Advertisement

Stimuli-Responsive Latexes Stabilized by Carbon Dioxide Switchable Groups

  • Michael F. Cunningham
  • Philip G. Jessop
  • Ali Darabi
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 281)

Abstract

Preparation of stimuli-responsive latexes whose colloidal stability can be reversibly switched using only CO2 as a trigger is reviewed. By incorporating CO2-responsive moieties into the formulation of an emulsion polymerization, polymer particles can be made for which stabilization originates from functional groups that are readily switched “on” (charged) and “off” (neutral) simply by adding or removing CO2 at atmospheric pressure. The functional groups that provide colloidal stability, typically amidines or tertiary amines, can be added in various forms such as premanufactured surfactants, functional monomers, or functional, commercially available initiators. This review focuses on the preparation, behavior, and properties of these CO2-switchable emulsion polymers. Detailed discussion is provided on how the switching behavior and latex properties are influenced by the choice of CO2-switchable moieties and the method of their incorporation into latex particles.

Keywords

CO2-switchable Switchable particles Switchable surfactants 

Notes

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Ontario Research Chairs Program (Cunningham), and Canada Research Chairs Program (Jessop) for financial support.

References

  1. 1.
    Shirakbari N, Ebrahimi M, Salehi-Mobarakeh H, Khorasani M (2014) Effect of surfactant type and concentration on surfactant migration, surface tension, and adhesion of latex films. J Macromol Sci B Phys 53:1286–1292CrossRefGoogle Scholar
  2. 2.
    Monteiro MJ, Sjöberg M, van der Vlist J, Göttegens C (2000) Synthesis of butyl acrylate–styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: effect of surfactant migration upon film formation. J Polym Sci A Polym Chem 38:4206–4217CrossRefGoogle Scholar
  3. 3.
    Aramendia E, Barandiaran E, Grade J, Blease T, Asua M (2005) Improving water sensitivity in acrylic films using surfmers. Langmuir 21:1428–1435CrossRefGoogle Scholar
  4. 4.
    Zhang Q, Yu G, Wang W, Yuan H, Li B, Zhu S (2012) Preparation of N2/CO2 triggered reversibly coagulatable and redispersible latexes by emulsion polymerization of styrene with a reactive switchable surfactant. Langmuir 28:5940–5946CrossRefGoogle Scholar
  5. 5.
    Jessop PG, Mercer SM, Heldebrant DJ (2012) CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ Sci 5:7240–7253CrossRefGoogle Scholar
  6. 6.
    Lin S, Theato P (2013) CO2-responsive polymers. Macromol Rapid Commun 34:1118–1133CrossRefGoogle Scholar
  7. 7.
    Darabi A, Jessop PG, Cunningham MF (2016) CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem Soc Rev 45:4391–4436CrossRefGoogle Scholar
  8. 8.
    Liu Y, Jessop PG, Cunningham MF, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960CrossRefGoogle Scholar
  9. 9.
    Jessop PG (2012) Reversibly switchable surfactants and methods of use thereof. US Patent 8,283,385, 9 Oct 2012Google Scholar
  10. 10.
    Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9:2365–2374CrossRefGoogle Scholar
  11. 11.
    Mirarefi P, Lee CT (2010) Photo-induced unfolding and inactivation of bovine carbonic anhydrase in the presence of a photoresponsive surfactant. Biochim Biophys Acta 1804:106–114CrossRefGoogle Scholar
  12. 12.
    Zhang J, Wang S-C, Lee CJ (2009) Photoreversible conformational changes in membrane proteins using light-responsive surfactants. J Phys Chem B 113:8569–8580CrossRefGoogle Scholar
  13. 13.
    Sakai K, Yamazaki R, Imaizumi Y, Endo T, Sakai H, Abe M (2012) Adsolubilization by a photo-responsive surfactant. Colloids Surf A 410:119–124CrossRefGoogle Scholar
  14. 14.
    Sakai H, Aikawa S, Matsuda W, Ohmori T, Fukukita Y, Tezuka Y, Matsumura A, Torigoe K, Tsuchiya K, Arimitsu K, Sakamoto K, Sakai K, Abe M (2012) A cinnamic acid-type photo-cleavable surfactant. J Colloid Interface Sci 376:160–164CrossRefGoogle Scholar
  15. 15.
    Kim I, Rabolt JF, Stroeve P (2000) Dynamic monolayer behavior of a photo-responsive azobenzene surfactant. Colloids Surf A 171:167–174CrossRefGoogle Scholar
  16. 16.
    Malcolm AS, Dexter AF, Middelberg APJ (2006) Foaming properties of a peptide designed to form stimuli-responsive interfacial films. Soft Matter 2:1057–1066CrossRefGoogle Scholar
  17. 17.
    Minkenberg CB, Florusse L, Eelkema R, Koper GJM, van Esch JH (2009) Triggered self-assembly of simple dynamic covalent surfactants. J Am Chem Soc 131:11274–11275CrossRefGoogle Scholar
  18. 18.
    Tabor RF, Tan DD, Han SS, Young SA, Seeger ZLE, Pottage MJ, Garvey CL, Wilkinson BL (2014) Reversible pH- and photocontrollable carbohydrate-based surfactants. Chem Eur J 20:13881–13884CrossRefGoogle Scholar
  19. 19.
    Tu F, Lee D (2014) Shape-changing and amphiphilicity-reversing janus particles with pH-responsive surfactant properties. J Am Chem Soc 136:9999–10006CrossRefGoogle Scholar
  20. 20.
    Tang J, Lee MFX, Zhang W, Zhao B, Berry RM, Tam KC (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 15:3052–3060CrossRefGoogle Scholar
  21. 21.
    Fuhrmann K, Po A, Aeberli C, Castagner B, Gauthier MA (2013) Modular design of redox-responsive stabilizers for nanocrystals. ACS Nano 9:8243–8250CrossRefGoogle Scholar
  22. 22.
    Morikawa M, Murata K, Yamada K, Kimizuka N (2013) Controlled formation of microspheres from ferrocene-derivatized amino acids in binary aqueous/organic media. Chem Lett 42:501–503CrossRefGoogle Scholar
  23. 23.
    Liu X, Abbott NL (2009) Spatial and temporal control of surfactant systems. J Colloid Interface Sci 339:1–18CrossRefGoogle Scholar
  24. 24.
    Zhang J, Song Y, Cronin L, Liu T (2008) Self-assembly of organic–inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J Am Chem Soc 130:14408–14409CrossRefGoogle Scholar
  25. 25.
    Aydogan N, Abbott NL (2001) Comparison of the surface activity and bulk aggregation of ferrocenyl surfactants with cationic and anionic headgroups. Langmuir 17:5703–5706CrossRefGoogle Scholar
  26. 26.
    Saji T, Hoshino K, Aoyagui S (1985) Reversible formation and disruption of micelles by control of the redox state of the head group. J Am Chem Soc 107:6865–6868CrossRefGoogle Scholar
  27. 27.
    Fowler CI, Jessop PG, Cunningham MF (2012) Aryl amidine and tertiary amine switchable surfactants and their application in the emulsion polymerization of methyl methacrylate. Macromolecules 45:2955–2962CrossRefGoogle Scholar
  28. 28.
    Cornell EA (2015) Handbook of chemistry and physics, 95th edn. CRC Press, Boca RatonGoogle Scholar
  29. 29.
    Han D, Tong X, Boissiere O, Zhao Y (2012) General strategy for making CO2-switchable polymers. ACS Macro Lett 1:57–61CrossRefGoogle Scholar
  30. 30.
    Su X, Robert T, Mercer SM, Humphries C, Cunningham MF, Jessop PG (2013) A conventional surfactant becomes CO2-responsive in the presence of switchable water additives. Chem Eur J 19:5595–5601CrossRefGoogle Scholar
  31. 31.
    Middleberg PJ, Malcolm AS, Dexter AF (2007) Peptide surfactants (Pepfactants) for switchable foams and emulsions. Asia Pac J Chem Eng 2:362–367CrossRefGoogle Scholar
  32. 32.
    Dexter AF, Middelberg APJ (2007) Switchable peptide surfactants with designed metal binding capacity. J Phys Chem C 111:10484–10492CrossRefGoogle Scholar
  33. 33.
    Carroll JJ, Slupsky JD, Mather AE (1991) The solubility of carbon dioxide in water at low pressure. J Phys Chem Ref Data 20:1201–1209CrossRefGoogle Scholar
  34. 34.
    Su X, Fowler C, O’Neill C, Pinaud J, Kowal E, Jessop PG, Cunningham M (2013) Emulsion polymerization using switchable surfactants: a route towards water redispersable latexes. Macromol Symp 333:93–101CrossRefGoogle Scholar
  35. 35.
    Wang L, Qiao W, Cao C, Li Z (2008) Synthesis and characterization of a novel double-tailed cationic surfactant. Colloids Surf A 320:271–274CrossRefGoogle Scholar
  36. 36.
    Zhang Q, Yu G, Wang W-J, Li B-G, Zhu S (2012) Preparation of CO2/N2-triggered reversibly coagulatable and redispersible polyacrylate latexes by emulsion polymerization using a polymeric surfactant. Macromol Rapid Commun 33:916–921CrossRefGoogle Scholar
  37. 37.
    O’Neill C, Fowler C, Jessop PG, Cunningham MF (2013) Redispersing aggregated latexes made with switchable surfactants. Green Mater 1:27–35CrossRefGoogle Scholar
  38. 38.
    Qiao W, Zheng Z, Shi Q (2012) Synthesis and properties of a series of CO2 switchable surfactants with imidazoline group. J Surfactants Deterg 15:533–539CrossRefGoogle Scholar
  39. 39.
    Chai M, Zheng Z, Bao L, Qiao W (2014) CO2/N2 triggered switchable surfactants with imidazole group. J Surfactants Deterg 17:383–390CrossRefGoogle Scholar
  40. 40.
    Ding Y, Chen S, Xu H, Wang Z, Zhang X, Ngo TH, Smet M (2010) Reversible dispersion of single-walled carbon nanotubes based on a CO2-responsive dispersant. Langmuir 26:16667–16671CrossRefGoogle Scholar
  41. 41.
    Zhao Y, Landfester K, Crespy D (2012) CO2 responsive reversible aggregation of nanoparticles and formation of nanocapsules with an aqueous core. Soft Matter 8:11687–11696CrossRefGoogle Scholar
  42. 42.
    Moore ER, Lefevre NA (1986) Method for shear coagulation of latex resins. US Patent 4,623,678, 18 Nov 1986Google Scholar
  43. 43.
    Su X, Jessop PG, Cunningham MF (2014) Switchable surfactants at the polystyrene–water interface: effect of molecular structure. Green Mater 2:69–81CrossRefGoogle Scholar
  44. 44.
    Qian Y, Zhang Q, Qiu X, Zhu S (2014) CO2-responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO2/N2-switchable Pickering emulsions. Green Chem 16:4963–4968CrossRefGoogle Scholar
  45. 45.
    Tang J, Quinlan PJ, Tam KC (2015) Stimuli-responsive pickering emulsions: recent advances and potential applications. Soft Matter 11:3512–3529CrossRefGoogle Scholar
  46. 46.
    Qiao W, Zheng Z, Peng H (2011) Synthesis of switchable amphipathic molecules triggered by CO2 through carbonyl-amine condensation. Eur J Lipid Sci Technol 113:841–847CrossRefGoogle Scholar
  47. 47.
    Salentinig S, Jackson P, Hawley A (2015) Amine-functionalized CO2 responsive triblock copolymer micelles—a small-angle X-ray scattering study. Macromolecules 48:2283–2289CrossRefGoogle Scholar
  48. 48.
    Dai S, Ravi P, Tam KC (2008) pH-responsive polymers: synthesis, properties and applications. Soft Matter 4:435–449CrossRefGoogle Scholar
  49. 49.
    Yan B, Han D, Boissière O, Ayotte P, Zhao Y (2013) Manipulation of block copolymer vesicles using CO2: dissociation or “breathing”. Soft Matter 9:2011–2016CrossRefGoogle Scholar
  50. 50.
    van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NM, van Steenbergen MJ, Hennink WE (1999) Structure–activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem 10:589–597CrossRefGoogle Scholar
  51. 51.
    Carretti E, Dei L, Weiss RG (2005) Soft matter and art conservation. Rheoreversible gels and beyond. Soft Matter 1:17–22CrossRefGoogle Scholar
  52. 52.
    Gil E, Hudson S (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222CrossRefGoogle Scholar
  53. 53.
    Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714CrossRefGoogle Scholar
  54. 54.
    Fowler CI, Muchemu CM, Miller RE, Phan L, O’Neill C, Jessop PG, Cunningham MF (2011) Emulsion polymerization of styrene and methyl methacrylate using cationic switchable surfactants. Macromolecules 44:2501–2509CrossRefGoogle Scholar
  55. 55.
    Mihara M, Jessop PG, Cunningham MF (2011) Redispersible polymer colloids using carbon dioxide as an external trigger. Macromolecules 44:3688–3693CrossRefGoogle Scholar
  56. 56.
    Su X, Jessop PG, Cunningham MF (2012) Surfactant-free polymerization forming switchable latexes that can be aggregated and redispersed by CO2 removal and then readdition. Macromolecules 45:666–670CrossRefGoogle Scholar
  57. 57.
    Zhang Q, Yu G, Wang WJ, Yuan H, Li BG, Zhu S (2013) Switchable block copolymer surfactants for preparation of reversibly coagulatable and redispersible poly(methyl methacrylate) latexes. Macromolecules 46:1261–1267CrossRefGoogle Scholar
  58. 58.
    Pinaud J, Kowal E, Cunningham MF, Jessop PG (2012) 2-(Diethyl)aminoethyl methacrylate as a CO2-switchable comonomer for the preparation of readily coagulated and redispersed polymer latexes. ACS Macro Lett 1:1103–1107CrossRefGoogle Scholar
  59. 59.
    Zhang Q, Wang WJ, Lu Y, Li BG, Zhu S (2011) Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine. Macromolecules 44:6539–6545CrossRefGoogle Scholar
  60. 60.
    Gariepy D, Zhang Q, Zhu S (2015) CO2-redispersible polymer latexes with low glass transition temperatures. Macromol Chem Phys 216:561–568CrossRefGoogle Scholar
  61. 61.
    Darabi A, Shirin-Abadi AR, Pinaud J, Jessop PG, Cunningham MF (2014) Nitroxide-mediated surfactant-free emulsion copolymerization of methyl methacrylate and styrene using poly(2-(diethyl)aminoethyl methacrylate-co-styrene) as a stimuli-responsive macroalkoxyamine. Polym Chem 5:6163–6170CrossRefGoogle Scholar
  62. 62.
    Darabi A, Shirin-Abadi AR, Jessop PG, Cunningham MF (2015) Nitroxide-mediated polymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA) in water. Macromolecules 48:72–80CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael F. Cunningham
    • 1
  • Philip G. Jessop
    • 1
  • Ali Darabi
    • 1
  1. 1.Department of Chemical EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations