Green Emulsion Polymerization Technology

  • Yujie Zhang
  • Marc A. DubéEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 280)


The polymer industry is dominated by the use of petroleum-based feedstock and, as a result of increased awareness, the related environmental consequences have provided the impetus for change. Emulsion polymerization is considered to be a more sustainable technique for the manufacture of polymeric materials because of its use of water as a dispersing medium. To further improve the sustainability of emulsion polymerization technology, the “12 principles of green chemistry and engineering” were used as a guideline for design of a greener process. The most obvious and effective approach is to use renewable, biobased feedstock in emulsion polymerization formulations. In addition, maximizing energy efficiency, preventing waste and pollution, and minimizing the potential for accidents also figure prominently.


Emulsion polymerization Renewable feedstock Sustainability 


  1. 1.
    Worldwatch Institute (2015) Global Plastic Production Rises, Recycling Lags. Accessed 19 Jul 2016
  2. 2.
    Laist DW (1997) Impacts of marine debris: entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. In: Coe JM, Rogers DB (eds) Marine debris. Springer, New York, pp. 99–139CrossRefGoogle Scholar
  3. 3.
    US Department of Commerce (2014) The NOAA Annual Greehouse Gas Index (AGGI). Accessed 4 Jul 2016
  4. 4.
    United Nations (2016) The Paris Agreement. Accessed 8 Oct 2016
  5. 5.
    Government of Canada (2016) Environment and climate change Canada. Environmental indicators – air pollutant emissions Accessed 28 Jun 2016
  6. 6.
    Jovanović R, Dubé MA (2004) Emulsion-based pressure-sensitive adhesives: a review. J Macromol Sci Part C 44:1–51. doi: 10.1081/MC-120027933CrossRefGoogle Scholar
  7. 7.
    Grand View Research (2016) Emulsion polymer market size and share (industry report 2022) Accessed 4 Jul 2016
  8. 8.
    Anastas PT (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  9. 9.
    Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37:94–101CrossRefGoogle Scholar
  10. 10.
    Dubé MA, Salehpour S (2014) Applying the principles of green chemistry to polymer production technology. Macromol React Eng 8:7–28. doi: 10.1002/mren.201300103CrossRefGoogle Scholar
  11. 11.
    Odian G (2004) Principles of polymerization. Wiley, HobokenCrossRefGoogle Scholar
  12. 12.
    Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10. doi: 10.1080/15583720701834133CrossRefGoogle Scholar
  13. 13.
    Autian J (1975) Structure-toxicity relationships of acrylic monomers. Environ Health Perspect 11:141–152. doi: 10.2307/3428337CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Leggat PA, Kedjarune U (2003) Toxicity of methyl methacrylate in dentistry. Int Dent J 53:126–131. doi: 10.1111/j.1875-595X.2003.tb00736.xCrossRefPubMedGoogle Scholar
  15. 15.
    Zondlo M (2002) Final report on the safety assessment of acrylates copolymer and 33 related cosmetic ingredients. Int J Toxicol 21(Suppl 3):1–50. doi: 10.1080/10915810290169800CrossRefGoogle Scholar
  16. 16.
    Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, OxfordGoogle Scholar
  17. 17.
    Zhang Y, Dubé MA (2014) Copolymerization of n-butyl methacrylate and d-limonene. Macromol React Eng 8:805–812. doi: 10.1002/mren.201400023CrossRefGoogle Scholar
  18. 18.
    Zhang C, Yan M, Cochran EW, Kessler MR (2015) Biorenewable polymers based on acrylated epoxidized soybean oil and methacrylated vanillin. Mater Today Commun 5:18–22. doi: 10.1016/j.mtcomm.2015.09.003CrossRefGoogle Scholar
  19. 19.
    Silvestre AJD, Gandini A (2008) Terpenes: major sources, properties and applications. In: Gandini A (ed) Monomers, Polymers and composites from renewable resources. Elsevier, Amsterdam, pp. 17–38CrossRefGoogle Scholar
  20. 20.
    Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37. doi: 10.1002/marc.201200513CrossRefPubMedGoogle Scholar
  21. 21.
    Roberts W, Day A (1950) A study of the polymerization of alpha-pinene and beta-pinene with friedel crafts type catalysts. J Am Chem Soc 72:1226–1230. doi: 10.1021/ja01159a044CrossRefGoogle Scholar
  22. 22.
    Zhang Y (2014) Copolymerization of limonene. Dissertation, University of Ottawa, CanadaGoogle Scholar
  23. 23.
    Ramos AM, Lobo LS, Bordado JM (1998) Polymers from pine gum components: radical and coordination homo and copolymerization of pinenes. Macromol Symp 127:43–50. doi: 10.1002/masy.19981270109CrossRefGoogle Scholar
  24. 24.
    Singh A, Kamal M (2012) Synthesis and characterization of polylimonene: polymer of an optically active terpene. J Appl Polym Sci 125:1456–1459. doi: 10.1002/app.36250CrossRefGoogle Scholar
  25. 25.
    Lincoln DE, Lawrence BM (1984) The volatile constituents of camphorweed, Heterotheca subaxillaris. Phytochemistry 23:933–934. doi: 10.1016/S0031-9422(00)85073-6CrossRefGoogle Scholar
  26. 26.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. doi: 10.1021/cr050989dCrossRefPubMedGoogle Scholar
  27. 27.
    Paz-Pazos M, Pugh C (2006) Synthesis of optically active copolymers of 2,3,4,5,6-pentafluorostyrene and β-pinene with low surface energies. J Polym Sci Part Polym Chem 44:3114–3124. doi: 10.1002/pola.21392CrossRefGoogle Scholar
  28. 28.
    Wang Y, Li A-L, Liang H, Lu J (2006) Reversible addition–fragmentation chain transfer radical copolymerization of β-pinene and methyl acrylate. Eur Polym J 42:2695–2702. doi: 10.1016/j.eurpolymj.2006.06.015CrossRefGoogle Scholar
  29. 29.
    Li A-L, Wang Y, Liang H, Lu J (2006) Controlled radical copolymerization of β-pinene and acrylonitrile. J Polym Sci Part Polym Chem 44:2376–2387. doi: 10.1002/pola.21316CrossRefGoogle Scholar
  30. 30.
    Li A-L, Wang X-Y, Liang H, Lu J (2007) Controlled radical copolymerization of β-pinene and n-butyl acrylate. React Funct Polym 67:481–488. doi: 10.1016/j.reactfunctpolym.2007.03.002CrossRefGoogle Scholar
  31. 31.
    Yamamoto D, Matsumoto A (2012) Penultimate unit and solvent effects on 2:1 sequence control during radical copolymerization of n-phenylmaleimide with β-pinene. Macromol Chem Phys 213:2479–2485. doi: 10.1002/macp.201200421CrossRefGoogle Scholar
  32. 32.
    Surburg H, Panten J (2006) Common fragrance and flavor materials. Wiley-VCH, Weinheim, p. 52CrossRefGoogle Scholar
  33. 33.
    Mohammad A, Inamuddin (2012) Green solvents. I. Properties and application in chemistry. Springer, New YorkGoogle Scholar
  34. 34.
    Maślińska-solich J, Kupka T, Kluczka M, Solich A (1994) Optically active polymers, 2. Copolymerization of limonene with maleic anhydride. Macromol Chem Phys 195:1843–1850. doi: 10.1002/macp.1994.021950531CrossRefGoogle Scholar
  35. 35.
    Sharma S, Srivastava A (2004) Synthesis and characterization of copolymers of limonene with styrene initiated by azobisisobutyronitrile. Eur Polym J 40:2235–2240. doi: 10.1016/j.eurpolymj.2004.02.028CrossRefGoogle Scholar
  36. 36.
    Sharma S, Srivastava A (2003) Radical copolymerization of limonene with acrylonitrile: kinetics and mechanism. Polym-Plast Technol Eng 42:485–502. doi: 10.1081/PPT-120017966CrossRefGoogle Scholar
  37. 37.
    Sharma S, Srivastava AK (2007) Azobisisobutyronitrile-initiated free-radical copolymerization of limonene with vinyl acetate: synthesis and characterization. J Appl Polym Sci 106:2689–2695. doi: 10.1002/app.24205CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Dubé MA (2014) Copolymerization of 2-ethylhexyl acrylate and d-limonene. Polym Plast Technol Eng 54:499. doi: 10.1080/03602559.2014.961080CrossRefGoogle Scholar
  39. 39.
    Ren S, Trevino E, Dubé MA (2015) Copolymerization of limonene with n-butyl acrylate. Macromol React Eng 9:339–349. doi: 10.1002/mren.201400068CrossRefGoogle Scholar
  40. 40.
    Dubé MA, Soares J, Penlidis A, Hamielec AE (1997) Mathematical modeling of multicomponent chain-growth polymerizations in batch, semibatch, and continuous reactors: a review. Ind Eng Chem Res 36:966–1015CrossRefGoogle Scholar
  41. 41.
    Bolton JM, Hillmyer MA, Hoye TR (2014) Sustainable thermoplastic elastomers from terpene-derived monomers. ACS Macro Lett 3:717–720. doi: 10.1021/mz500339hCrossRefGoogle Scholar
  42. 42.
    Horrillo-Martínez P, Virolleaud M-A, Jaekel C (2010) Selective palladium-catalyzed dehydrogenation of limonene to dimethylstyrene. ChemCatChem 2:175–181. doi: 10.1002/cctc.200900200CrossRefGoogle Scholar
  43. 43.
    United State Department of Agriculture (2016) Oilseeds: World markets and trade. Accessed 4 Aug 2016
  44. 44.
    Belgacem MN, Gandini A (2008) Materials from vegetable oils: major sources, properties and applications. In: Gandini A (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp. 39–66CrossRefGoogle Scholar
  45. 45.
    Ingram AR, Zupanc AJ, Nicholson HL (1967) Expandable styrene polymers. US Patent 3,359,219, 19 Dec 1967Google Scholar
  46. 46.
    Fernandez AM, Conde A (1983) Monomer reactivity ratios of tung oil and styrene in copolymerization. In: Carraher Jr CE, Sperling LH (eds) Polymer applications of renewable-resource materials. Springer, Berlin, pp 289–302CrossRefGoogle Scholar
  47. 47.
    Li FK, Larock RC (2003) Synthesis, structure and properties of new tung oil-styrene-divinylbenzene copolymers prepared by thermal polymerization. Biomacromolecules 4:1018–1025. doi: 10.1021/bm034049jCrossRefPubMedGoogle Scholar
  48. 48.
    Kundu PP, Larock RC (2005) Novel conjugated linseed oil-styrene-divinylbenzene copolymers prepared by thermal polymerization. 1. Effect of monomer concentration on the structure and properties. Biomacromolecules 6:797–806. doi: 10.1021/bm049429zCrossRefPubMedGoogle Scholar
  49. 49.
    Henna PH, Andjelkovic DD, Kundu PP, Larock RC (2007) Biobased thermosets from the free-radical copolymerization of conjugated linseed oil. J Appl Polym Sci 104:979–985. doi: 10.1002/app.25788CrossRefGoogle Scholar
  50. 50.
    Gultekin M, Beker U, Güner FS, et al (2000) Styrenation of castor oil and linseed oil by macromer method. Macromol Mater Eng 283:15–20. doi: 10.1002/1439-2054(20001101)283:1<15::AID-MAME15>3.0.CO;2-ICrossRefGoogle Scholar
  51. 51.
    Akbas T, Beker ÜG, Güner FS, et al (2003) Drying and semidrying oil macromonomers. III. Styrenation of sunflower and linseed oils. J Appl Polym Sci 88:2373–2376. doi: 10.1002/app.11638CrossRefGoogle Scholar
  52. 52.
    Eren T, Küsefoğlu SH (2004) Synthesis and polymerization of the bromoacrylated plant oil triglycerides to rigid, flame-retardant polymers. J Appl Polym Sci 91:2700–2710. doi: 10.1002/app.13471CrossRefGoogle Scholar
  53. 53.
    Hernandez S, Vigueras E (2013) Acrylated-epoxidized soybean oil-based polymers and their use in the generation of electrically conductive polymer composites. In: El-Shemy H (ed) Soybean – bio-active compounds. InTech, pp 231–263Google Scholar
  54. 54.
    Pelletier H, Belgacem N, Gandini A (2006) Acrylated vegetable oils as photocrosslinkable materials. J Appl Polym Sci 99:3218–3221. doi: 10.1002/app.22322CrossRefGoogle Scholar
  55. 55.
    Ahn BK, Sung J, Rahmani N, et al (2013) UV-curable, high-shear pressure-pensitive adhesives derived from acrylated epoxidized soybean oil. J Adhes 89:323–338. doi: 10.1080/00218464.2013.749102CrossRefGoogle Scholar
  56. 56.
    Can E, Wool RP, Küsefoğlu S (2006) Soybean- and castor-oil-based thermosetting polymers: mechanical properties. J Appl Polym Sci 102:1497–1504. doi: 10.1002/app.24423CrossRefGoogle Scholar
  57. 57.
    Can E, Wool RP, Küsefoğlu S (2006) Soybean and castor oil based monomers: synthesis and copolymerization with styrene. J Appl Polym Sci 102:2433–2447. doi: 10.1002/app.24548CrossRefGoogle Scholar
  58. 58.
    Roberge S, Dubé MA (2016) Bulk terpolymerization of conjugated linoleic acid with styrene and butyl acrylate. ACS Sustain Chem Eng 4:264–272. doi: 10.1021/acssuschemeng.5b01106CrossRefGoogle Scholar
  59. 59.
    Roberge S, Dubé MA (2016) Emulsion-based pressure sensitive adhesives from conjugated linoleic acid/styrene/butyl acrylate terpolymers. Int J Adhes Adhes 70:17–25. doi: 10.1016/j.ijadhadh.2016.05.003CrossRefGoogle Scholar
  60. 60.
    Vendamme R, Schüwer N, Eevers W (2014) Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhesives derived from renewable building blocks. J Appl Polym Sci. doi: 10.1002/app.40669CrossRefGoogle Scholar
  61. 61.
    Anderson KS, Lewandowski KM, Fansler DD et al (2011) 2-octyl (meth)acrylate adhesive composition. US Patent 7,893,179, 22 Feb 2011Google Scholar
  62. 62.
    Çayli G, Meier MAR (2008) Polymers from renewable resources: bulk ATRP of fatty alcohol-derived methacrylates. Eur J Lipid Sci Technol 110:853–859. doi: 10.1002/ejlt.200800028CrossRefGoogle Scholar
  63. 63.
    Wool RP, Bunker SP (2003) Pressure sensitive adhesives from plant oils. US Patent 6,646,033, 11 Nov 2003Google Scholar
  64. 64.
    Christoph R, Schmidt B, Steinberner U, et al (2000) Glycerol. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  65. 65.
    Salehpour S, Dubé MA (2011) Towards the sustainable production of higher-molecular-weight polyglycerol. Macromol Chem Phys 212:1284–1293. doi: 10.1002/macp.201100064CrossRefGoogle Scholar
  66. 66.
    Liu Y, Tüysüz H, Jia C-J, et al (2010) From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. Chem Commun 46:1238–1240. doi: 10.1039/B921648KCrossRefGoogle Scholar
  67. 67.
    Zhang H, Grinstaff MW (2014) Recent advances in glycerol polymers: chemistry and biomedical applications. Macromol Rapid Commun 35:1906–1924. doi: 10.1002/marc.201400389CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pham PD, Monge S, Lapinte V, et al (2013) Various radical polymerizations of glycerol-based monomers. Eur J Lipid Sci Technol 115:28–40. doi: 10.1002/ejlt.201200202CrossRefGoogle Scholar
  69. 69.
    Roice M, Pillai VNR (2005) Poly(styrene-co-glycerol dimethacrylate): synthesis, characterization, and application as a resin for gel-phase peptide synthesis. J Polym Sci Part Polym Chem 43:4382–4392. doi: 10.1002/pola.20917CrossRefGoogle Scholar
  70. 70.
    Vijitha K, Dhanya K, Francis B, et al (2009) Synthesis and characterization of glycerol dimethacrylate-4-vinyl pyrrole. Asian J Chem 21:6811–6818Google Scholar
  71. 71.
    Miranda LN, Ford WT (2005) Binary copolymer reactivity of tert-butyl methacrylate, 2-(N,N-dimethylamino)ethyl methacrylate, solketal methacrylate, and 2-bromoethyl methacrylate. J Polym Sci Part Polym Chem 43:4666–4669. doi: 10.1002/pola.20939CrossRefGoogle Scholar
  72. 72.
    Iio K, Kobayashi K, Matsunaga M (2007) Radical polymerization of allyl alcohol and allyl acetate. Polym Adv Technol 18:953–958. doi: 10.1002/pat.870CrossRefGoogle Scholar
  73. 73.
    Galbis JA, de Gracia G-MM, Violante de Paz M, Galbis E (2016) Synthetic polymers from sugar-based monomers. Chem Rev 116:1600–1636. doi: 10.1021/acs.chemrev.5b00242CrossRefPubMedGoogle Scholar
  74. 74.
    Galbis JA, García-Martín MG (2008) Sugars as monomers. In: Gandini A, Belgacem M (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 89–114CrossRefGoogle Scholar
  75. 75.
    Lavilla C, Alla A, de Ilarduya AM, et al (2012) Carbohydrate-based copolyesters made from bicyclic acetalized galactaric acid. J Polym Sci Part Polym Chem 50:1591–1604. doi: 10.1002/pola.25930CrossRefGoogle Scholar
  76. 76.
    Lavilla C, Alla A, de Ilarduya AM, et al (2012) Bio-based poly(butylene terephthalate) copolyesters containing bicyclic diacetalized galactitol and galactaric acid: influence of composition on properties. Polymer 53:3432–3445. doi: 10.1016/j.polymer.2012.05.048CrossRefGoogle Scholar
  77. 77.
    Wu J, Eduard P, Thiyagarajan S, et al (2012) Semicrystalline polyesters based on a novel renewable building block. Macromolecules 45:5069–5080. doi: 10.1021/ma300782hCrossRefGoogle Scholar
  78. 78.
    Engler AC, Ke X, Gao S, et al (2015) Hydrophilic polycarbonates: promising degradable alternatives to poly(ethylene glycol)-based stealth materials. Macromolecules 48:1673–1678. doi: 10.1021/acs.macromol.5b00156CrossRefGoogle Scholar
  79. 79.
    Feng J, Zhuo R-X, Zhang X-Z (2012) Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci 37:211–236. doi: 10.1016/j.progpolymsci.2011.07.008CrossRefGoogle Scholar
  80. 80.
    Begines B, Zamora F, de Paz MV, et al (2015) Polyurethanes derived from carbohydrates and cystine-based monomers. J Appl Polym Sci. doi: 10.1002/app.41304Google Scholar
  81. 81.
    Boyer A, Lingome CE, Condassamy O, et al (2013) Glycolipids as a source of polyols for the design of original linear and cross-linked polyurethanes. Polym Chem 4:296–306. doi: 10.1039/c2py20588bCrossRefGoogle Scholar
  82. 82.
    Reyes-Mercado Y, Vázquez F, Rodríguez-Gómez FJ, Duda Y (2008) Effect of the acrylic acid content on the permeability and water uptake of poly(styrene-co-butyl acrylate) latex films. Colloid Polym Sci 286:603–609. doi: 10.1007/s00396-008-1838-6CrossRefGoogle Scholar
  83. 83.
    Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol 81:1119–1129. doi: 10.1002/jctb.1486CrossRefGoogle Scholar
  84. 84.
    Xu X, Lin J, Cen P (2006) Advances in the research and development of acrylic acid production from biomass. Chin J Chem Eng 14:419–427. doi: 10.1016/S1004-9541(06)60094-3CrossRefGoogle Scholar
  85. 85.
    de Guzman D (2012) Bio-acrylic acid on the way. In: Green Chem. Blog. Accessed 17 Aug 2016
  86. 86.
    Dishisha T, Pyo S-H, Hatti-Kaul R (2015) Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb Cell Factories 14:200. doi: 10.1186/s12934-015-0388-0CrossRefGoogle Scholar
  87. 87.
    Burk MJ, Pharkya P, Dien SJV et al (2012) Methods for the synthesis of olefins and derivatives. US Patent 20,120,094,341, 19 Apr 2012Google Scholar
  88. 88.
    Green EM (2011) Fermentative production of butanol – the industrial perspective. Curr Opin Biotechnol 22:337–343. doi: 10.1016/j.copbio.2011.02.004CrossRefPubMedGoogle Scholar
  89. 89.
    de Guzman D (2013) Bio-MMA development expands. In: Green Chem. Blog. Accessed 17 Aug 2016
  90. 90.
    University of Minnesota (2011) Biological pathways produce isobutyric acid using renewable resources. Accessed 22 Aug 2016
  91. 91.
    Bloom PD, Venkitasubramanian P (2009) Monomers and polymers from bioderived carbon. US Patent 20,090,018,300, 8 Jul 2008Google Scholar
  92. 92.
    Bloembergen S, McLennan IJ, Narayan R (1999) Sugar based vinyl monomers and copolymers useful in repulpable adhesives and other applications. US Patent 5,872,199, 16 Feb 1999Google Scholar
  93. 93.
    Bloembergen S, McLennan IJ, Narayan R (2001) Environmentally friendly sugar-based vinyl monomers useful in repulpable adhesives and other applications. US Patent 6,242,593, 5 Jun 2001Google Scholar
  94. 94.
    Dunn AS (1986) Polymeric stabilization of colloidal dispersions. Polym Int J 18:278–278. doi: 10.1002/pi.4980180420CrossRefGoogle Scholar
  95. 95.
    Thickett SC, Gilbert RG (2007) Emulsion polymerization: state of the art in kinetics and mechanisms. Polymer 48:6965–6991. doi: 10.1016/j.polymer.2007.09.031CrossRefGoogle Scholar
  96. 96.
    Zecha H (1981) Stabilization of colloidal dispersions by polymer adsorption. Acta Polym 32:582–582. doi: 10.1002/actp.1981.010320915CrossRefGoogle Scholar
  97. 97.
    Kronberg B, Holmberg K, Lindman B (2014) Environmental and health aspects of surfactants. In: Surface chemistry of surfactants and polymers. Wiley, Hoboken, pp. 49–64Google Scholar
  98. 98.
    Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A, Kalka J (2005) Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere 58:1249–1253. doi: 10.1016/j.chemosphere.2004.10.031CrossRefPubMedGoogle Scholar
  99. 99.
    von Rybinski W, Hill K (1998) Alkyl polyglycosides – properties and applications of a new class of surfactants. Angew Chem Int Ed 37:1328–1345. doi: 10.1002/(SICI)1521-3773(19980605)37:103.0.CO;2-9CrossRefGoogle Scholar
  100. 100.
    Holmberg K (2003) Novel surfactants: preparation, applications, and biodegradability, 2nd edn. Marcel Dekker, New YorkCrossRefGoogle Scholar
  101. 101.
    Benvegnu T, Plusquellec D, Lemiègre L (2008) Surfactants from renewable sources: synthesis and applications. In: Gandini A (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp. 153–178CrossRefGoogle Scholar
  102. 102.
    Hill K (2010) Surfactants based on carbohydrates and proteins for consumer products and technical applications. In: Kjellin M, Johansson I (eds) Surfactants from renewable resources. Wiley, Hoboken, pp. 63–84CrossRefGoogle Scholar
  103. 103.
    Global Market Insights (2016) Alkyl polyglucosides (APG) biosurfactants biosurfactants market size Accessed 7 Sept 2016
  104. 104.
    Aulmann W, Sterzel W (1996) Toxicology of alkyl polyglycosides. In: Hill K, von Rybinski W, Stoll G (eds) Alkyl polyglycosides. Wiley-VCH, Weinheim, pp. 151–167CrossRefGoogle Scholar
  105. 105.
    Lazaridis N, Alexopoulos AH, Kiparissides C (2001) Semi-batch emulsion copolymerization of vinyl acetate and butyl acrylate using oligomeric nonionic surfactants. Macromol Chem Phys 202:2614–2622. doi: 10.1002/1521-3935(20010801)202:123.0.CO;2-ECrossRefGoogle Scholar
  106. 106.
    Chen L (2012) Application of green commercial surfactant in preparing purely acrylic latex via semi-continuous seeded emulsion polymerization. J Surfactant Deterg 16:197–202. doi: 10.1007/s11743-012-1373-9CrossRefGoogle Scholar
  107. 107.
    Klima R, Pippin WH, Natale M et al (2000) Alkylpolyglycoside containing surfactant blends for emulsion polymerization. US Patent 6,117,934, 12 Sep 2000Google Scholar
  108. 108.
    Maver TL, Krasnansky R (2001) Aqueous coating composition with improved block resistance containing alkyl polyglycoside surfactant mixtures. US Patent 6,117,934, 12 Sep 2000Google Scholar
  109. 109.
    Hoydonckx HE, Vos DED, Chavan SA, Jacobs PA (2004) Esterification and transesterification of renewable chemicals. Top Catal 27:83–96. doi: 10.1023/B:TOCA.0000013543.96438.1aCrossRefGoogle Scholar
  110. 110.
    Stockburger GJ (1981) Process for preparing sorbitan esters. US Patent 4,297,290, 27 Oct 1981Google Scholar
  111. 111.
    Ellis JMH, Lewis JJ, Beattie RJ (1998) Manufacture of fatty acid esters of sorbitan as surfactants. WO Patent 1,998,004,540, 5 Feb 1998Google Scholar
  112. 112.
    Milstein N (1992) Improved esterification of oxyhydrocarbon polyols and ethers thereof, and products therefrom. WO Patent 1,992,000,947, 23 Jan 1992Google Scholar
  113. 113.
    Falbe J (ed) (1987) Surfactants in consumer products. Springer, BerlinGoogle Scholar
  114. 114.
    Kovačič S, Matsko NB, Jerabek K, et al (2012) On the mechanical properties of HIPE templated macroporous poly(dicyclopentadiene) prepared with low surfactant amounts. J Mater Chem A 1:487–490. doi: 10.1039/C2TA00546HCrossRefGoogle Scholar
  115. 115.
    Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55:304–320. doi: 10.1016/j.polymer.2013.08.068CrossRefGoogle Scholar
  116. 116.
    Capek I, Chudej J (1999) On the fine emulsion polymerization of styrene with non-ionic emulsifier. Polym Bull 43:417–424. doi: 10.1007/s002890050630CrossRefGoogle Scholar
  117. 117.
    Giovannoli C, Passini C, Anfossi L, et al (2015) Comparison of binding behavior for molecularly imprinted polymers prepared by hierarchical imprinting or Pickering emulsion polymerization. J Sep Sci 38:3661–3668. doi: 10.1002/jssc.201500511CrossRefPubMedGoogle Scholar
  118. 118.
    Yao F, Yan G-C, Xu L-Q, et al (2014) Hairy fluorescent nanoparticles from one-pot click chemistry and atom transfer radical emulsion polymerization. Polym Int 63:237–243. doi: 10.1002/pi.4491CrossRefGoogle Scholar
  119. 119.
    Clark E (1988) Inverse emulsion polymerization with sorbitan fatty acid esters and ethoxylated alcohol. US Patent 4,764,574, 16 Aug 1988Google Scholar
  120. 120.
    Ramli RA, Hashim S, Laftah WA (2013) Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) “raspberry”-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization. J Colloid Interface Sci 391:86–94. doi: 10.1016/j.jcis.2012.09.047CrossRefPubMedGoogle Scholar
  121. 121.
    Wan T, Zang T, Wang Y, et al (2010) Preparation of water soluble Am–AA–SSS copolymers by inverse microemulsion polymerization. Polym Bull 65:565–576. doi: 10.1007/s00289-009-0234-9CrossRefGoogle Scholar
  122. 122.
    Zhang Y, Li T, Jin Z, et al (2007) Synthesis of nanoiron by microemulsion with span/tween as mixed surfactants for reduction of nitrate in water. Front Environ Sci Eng China 1:466–470. doi: 10.1007/s11783-007-0074-5CrossRefGoogle Scholar
  123. 123.
    Mollet H, Grubenmann A (2000) Emulsions – properties and production. In: Formulation technology. Wiley-VCH, Weinheim, pp 59–104Google Scholar
  124. 124.
    Osipow L, Snell FD, York WC, Finchler A (1956) Methods of preparation fatty acid esters of sucrose. Ind Eng Chem 48:1459–1462. doi: 10.1021/ie51400a026CrossRefGoogle Scholar
  125. 125.
    Parker KJ, Khan RA, Mufti KS (1976) Process of making sucrose esters. US Patent 3,996,206, 7 Dec 1976Google Scholar
  126. 126.
    Reuben F, Theodore W, Hampden Z (1973) Process for the production of sucrose esters of fatty acids. US Patent 3,714,144, 30 Jan1973Google Scholar
  127. 127.
    Markets and Markets (2016) Sucrose esters market by application, form, region – 2020. Accessed 12 Sept 2016
  128. 128.
    Crandall MD, Nelson RL (1995) Nonionic, pH-neutral pressure sensitive adhesive US Patent 4,424,122, 13 Jun 1995Google Scholar
  129. 129.
    Nagasuna K, Namba T, Miyake K et al (1990) Production process for water-absorbent resin. US Patent 4973,362, 27 Nov 1990Google Scholar
  130. 130.
    Lan Z, Daga R, Whitehouse R, et al (2014) Structure–properties relations in flexible polyurethane foams containing a novel bio-based crosslinker. Polymer 55:2635–2644. doi: 10.1016/j.polymer.2014.03.061CrossRefGoogle Scholar
  131. 131.
    Ma S, Jiang Y, Liu X, et al (2014) Bio-based tetrafunctional crosslink agent from gallic acid and its enhanced soybean oil-based UV-cured coatings with high performance. RSC Adv 4:23036. doi: 10.1039/c4ra01311eCrossRefGoogle Scholar
  132. 132.
    Oprea S (2009) Synthesis and properties of polyurethane elastomers with castor oil as crosslinker. J Am Oil Chem Soc 87:313–320. doi: 10.1007/s11746-009-1501-5CrossRefGoogle Scholar
  133. 133.
    Ding C, Shuttleworth PS, Makin S, et al (2015) New insights into the curing of epoxidized linseed oil with dicarboxylic acids. Green Chem 17:4000–4008. doi: 10.1039/C5GC00912JCrossRefGoogle Scholar
  134. 134.
    Supanchaiyamat N, Shuttleworth PS, Hunt AJ, et al (2012) Thermosetting resin based on epoxidised linseed oil and bio-derived crosslinker. Green Chem 14:1759–1765. doi: 10.1039/C2GC35154DCrossRefGoogle Scholar
  135. 135.
    Mathers RT, Damodaran K (2007) Renewable chain transfer agents for metallocene polymerizations: the effects of chiral monoterpenes on the polyolefin molecular weight and isotacticity. J Polym Sci Part Polym Chem 45:3150–3165. doi: 10.1002/pola.22111CrossRefGoogle Scholar
  136. 136.
    Mathers RT, McMahon KC, Damodaran K, et al (2006) Ring-opening metathesis polymerizations in d-limonene: a renewable polymerization solvent and chain transfer agent for the synthesis of alkene macromonomers. Macromolecules 39:8982–8986. doi: 10.1021/ma061699hCrossRefGoogle Scholar
  137. 137.
    Clark JH (1995) Chemistry of waste minimization. Blackie Academic & Professional, New YorkCrossRefGoogle Scholar
  138. 138.
    Nomura Y, Teshima W, Kawahara T, et al (2006) Genotoxicity of dental resin polymerization initiators in vitro. J Mater Sci Mater Med 17:29–32. doi: 10.1007/s10856-006-6326-2CrossRefPubMedGoogle Scholar
  139. 139.
    Caillol S (2014) Lifecycle assessment and green chemistry: a look at innovative tools for sustainable development. In: Hamaide T, Deterre R, Feller J-F (eds) Environmental impact of polymers. Wiley, Hoboken, pp. 65–89Google Scholar
  140. 140.
    Araújo PHH, Sayer C, Giudici R, Poço JGR (2002) Techniques for reducing residual monomer content in polymers: a review. Polym Eng Sci 42:1442–1468. doi: 10.1002/pen.11043CrossRefGoogle Scholar
  141. 141.
    Oka T, Tsubota K, Shinjo T et al (1999) Process for preparing solvent-type acrylic pressure-sensitive adhesives and medical pressure-sensitive adhesive. US Patent 5,886,122, 26 May1996Google Scholar
  142. 142.
    Heider L, Storck G, Weintz H-J (1992) Preparation of polymers from olefinically unsaturated monomers. US Patent 5,087,676, 11 Feb 1992Google Scholar
  143. 143.
    Minematsu H, Matsumoto K, Saeki T, Kishi A (1981) Low residual monomer α-methylstyrene-acrylonitrile copolymers and ABS blends therefrom. US Patent 4,294,946, 13 Oct 1981Google Scholar
  144. 144.
    Humme G, Plato H, Ott K-H et al (1983) Process for the removal of residual monomers from ABS polymers. US Patent 4,399,273, 16 Aug 1983Google Scholar
  145. 145.
    Aerts M, Meuldijk J, Kemmere M, Keurentjes J (2011) Residual monomer reduction in polymer latex products by extraction with supercritical carbon dioxide. Macromol Symp 302:297–304. doi: 10.1002/masy.201000052CrossRefGoogle Scholar
  146. 146.
    Schull V, Arnoldi D (1998) Method of producing non-vitrified processing aid low in residual monomers for thermoplastic polymers. US Patent 5,767,231, 16 Jun 1998Google Scholar
  147. 147.
    Heinze C, Botsch F, Wolff H (1981) Process and device for continuously treating with gases aqueous dispersions of polyvinyl chloride. US Patent 4,301,275, 17 Nov 1981Google Scholar
  148. 148.
    Copelli S, Derudi M, Sempere J, et al (2011) Emulsion polymerization of vinyl acetate: safe optimization of a hazardous complex process. J Hazard Mater 192:8–17. doi: 10.1016/j.jhazmat.2011.04.066CrossRefPubMedGoogle Scholar
  149. 149.
    Fonseca GE, Dubé MA, Penlidis A (2009) A critical overview of sensors for monitoring polymerizations. Macromol React Eng 3:327–373. doi: 10.1002/mren.200900024CrossRefGoogle Scholar
  150. 150.
    Chen M, Reichert K-H (1993) Studies on free radical polymerization by adiabatic reaction calorimetry. Polym React Eng 1:145–170. doi: 10.1080/10543414.1992.10744426CrossRefGoogle Scholar
  151. 151.
    Goikoetxea M, Heijungs R, Barandiaran MJ, Asua JM (2008) Energy efficient emulsion polymerization strategies. Macromol React Eng 2:90–98. doi: 10.1002/mren.200700042CrossRefGoogle Scholar
  152. 152.
    Wang S, Daniels ES, Sudol ED, et al (2016) Isothermal emulsion polymerization of n-butyl methacrylate with KPS and redox initiators: kinetic study at different surfactant/initiator concentrations and reaction temperature. J Appl Polym Sci 133:43037. doi: 10.1002/app.43037CrossRefGoogle Scholar
  153. 153.
    Garg DK, Serra CA, Hoarau Y, et al (2014) Analytical solution of free radical polymerization: applications-implementing nonisothermal effect. Macromolecules 47:8514–8523. doi: 10.1021/ma501964hCrossRefGoogle Scholar
  154. 154.
    Pohl K, Rodriguez F (1981) Adiabatic polymerization of acrylamide using a persulfate–bisulfite redox couple. J Appl Polym Sci 26:611–618. doi: 10.1002/app.1981.070260220CrossRefGoogle Scholar
  155. 155.
    Thomson RAM (1986) A kinetic study of the adiabatic polymerization of acrylamide. J Chem Educ 63:362. doi: 10.1021/ed063p362CrossRefGoogle Scholar
  156. 156.
    Tonoyan AO, Leikin AD, Davtyan SP, et al (1973) Kinetics of the adiabatic polymerization of methyl methacrylate. Polym Sci USSR 15:2080–2085. doi: 10.1016/0032-3950(73)90424-3CrossRefGoogle Scholar
  157. 157.
    Wang S (2013) Redox-initiated adiabatic emulsion polymerization. Dissertation, Lehigh UniversityGoogle Scholar
  158. 158.
    Chemtob A, Kunstler B, Croutxé-Barghorn C, Fouchard S (2010) Photoinduced miniemulsion polymerization. Colloid Polym Sci 288:579–587. doi: 10.1007/s00396-010-2190-1CrossRefGoogle Scholar
  159. 159.
    Mah S, Koo D, Jeon H, Kwon S (2002) Photo-induced emulsion polymerization of vinyl acetate in the presence of poly(oxyethylene)10 nonyl phenyl ether ammonium sulfate, an anionic emulsifier (I). J Appl Polym Sci 84:2425–2431. doi: 10.1002/app.10531CrossRefGoogle Scholar
  160. 160.
    Turro NJ, Chow M-F, Chung C-J, Tung C-H (1980) An efficient, high conversion photoinduced emulsion polymerization. Magnetic field effects on polymerization efficiency and polymer molecular weight. J Am Chem Soc 102:7391–7393. doi: 10.1021/ja00544a053CrossRefGoogle Scholar
  161. 161.
    Aldana‐García MA, Palacios J, Vivaldo‐Lima E (2005) Modeling of the microwave initiated emulsion polymerization of styrene. J Macromol Sci A 42:1207–1225. doi: 10.1080/10601320500189505CrossRefGoogle Scholar
  162. 162.
    Ergan BT, Bayramoğlu M, Özcan S (2015) Emulsion polymerization of styrene under continuous microwave irradiation. Eur Polym J 69:374–384. doi: 10.1016/j.eurpolymj.2015.06.021CrossRefGoogle Scholar
  163. 163.
    Zhu X, Chen J, Cheng Z, et al (2003) Emulsion polymerization of styrene under pulsed microwave irradiation. J Appl Polym Sci 89:28–35. doi: 10.1002/app.12089CrossRefGoogle Scholar
  164. 164.
    Bhanvase BA, Pinjari DV, Sonawane SH, et al (2012) Analysis of semibatch emulsion polymerization: role of ultrasound and initiator. Ultrason Sonochem 19:97–103. doi: 10.1016/j.ultsonch.2011.05.016CrossRefPubMedGoogle Scholar
  165. 165.
    Cheung HM, Gaddam K (2000) Ultrasound-assisted emulsion polymerization of methyl methacrylate and styrene. J Appl Polym Sci 76:101–104. doi: 10.1002/(SICI)1097-4628(20000404)76:1<101::AID-APP13>3.0.CO;2-FCrossRefGoogle Scholar
  166. 166.
    Chou HCJ, Stoffer JO (1999) Ultrasonically initiated free radical-catalyzed emulsion polymerization of methyl methacrylate (i). J Appl Polym Sci 72:797–825. doi: 10.1002/(SICI)1097-4628(19990509)72:6<797::AID-APP7>3.0.CO;2-ZCrossRefGoogle Scholar
  167. 167.
    Korkut I, Bayramoglu M (2014) Various aspects of ultrasound assisted emulsion polymerization process. Ultrason Sonochem 21:1592–1599. doi: 10.1016/j.ultsonch.2013.12.028CrossRefPubMedGoogle Scholar
  168. 168.
    Xia H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater 15:3879–3886. doi: 10.1021/cm0341890CrossRefGoogle Scholar
  169. 169.
    Chien DCH, Penlidis A (1990) On-line sensors for polymerization reactors. J Macromol Sci Part C 30:1–42. doi: 10.1080/07366579008050904CrossRefGoogle Scholar
  170. 170.
    Elizalde O, Azpeitia M, Reis MM, et al (2005) Monitoring emulsion polymerization reactors: calorimetry versus Raman spectroscopy. Ind Eng Chem Res 44:7200–7207. doi: 10.1021/ie050451yCrossRefGoogle Scholar
  171. 171.
    Gesthuisen R, Krämer S, Niggemann G, et al (2005) Determining the best reaction calorimetry technique: theoretical development. Comput Chem Eng 29:349–365. doi: 10.1016/j.compchemeng.2004.10.009CrossRefGoogle Scholar
  172. 172.
    Frauendorfer E, Wolf A, Hergeth W-D (2010) Polymerization online monitoring. Chem Eng Technol 33:1767–1778. doi: 10.1002/ceat.201000265CrossRefGoogle Scholar
  173. 173.
    Liu J, Tai H, Howdle SM (2005) Precipitation polymerisation of vinylidene fluoride in supercritical CO2 and real-time calorimetric monitoring. Polymer 46:1467–1472. doi: 10.1016/j.polymer.2004.12.015CrossRefGoogle Scholar
  174. 174.
    Wang W, Griffiths RMT, Giles MR, et al (2003) Monitoring dispersion polymerisations of methyl methacrylate in supercritical carbon dioxide. Eur Polym J 39:423–428. doi: 10.1016/S0014-3057(02)00249-5CrossRefGoogle Scholar
  175. 175.
    De Buruaga IS, Echevarría A, Armitage PD, et al (1997) On-line control of a semibatch emulsion polymerization reactor based on calorimetry. AICHE J 43:1069–1081. doi: 10.1002/aic.690430420CrossRefGoogle Scholar
  176. 176.
    Lamb DJ, Fellows CM, Morrison BR, Gilbert RG (2005) A critical evaluation of reaction calorimetry for the study of emulsion polymerization systems: thermodynamic and kinetic aspects. Polymer 46:285–294. doi: 10.1016/j.polymer.2004.11.026CrossRefGoogle Scholar
  177. 177.
    Rincón FD, Esposito M, de Araújo PHH, et al (2013) Calorimetric estimation employing the unscented kalman filter for a batch emulsion polymerization reactor. Macromol React Eng 7:24–35. doi: 10.1002/mren.201200044CrossRefGoogle Scholar
  178. 178.
    Rincón FD, Esposito M, de Araújo PHH, et al (2014) Robust calorimetric estimation of semi-continuous and batch emulsion polymerization systems with covariance estimation. Macromol React Eng 8:456–466. doi: 10.1002/mren.201300151CrossRefGoogle Scholar
  179. 179.
    De La Rosa LV, Sudol ED, El-Aasser MS, Klein A (1999) Emulsion polymerization of styrene using reaction calorimeter.II. Importance of maximum in rate of polymerization. J Polym Sci Part Polym Chem 37:4066–4072CrossRefGoogle Scholar
  180. 180.
    Vicente M, BenAmor S, Gugliotta LM, et al (2001) Control of molecular weight distribution in emulsion polymerization using on-line reaction calorimetry. Ind Eng Chem Res 40:218–227. doi: 10.1021/ie000387eCrossRefGoogle Scholar
  181. 181.
    Blythe PJ, Klein A, Sudol ED, El-Aasser MS (1999) Enhanced droplet nucleation in styrene miniemulsion polymerization. 3. Effect of shear in miniemulsions that use cetyl alcohol as the cosurfactant. Macromolecules 32:4225–4231. doi: 10.1021/ma981977fCrossRefGoogle Scholar
  182. 182.
    Blythe PJ, Klein A, Sudol ED, El-Aasser MS (1999) Enhanced droplet nucleation in styrene miniemulsion polymerization. 2. Polymerization kinetics of homogenized emulsions containing predissolved polystyrene. Macromolecules 32:6952–6957. doi: 10.1021/ma981976nCrossRefGoogle Scholar
  183. 183.
    Blythe PJ, Morrison BR, Mathauer KA, et al (1999) Enhanced droplet nucleation in styrene miniemulsion polymerization. 1. Effect of polymer type in sodium lauryl sulfate/cetyl alcohol miniemulsions. Macromolecules 32:6944–6951. doi: 10.1021/ma981975vCrossRefGoogle Scholar
  184. 184.
    Vieira RAM, Sayer C, Lima EL, Pinto JC (2002) In-line and in situ monitoring of semi-batch emulsion copolymerizations using near-infrared spectroscopy. J Appl Polym Sci 84:2670–2682. doi: 10.1002/app.10434CrossRefGoogle Scholar
  185. 185.
    Dubé MA, Li L (2010) In-line monitoring of SBR emulsion polymerization using ATR-FTIR spectroscopy. Polym Plast Technol Eng 49:648–656. doi: 10.1080/03602551003664909CrossRefGoogle Scholar
  186. 186.
    Hua H, Dubé MA (2002) In-line monitoring of emulsion homo- and copolymerizations using ATR-FTIR spectrometry. Polym React Eng 10:21–39. doi: 10.1081/PRE-120002903CrossRefGoogle Scholar
  187. 187.
    Poljanšek I, Fabjan E, Burja K, Kukanja D (2013) Emulsion copolymerization of vinyl acetate-ethylene in high pressure reactor-characterization by inline FTIR spectroscopy. Prog Org Coat 76:1798–1804. doi: 10.1016/j.porgcoat.2013.05.019CrossRefGoogle Scholar
  188. 188.
    Roberge S, Dubé MA (2016) Infrared process monitoring of conjugated linoleic acid/styrene/butyl acrylate bulk and emulsion terpolymerization. J Appl Polym Sci 133:n/a–n/a. doi: 10.1002/app.43574
  189. 189.
    Ampelli C, Di Bella D, Maschio G, Russo A (2006) Calorimetric study of the inhibition of runaway reactions during methylmethacrylate polymerization processes. J Loss Prev Process Ind 19:419–424. doi: 10.1016/j.jlp.2005.10.003CrossRefGoogle Scholar
  190. 190.
    Morgan AB, Gilman JW (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater 37:259–279. doi: 10.1002/fam.2128CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biological Engineering, Centre for Catalysis Research and InnovationUniversity of OttawaOttawaCanada

Personalised recommendations