Multivariate GNSS Attitude Integrity: The Role of Affine Constraints

  • Gabriele GiorgiEmail author
  • Peter J. G. Teunissen
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 142)


In this work we analyze the integrity properties of an affine-constrained estimator applied to arrays of GNSS antennas. GNSS pseudorange and carrier phase measurements from multiple antennas whose relative positions are known are cast in a linearly-constrained observation model. The linear constraints are inherent to an affine transformation that is applied to the baseline coordinates. The affine transformation yields enhanced redundancy, thus improving the model integrity properties with respect to the unconstrained model. The extent of the improvement is measured in terms of internal and external reliability.


Affine constrained attitude model Attitude determination Galileo GNSS GPS ILS MDB Multivariate ILS Reliability 



The research of Peter J.G. Teunissen has been supported by an Australian Research Council Federation Fellowship (project number FF0883188).


  1. Baarda W (1968) A testing procedure for use in geodetic networks. Netherlands Geodetic Commission Publications on Geodesy, vol. 2, issue 5, 97 pGoogle Scholar
  2. Bar-Itzhack IY, Montgomery P, Garrick J (1998) Algorithm for attitude determination using global positioning system. J Guid Control Dyn 21(6):846–852CrossRefGoogle Scholar
  3. Cohen CE (1992) Attitude determination using GPS. Ph.D. Thesis, Stanford University, Palo Alto, CAGoogle Scholar
  4. Giorgi G (2011) GNSS carrier phase-based attitude determination. Estimation and applications. Delft University of TechnologyGoogle Scholar
  5. Giorgi G, Teunissen PJG (2013) Low-complexity instantaneous ambiguity resolution with the affine-constrained GNSS attitude model. IEEE Trans Aerosp Electron Syst 49(3):1745–1759CrossRefGoogle Scholar
  6. Giorgi G, Teunissen PJG, Verhagen S, Buist PJ (2011) Instantaneous ambiguity resolution in GNSS-based attitude determination applications: the MC-LAMBDA method. J Guid Control Dyn 35(1):51–67CrossRefGoogle Scholar
  7. Giorgi G, Teunissen PJG, Verhagen S, Buist PJ (2012) Integer ambiguity resolution with nonlinear geometrical constraints. IAG Symp 137:39–45Google Scholar
  8. Shuster MD (1993) A survey of attitude representations. J Astronaut Sci 41(4):439–517Google Scholar
  9. Strang G, Borre K (1997) Linear algebra, geodesy, and GP. Wellesley-Cambridge Press, WelleseleyGoogle Scholar
  10. Teunissen PJG (1993) Least squares estimation of the integer GPS ambiguities. Invited lecture, Section IV theory and methodology, IAG general meeting, Beijing also in: LGR series No 6, Delft Geodetic Computing Center, Delft University of TechnologyGoogle Scholar
  11. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587–593CrossRefGoogle Scholar
  12. Teunissen PJG (2006) Testing theory: an introduction. Series on mathematical geodesy and positioning, 2nd edn. Delft Academic Press, OrlandoGoogle Scholar
  13. Teunissen PJG (2007) A general multivariate formulation of the multi-antenna GNSS attitude determination problem. Artif Satell 42(2):97–111CrossRefGoogle Scholar
  14. Teunissen PJG (2012) The affine constrained GNSS attitude model and its multivariate integer least-squares solution. J Geod 86:547–563CrossRefGoogle Scholar
  15. Teunissen PJG, Kleusberg A (1998) GPS for geodesy, 2nd edn. Springer/Heidelberg, Berlin/New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Communications and NavigationTechnische Universität MünchenMünchenGermany
  2. 2.Global Navigation Satellite Systems Research CentreCurtin University of TechnologyPerthAustralia

Personalised recommendations