRefGoogle Scholar
  21. Ollivier A, Faugere Y, Picot N, Ablain M, Femenias P, Benveniste J (2012) Envisat ocean altimeter becoming relevant for mean sea level trend studies. Mar Geod 35:118–136. doi: 10.1080/01490419.2012.721632 CrossRefGoogle Scholar
  22. Otten M, Flohrer C, Springer T, Dow J (2010) DORIS processing at the European Space Operations Centre. Adv Space Res 46:1606–1613. doi: 10.1016/j.asr.2010.04.024 CrossRefGoogle Scholar
  23. Rudenko S, Otten M, Visser P, Scharroo R, Schöne T, Esselborn S (2012) New improved orbit solutions for the ERS-1 and ERS-2 satellites. Adv Space Res 49:1229–1244. doi: 10.1016/j.asr.2012.01.021 CrossRefGoogle Scholar
  24. Rudenko S, Dettmering D, Esselborn S, Schöne T, Förste C, Lemoine J-M, Ablain M, Alexandre D, Neumayer K-H (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv Space Res. doi: 10.1016/j.asr.2014.03.010 Google Scholar
  25. Schöne T, Esselborn S, Rudenko S, Raimondo J-C (2010) Radar altimetry derived sea level anomalies – the benefit of new orbits and harmonization. In: Flechtner FM, Gruber T, Güntner A et al (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin, pp 317–324CrossRefGoogle Scholar
  26. Shako R, Förste C, Abrikosov O, Bruinsma S, Marty J-C, Lemoine J-M, Flechtner F, Neumayer H, Dahle C (2014) EIGEN-6C: a high-resolution global gravity combination model including GOCE data. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system earth from space - CHAMP, GRACE, GOCE and future missions. Springer, Berlin, pp 155–161. doi: 10.1007/978-3-642-32135-1 CrossRefGoogle Scholar
  27. Standish EM (1998) JPL planetary and lunar ephemerides, DE405/LE405, JPL IOM 312.F-98-048Google Scholar
  28. Tapley BD, Ries JC, Davis GW, Eanes RJ, Schutz BE, Shum CK, Watkins MM, Marshall JA, Nerem RS, Putney BH, Klosko SM, Luthcke SB, Pavlis D, Williamson RG, Zelensky NP (1994) Precision orbit determination for TOPEX/POSEIDON. J Geophys Res 99:24383–24404. doi: 10.1029/94JC01645 CrossRefGoogle Scholar
  29. Willis P, Ries JC, Zelensky NP, Soudarin L, Fagard H, Pavlis EC, Lemoine FG (2009) DPOD2005: an extension of ITRF2005 for precise orbit determination. Adv Space Res 44:535–544. doi: 10.1016/j.asr.2009.04.018 CrossRefGoogle Scholar
  30. Zelensky N, Lemoine FG, Beckley BD, Chinn DS, Melachroinos S, Luthcke SB, Mitchum G, Bordyugov O (2012) Improved modeling of time variable gravity for altimeter satellite POD., OSTST 2012, Venice. Accessed Jan 2014
  31. Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78:103–108. doi: 10.1007/s00190-004-0379-0 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Saskia Esselborn
    • 1
  • Tilo Schöne
    • 1
  • Sergei Rudenko
    • 1
    • 2
  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Technische Universität BerlinBerlinGermany

Personalised recommendations