Tailoring Bulk and Surface Composition of Polylactides for Application in Engineering of Skeletal Tissues

  • Gloria Gallego Ferrer
  • Andrea Liedmann
  • Marcus S. Niepel
  • Zhen-Mei Liu
  • Thomas GrothEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 282)


Synthetic biodegradable polylactides have been used extensively to fabricate scaffolds for engineering skeletal tissues such as bone and cartilage. This chapter summarizes the application of polylactides in tissue engineering and shows strategies for tailoring its bulk and surface composition for optimized degradation rates, mechanical properties, and bioactivities that cannot be achieved with pure polylactide polymers. Hence, block copolymers and the use of blending as a cost-effective strategy are described here. Furthermore, polymeric networks are shown that are advantageous in porogen-leaching manufacture of scaffolds, in preventing crystallization during degradation, and in allowing the incorporation of hydrophilic chains. In addition, mechanical reinforcement of the polymer is achieved when organic–inorganic composites of polylactides are formed. The last part of this chapter focusses on the modification of the surface to tailor the biocompatibility of polylactides only, without changing the bulk properties of the material. Surface modification by wet chemical processes and adsorption of biogenic multilayers of glycosaminoglycans is described that not only significantly improves biocompatibility but may also help to drive differentiation of stem cells into the desired lineage.


Blending Bone Cartilage Composites Copolymer Crosslinking Polyelectrolyte multilayers Polylactides Polymeric networks Surface modification 



This work was supported by Marie Curie Industry-Academia Partnerships and Pathways (FP7-PEOPLE-2012-IAPP, with grant agreement PIAP-GA-2012-324386) and IOF-Marie Curie fellowship program (Protdel 331655) as well as the German Research Society (DFG) through Grant GR 1290/10-1 and the Spanish Ministry of Economy and Competitiveness through the MAT2016-76039-C4-1-R Project (including Feder funds).


  1. 1.
    Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75PubMedCrossRefGoogle Scholar
  2. 2.
    Fields GB et al. (1998) Proteinlike molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47(2):143–151PubMedCrossRefGoogle Scholar
  3. 3.
    Green D et al. (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30(6):810–815PubMedCrossRefGoogle Scholar
  4. 4.
    Liu JC, Heilshorn SC, Tirrell DA (2004) Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules 5(2):497–504PubMedCrossRefGoogle Scholar
  5. 5.
    Orive G et al. (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10(9):682–692PubMedCrossRefGoogle Scholar
  6. 6.
    Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, LiverpoolGoogle Scholar
  7. 7.
    Thomson R et al. (1995) Biodegradable polymer scaffolds to regenerate organs. In: Peppas NA, Langer RS (eds) Biopolymers II. Springer, Berlin Heidelberg, pp 245–274CrossRefGoogle Scholar
  8. 8.
    Jagur-Grodzinski J (2006) Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym Adv Technol 17(6):395–418CrossRefGoogle Scholar
  9. 9.
    Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5(1):1–16. Discussion 16PubMedGoogle Scholar
  10. 10.
    Shin YM et al. (2008) Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(l-lactide-co-ϵ-caprolactone) substrates. Biomacromolecules 9(7):1772–1781PubMedCrossRefGoogle Scholar
  11. 11.
    Akdemir ZS et al. (2008) Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth. Macromol Biosci 8(9):852–862PubMedCrossRefGoogle Scholar
  12. 12.
    Webb K, Hlady V, Tresco PA (1998) Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 41(3):422–430PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bauer S et al. (2013) Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog Mater Sci 58(3):261–326CrossRefGoogle Scholar
  14. 14.
    Liu Z-M et al. (2010) Synergistic effect of polyelectrolyte multilayers and osteogenic growth medium on differentiation of human mesenchymal stem cells. Macromol Biosci 10(9):1043–1054PubMedCrossRefGoogle Scholar
  15. 15.
    Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 3:114–119CrossRefGoogle Scholar
  16. 16.
    Roach P et al. (2007) Modern biomaterials: a review – bulk properties and implications of surface modifications. J Mater Sci Mater Med 18(7):1263–1277PubMedCrossRefGoogle Scholar
  17. 17.
    Sharma B, Elisseeff JH (2004) Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng 32(1):148–159PubMedCrossRefGoogle Scholar
  18. 18.
    Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Salgado AJ et al. (2006) Influence of molecular weight and crystallinity of poly(L-lactic acid) on the adhesion and proliferation of human osteoblast like cells. Mater Sci Forum 514–516:1020–1024CrossRefGoogle Scholar
  20. 20.
    Chen R et al. (2006) The use of poly(L-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage. Biomaterials 27(25):4453–4460PubMedCrossRefGoogle Scholar
  21. 21.
    Richardson SM et al. (2006) The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials 27(22):4069–4078PubMedCrossRefGoogle Scholar
  22. 22.
    Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 23(2):178–187PubMedCrossRefGoogle Scholar
  23. 23.
    Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev 107:367–392PubMedCrossRefGoogle Scholar
  24. 24.
    Liu ZM et al. (2010) Biocompatibility of poly(L-lactide) films modified with poly(ethylene imine) and polyelectrolyte multilayers. J Biomater Sci Polym Ed 21(6):893–912PubMedCrossRefGoogle Scholar
  25. 25.
    Moffa M et al. (2013) Microvascular endothelial cell spreading and proliferation on nanofibrous scaffolds by polymer blends with enhanced wettability. Soft Matter 9(23):5529–5539CrossRefGoogle Scholar
  26. 26.
    Fernández JM et al. (2016) Biodegradable polyester networks including hydrophilic groups favor BMSCs differentiation and can be eroded by macrophage action. Polym Degrad Stab 130:38–46CrossRefGoogle Scholar
  27. 27.
    Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846CrossRefGoogle Scholar
  28. 28.
    Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346PubMedCrossRefGoogle Scholar
  29. 29.
    Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138CrossRefGoogle Scholar
  30. 30.
    Williams DF, Mort E (1977) Enzyme-accelerated hydrolysis of polyglycolic acid. J Bioeng 1(3):231–238PubMedGoogle Scholar
  31. 31.
    Vert M et al. (1984) Bioresorbable plastic materials for bone surgery. In: Hastings G, Ducheyne P (eds) Macromolecular biomaterials. CRC series in structure-property relationship of biomaterials. CRC, Boca Raton, pp 119–142Google Scholar
  32. 32.
    Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology (N Y) 13(6):565–576Google Scholar
  33. 33.
    Santamaria VA et al. (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly(L-lactic acid) scaffolds. J Non-Cryst Solids 358(23):3141–3149CrossRefGoogle Scholar
  34. 34.
    Kojima N, Matsuo T, Sakai Y (2006) Rapid hepatic cell attachment onto biodegradable polymer surfaces without toxicity using an avidin-biotin binding system. Biomaterials 27(28):4904–4910PubMedCrossRefGoogle Scholar
  35. 35.
    Yu GH, Fan YB (2008) Preparation of poly(D,L-lactic acid) scaffolds using alginate particles. J Biomater Sci Polym Ed 19(1):87–98PubMedCrossRefGoogle Scholar
  36. 36.
    Garric X et al. (2005) Human skin cell cultures onto PLA50 (PDLLA) bioresorbable polymers: influence of chemical and morphological surface modifications. J Biomed Mater Res A 72(2):180–189PubMedCrossRefGoogle Scholar
  37. 37.
    Pihlajamaki H et al. (1994) Tissue-implant interface at an absorbable fracture fixation plug made of polylactide in cancellous bone of distal rabbit femur. Arch Orthop Trauma Surg 113(2):101–105PubMedCrossRefGoogle Scholar
  38. 38.
    Rahman MS, Tsuchiya T (2001) Enhancement of chondrogenic differentiation of human articular chondrocytes by biodegradable polymers. Tissue Eng 7(6):781–790PubMedCrossRefGoogle Scholar
  39. 39.
    Miyata T, Masuko T (1998) Crystallization behaviour of poly(L-lactide). Polymer 39(22):5515–5521CrossRefGoogle Scholar
  40. 40.
    Wang Y et al. (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38(11):4712–4718CrossRefGoogle Scholar
  41. 41.
    Salmerón Sánchez M et al. (2007) Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40(22):7989–7997CrossRefGoogle Scholar
  42. 42.
    Costa Martinez E et al. (2007) Effect of poly(L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes. J Mater Sci Mater Med 18(8):1627–1632PubMedCrossRefGoogle Scholar
  43. 43.
    Li S, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med 1(4):198–206CrossRefGoogle Scholar
  44. 44.
    Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. J Appl Polym Sci 77(7):1452–1464CrossRefGoogle Scholar
  45. 45.
    Deplaine H et al. (2014) Evolution of the properties of a poly(l-lactic acid) scaffold with double porosity during in vitro degradation in a phosphate-buffered saline solution. J Appl Polym Sci 131(20):40956CrossRefGoogle Scholar
  46. 46.
    Tan W, Krishnaraj R, Desai TA (2001) Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue Eng 7(2):203–210PubMedCrossRefGoogle Scholar
  47. 47.
    Taylor MS et al. (1994) Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater 5(2):151–157PubMedCrossRefGoogle Scholar
  48. 48.
    Gibbons D (1992) Tissue response to resorbable synthetic polymers. Degradation phenomena on polymeric biomaterials. Springer, Berlin Heidelberg, pp 97–105CrossRefGoogle Scholar
  49. 49.
    Hasirci V et al. (2001) Versatility of biodegradable biopolymers: degradability and an in vivo application. J Biotechnol 86(2):135–150PubMedCrossRefGoogle Scholar
  50. 50.
    Nieminen T et al. (2008) Degradative and mechanical properties of a novel resorbable plating system during a 3-year follow-up in vivo and in vitro. J Mater Sci Mater Med 19(3):1155–1163PubMedCrossRefGoogle Scholar
  51. 51.
    Tzoneva R et al. (2002) Remodeling of fibrinogen by endothelial cells in dependence on fibronectin matrix assembly. Effect of substratum wettability. J Mater Sci Mater Med 13(12):1235–1244PubMedCrossRefGoogle Scholar
  52. 52.
    Altankov G, Groth T (1994) Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J Mater Sci Mater Med 5(9–10):732–737CrossRefGoogle Scholar
  53. 53.
    Faucheux N et al. (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25(14):2721–2730PubMedCrossRefGoogle Scholar
  54. 54.
    Choi YJ et al. (2005) Evaluations of blood compatibility via protein adsorption treatment of the vascular scaffold surfaces fabricated with polylactide and surface-modified expanded polytetrafluoroethylene for tissue engineering applications. J Biomed Mater Res A 75(4):824–831PubMedCrossRefGoogle Scholar
  55. 55.
    Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16(5):224–230PubMedCrossRefGoogle Scholar
  56. 56.
    Gamboa-Martinez TC, Ribelles JLG, Ferrer GG (2011) Fibrin coating on poly(L-lactide) scaffolds for tissue engineering. J Bioact Compat Polym 26(5):464–477CrossRefGoogle Scholar
  57. 57.
    Izal I et al. (2013) Culture of human bone marrow-derived mesenchymal stem cells on of poly(L-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surg Sports Traumatol Arthrosc 21(8):1737–1750PubMedCrossRefGoogle Scholar
  58. 58.
    Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Arkudas A et al. (2015) Characterisation of vascularisation of scaffolds for tissue engineering. Mater Sci Technol 31(2):180–187CrossRefGoogle Scholar
  60. 60.
    Rezwan K et al. (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431PubMedCrossRefGoogle Scholar
  61. 61.
    Gamboa-Martínez TC et al. (2013) Chondrocytes cultured in an adhesive macroporous scaffold subjected to stirred flow bioreactor behave like in static culture. J Biomater Tissue Eng 3(3):312–319CrossRefGoogle Scholar
  62. 62.
    Ghosh S et al. (2008) Bi-layered constructs based on poly(L-lactic acid) and starch for tissue engineering of osteochondral defects. Mater Sci Eng C Biomim Supramol Syst 28(1):80–86CrossRefGoogle Scholar
  63. 63.
    Verhaegen J et al. (2015) TruFit plug for repair of osteochondral defects-where is the evidence? Systematic review of literature. Cartilage 6(1):12–19PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Vikingsson L et al. (2015) Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations. Int J Artif Organs 38(12):659–666PubMedCrossRefGoogle Scholar
  65. 65.
    Huang SY, Jiang SC (2014) Structures and morphologies of biocompatible and biodegradable block copolymers. RSC Adv 4(47):24566–24583CrossRefGoogle Scholar
  66. 66.
    Gentile P et al. (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397CrossRefGoogle Scholar
  68. 68.
    Park PIP, Jonnalagadda S (2006) Predictors of glass transition in the biodegradable polylactide and poly-lactide-co-glycolide polymers. J Appl Polym Sci 100(3):1983–1987CrossRefGoogle Scholar
  69. 69.
    Alexis F (2005) Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym Int 54(1):36–46CrossRefGoogle Scholar
  70. 70.
    Singh G et al. (2014) Recent biomedical applications and patents on biodegradable polymer-PLGA. Int J Pharmacol Pharm Sci 1:30–42Google Scholar
  71. 71.
    Wang S, Cui W, Bei J (2005) Bulk and surface modifications of polylactide. Anal Bioanal Chem 381(3):547–556PubMedCrossRefGoogle Scholar
  72. 72.
    Pang X et al. (2010) Polylactic acid (PLA): research, development and industrialization. Biotechnol J 5(11):1125–1136PubMedCrossRefGoogle Scholar
  73. 73.
    Cohn D, Salomon AH (2005) Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26(15):2297–2305PubMedCrossRefGoogle Scholar
  74. 74.
    Jung Y et al. (2008) Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Biomaterials 29(35):4630–4636PubMedCrossRefGoogle Scholar
  75. 75.
    Lins LC et al. (2016) Development of bioresorbable hydrophilic-hydrophobic electrospun scaffolds for neural tissue engineering. Biomacromolecules 17(10):3172–3187PubMedCrossRefGoogle Scholar
  76. 76.
    Huh KM, Bae YH (1999) Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid) alternating multiblock copolymers. Polymer 40(22):6147–6155CrossRefGoogle Scholar
  77. 77.
    Li F, Li S, Vert M (2005) Synthesis and rheological properties of polylactide/poly(ethylene glycol) multiblock copolymers. Macromol Biosci 5(11):1125–1131PubMedCrossRefGoogle Scholar
  78. 78.
    Cai Q et al. (2003) Synthesis and characterization of biodegradable polylactide-grafted dextran and its application as compatilizer. Biomaterials 24(20):3555–3562PubMedCrossRefGoogle Scholar
  79. 79.
    Pitarresi G et al. (2013) Injectable in situ forming microgels of hyaluronic acid-g-polylactic acid for methylprednisolone release. Eur Polym J 49(3):718–725CrossRefGoogle Scholar
  80. 80.
    Konwar DB, Jacob J, Satapathy BK (2016) A comparative study of poly(l-lactide)-block-poly(E-caprolactone) six-armed star diblock copolymers and polylactide/poly(E-caprolactone) blends. Polym Int 65(9):1107–1117CrossRefGoogle Scholar
  81. 81.
    Zeng J-B, Li K-A, Du A-K (2015) Compatibilization strategies in poly(lactic acid)-based blends. RSC Adv 5(41):32546–32565CrossRefGoogle Scholar
  82. 82.
    Ikada Y et al. (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20(4):904–906CrossRefGoogle Scholar
  83. 83.
    Goonoo N, Bhaw-Luximon A, Jhurry D (2015) Biodegradable polymer blends: miscibility, physicochemical properties and biological response of scaffolds. Polym Int 64(10):1289–1302CrossRefGoogle Scholar
  84. 84.
    Lopez-Rodriguez N et al. (2014) Improvement of toughness by stereocomplex crystal formation in optically pure polylactides of high molecular weight. J Mech Behav Biomed Mater 37:219–225PubMedCrossRefGoogle Scholar
  85. 85.
    Ishii D et al. (2009) In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromolecules 10(2):237–242PubMedCrossRefGoogle Scholar
  86. 86.
    You Y et al. (2006) Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett 60(6):757–760CrossRefGoogle Scholar
  87. 87.
    Carmagnola I et al. (2014) Poly(lactic acid)-based blends with tailored physicochemical properties for tissue engineering applications: a case study. Int J Polym Mater Polym Biomater 64(2):90–98CrossRefGoogle Scholar
  88. 88.
    Vilay V et al. (2009) Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(L-lactide)/poly(ε-caprolactone) and poly(L-lactide )/poly(butylene succinate-co-L-lactate) polymeric blends. J Appl Polym Sci 114:1784–1792CrossRefGoogle Scholar
  89. 89.
    Choi NS et al. (2002) Morphology and hydrolysis of PCL/PLLA blends compatibilized with P(LLA-co-epsilon CL) or P(LLA-b-epsilon CL). J Appl Polym Sci 86(8):1892–1898CrossRefGoogle Scholar
  90. 90.
    Wang BY et al. (2012) Electrospun polylactide/poly(ethylene glycol) hybrid fibrous scaffolds for tissue engineering. J Biomed Mater Res A 100(2):441–449PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang W et al. (2013) Processing and characterization of supercritical CO2batch foamed poly(lactic acid)/poly(ethylene glycol) scaffold for tissue engineering application. J Appl Polym Sci 130(5):3066–3073CrossRefGoogle Scholar
  92. 92.
    Serra T et al. (2014) Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Mater Sci Eng C Mater Biol Appl 38:55–62PubMedCrossRefGoogle Scholar
  93. 93.
    Chen C, Dong L, Cheung MK (2005) Preparation and characterization of biodegradable poly(l-lactide)/chitosan blends. Eur Polym J 41(5):958–966CrossRefGoogle Scholar
  94. 94.
    Duarte ARC, Mano JF, Reis RL (2009) Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. J Supercrit Fluids 49(2):279–285CrossRefGoogle Scholar
  95. 95.
    Zhao X, Liu W, Yao K (2006) Preparation and characterization of biocompatible poly(L-lactic acid)/gelatin blend membrane. J Appl Polym Sci 101(1):269–276CrossRefGoogle Scholar
  96. 96.
    Kim HW, Yu HS, Lee HH (2008) Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A 87(1):25–32PubMedCrossRefGoogle Scholar
  97. 97.
    Ferreira BMP, Zavaglia CAC, Duek EAR (2002) Films of PLLA/PHBV: thermal, morphological, and mechanical characterization. J Appl Polym Sci 86(11):2898–2906CrossRefGoogle Scholar
  98. 98.
    Santos Jr AR et al. (2004) Differentiation pattern of Vero cells cultured on poly(L-lactic acid)/poly(hydroxybutyrate-co-hydroxyvalerate) blends. Artif Organs 28(4):381–389PubMedCrossRefGoogle Scholar
  99. 99.
    Diego RB et al. (2005) Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. J Mater Sci Mater Med 16(8):693–698PubMedCrossRefGoogle Scholar
  100. 100.
    Escobar Ivirico JL et al. (2009) Poly(l-lactide) networks with tailored water sorption. Colloid Polym Sci 287(6):671–681CrossRefGoogle Scholar
  101. 101.
    Ivirico JLE et al. (2011) Biodegradable poly(L-lactide) and polycaprolactone block copolymer networks. Polym Int 60(2):264–270CrossRefGoogle Scholar
  102. 102.
    Ivirico JL et al. (2009) Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. J Biomed Mater Res B Appl Biomater 91(1):277–286PubMedCrossRefGoogle Scholar
  103. 103.
    Olmedilla MP et al. (2012) In vitro 3D culture of human chondrocytes using modified epsilon-caprolactone scaffolds with varying hydrophilicity and porosity. J Biomater Appl 27(3):299–309PubMedCrossRefGoogle Scholar
  104. 104.
    Kim S et al. (2014) In vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(7):1393–1406PubMedCrossRefGoogle Scholar
  105. 105.
    Benoit DS, Durney AR, Anseth KS (2006) Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng 12(6):1663–1673PubMedCrossRefGoogle Scholar
  106. 106.
    Kang Z et al. (2017) Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Mater Sci Eng C Mater Biol Appl 70(Pt 2):1125–1131PubMedCrossRefGoogle Scholar
  107. 107.
    Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25CrossRefGoogle Scholar
  108. 108.
    Tajbakhsh S, Hajiali F (2017) A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 70(Pt 1):897–912PubMedCrossRefGoogle Scholar
  109. 109.
    Supova M (2009) Problem of hydroxyapatite dispersion in polymer matrices: a review. J Mater Sci Mater Med 20(6):1201–1213PubMedCrossRefGoogle Scholar
  110. 110.
    Deplaine H, Ribelles JLG, Ferrer GG (2010) Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(L-lactide) – hybrid membranes. Compos Sci Technol 70(13):1805–1812CrossRefGoogle Scholar
  111. 111.
    Deplaine H et al. (2013) Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. J Biomed Mater Res B Appl Biomater 101(1):173–186PubMedCrossRefGoogle Scholar
  112. 112.
    He JQ et al. (2012) Hydroxyapatite-poly(L-lactide) nanohybrids via surface-initiated ATRP for improving bone-like apatite-formation abilities. Appl Surf Sci 258(18):6823–6830CrossRefGoogle Scholar
  113. 113.
    Yan S et al. (2011) Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid. Colloids Surf B Biointerfaces 86(1):218–224PubMedCrossRefGoogle Scholar
  114. 114.
    Guerzoni S et al. (2014) Combination of silica nanoparticles with hydroxyapatite reinforces poly(L-lactide acid) scaffolds without loss of bioactivity. J Bioact Compat Polym 29(1):15–31CrossRefGoogle Scholar
  115. 115.
    Erggelet C et al. (2010) Autologous chondrocyte implantation versus ACI using 3D-bioresorbable graft for the treatment of large full-thickness cartilage lesions of the knee. Arch Orthop Trauma Surg 130(8):957–964PubMedCrossRefGoogle Scholar
  116. 116.
    Jeuken RM et al. (2016) Polymers in cartilage defect repair of the knee: current status and future prospects. Polymers 8:219CrossRefGoogle Scholar
  117. 117.
    Serino G et al. (2003) Ridge preservation following tooth extraction using a polylactide and polyglycolide sponge as space filler: a clinical and histological study in humans. Clin Oral Implants Res 14(5):651–658PubMedCrossRefGoogle Scholar
  118. 118.
    Walsh WR et al. (2015) Long-term in-vivo evaluation of a resorbable PLLA scaffold for regeneration of the ACL. Orthop J Sports Med 3(7 Suppl 2):2325967115S00033PubMedCentralGoogle Scholar
  119. 119.
    Groth T et al. (2010) Chemical and physical modifications of biomaterial surfaces to control adhesion of cells. In: Shastri VP, Altankov G, Lendlein A (eds) Advances in regenerative medicine: role of nanotechnology, and engineering principles. Springer Netherlands, Dordrecht, pp 253–284CrossRefGoogle Scholar
  120. 120.
    Silva JM, Reis RL, Mano JF (2016) Biomimetic extracellular environment based on natural origin polyelectrolyte multilayers. Small 12(32):4308–4342PubMedCrossRefGoogle Scholar
  121. 121.
    Zhao M et al. (2014) Improved stability and cell response by intrinsic cross-linking of multilayers from collagen I and oxidized glycosaminoglycans. Biomacromolecules 15(11):4272–4280PubMedCrossRefGoogle Scholar
  122. 122.
    Hoffman AS (1996) Surface modification of polymers: physical, chemical, mechanical and biological methods. Macromol Symp 101(1):443–454CrossRefGoogle Scholar
  123. 123.
    Hamerli P et al. (2003) Enhanced tissue-compatibility of polyethylenterephtalat membranes by plasma aminofunctionalisation. Surf Coat Technol 174–175:574–578CrossRefGoogle Scholar
  124. 124.
    Hamerli P et al. (2003) Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials 24(22):3989–3999PubMedCrossRefGoogle Scholar
  125. 125.
    Seifert B, Romaniuk P, Groth T (1996) Bioresorbable, heparinized polymers for stent coating: in vitro studies on heparinization efficiency, maintenance of anticoagulant properties and improvement of stent haemocompatibility. J Mater Sci Mater Med 7(8):465–469CrossRefGoogle Scholar
  126. 126.
    Seifert B, Romaniuk P, Groth T (1997) Covalent immobilization of hirudin improves the haemocompatibility of polylactide-polyglycolide in vitro. Biomaterials 18(22):1495–1502PubMedCrossRefGoogle Scholar
  127. 127.
    Cheng Y et al. (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem Chin 4(3):259–264CrossRefGoogle Scholar
  128. 128.
    Trimpert C et al. (2006) Poly(ether imide) membranes modified with poly(ethylene imine) as potential carriers for epidermal substitutes. Macromol Biosci 6(4):274–284PubMedCrossRefGoogle Scholar
  129. 129.
    Liu ZM et al. (2009) Immobilization of poly(ethylene imine) on poly(l-lactide) promotes MG63 cell proliferation and function. J Mater Sci Mater Med 20(11):2317–2326PubMedCrossRefGoogle Scholar
  130. 130.
    Franceschi RT, James WM, Zerlauth G (1985) 1α, 25-Dihydroxyvitamin D3 specific regulation of growth, morphology, and fibronectin in a human osteosarcoma cell line. J Cell Physiol 123(3):401–409PubMedCrossRefGoogle Scholar
  131. 131.
    Farley JR, Baylink DJ (1986) Skeletal alkaline phosphatase activity as a bone formation index in vitro. Metabolism 35(6):563–571PubMedCrossRefGoogle Scholar
  132. 132.
    Zur Nieden NI, Kempka G, Ahr HJ (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71(1):18–27PubMedCrossRefGoogle Scholar
  133. 133.
    Niepel MS et al. (2009) pH-dependent modulation of fibroblast adhesion on multilayers composed of poly(ethylene imine) and heparin. Biomaterials 30(28):4939–4947PubMedCrossRefGoogle Scholar
  134. 134.
    Brunot C et al. (2007) Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials 28(4):632–640PubMedCrossRefGoogle Scholar
  135. 135.
    Richardson JJ, Bjornmalm M, Caruso F (2015) Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):aaa2491PubMedCrossRefGoogle Scholar
  136. 136.
    Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15(5):196–206CrossRefGoogle Scholar
  137. 137.
    Moehwald H, Brezesinski G (2016) From Langmuir monolayers to multilayer films. Langmuir 32(41):10445–10458PubMedCrossRefGoogle Scholar
  138. 138.
    Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113(7):1161PubMedGoogle Scholar
  139. 139.
    Friedenstein AJ et al. (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92PubMedGoogle Scholar
  140. 140.
    Liu Z-J, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106(6):984–991PubMedCrossRefGoogle Scholar
  141. 141.
    Jäger M et al. (2005) Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Ann Biomed Eng 33(10):1319–1332PubMedCrossRefGoogle Scholar
  142. 142.
    McBride SH, Knothe Tate ML (2008) Modulation of stem cell shape and fate a: the role of density and seeding protocol on nucleus shape and gene expression. Tissue Eng A 14(9):1561–1572CrossRefGoogle Scholar
  143. 143.
    McBeath R et al. (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495PubMedCrossRefGoogle Scholar
  144. 144.
    Sun XJ et al. (2008) In vitro proliferation and differentiation of human mesenchymal stem cells cultured in autologous plasma derived from bone marrow. Tissue Eng A 14(3):391–400CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gloria Gallego Ferrer
    • 1
    • 2
  • Andrea Liedmann
    • 3
  • Marcus S. Niepel
    • 3
    • 4
  • Zhen-Mei Liu
    • 5
  • Thomas Groth
    • 3
    • 4
    Email author
  1. 1.Centre for Biomaterials and Tissue Engineering (CBIT)Universitat Politècnica de ValènciaValenciaSpain
  2. 2.Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)ZaragozaSpain
  3. 3.Biomedical Materials Group, Institute of PharmacyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  4. 4.Interdisciplinary Center of Materials ScienceMartin Luther University Halle-WittenbergHalle (Saale)Germany
  5. 5.Faculty of DentistryUniversity of TorontoTorontoCanada

Personalised recommendations