Advertisement

Experiments and Thoughts on Mass Transfer During Emulsification

  • Klaus TauerEmail author
  • Chunxiang Wei
  • Amit Tripathi
  • Olga Kiryutina
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 281)

Abstract

The traditional way of making emulsions is via the input of extra mechanical energy, but there is another mechanism of emulsification that is entirely thermodynamically controlled. Experimental results are presented elucidating the consequences of this spontaneous emulsification for heterogeneous reaction systems. Special emphasis is placed on aqueous heterophase polymerization. We present the results of unusual experiments in oil–water systems that fundamentally changed our view of the mechanism of emulsion polymerization.

Keywords

Droplet formation Emulsion polymerization Thermodynamics 

Notes

Acknowledgements

O.K. acknowledges a scholarship form the DAAD (German Academic Exchange Service) in the year 2011. Financial support of the MPI of Colloids and Interfaces is gratefully acknowledged. The authors are obliged to Mrs. Ursula Lubahn and Mrs. Sylvia Pirok for technical assistance. The authors are particularly thankful for fruitful discussions with Markus Antonietti, the head of the Colloid Chemistry Department.

References

  1. 1.
    Danckwerts PV (1958). Chem Eng Sci 8:93CrossRefGoogle Scholar
  2. 2.
    Cohn G (1948). Chem Rev 42:527CrossRefGoogle Scholar
  3. 3.
    Tammann G (1925). Z Allg Anorg Chem 149:21CrossRefGoogle Scholar
  4. 4.
    van’t Hoff JH (1884) Etudes de Dynamique Chimique. Frederik Muller., AmsterdamGoogle Scholar
  5. 5.
    van’t Hoff JH, van Deventer CM (1887). Z Phys Chem 1:165Google Scholar
  6. 6.
    Zlokarnik M (1999) Rührtechnik. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Miller-Chou BA, Koenig JL (2003). Prog Polym Sci 28:1223CrossRefGoogle Scholar
  8. 8.
    Narasimhan B, Peppas NA (1997). Polym Anal Polym Phys 128:157CrossRefGoogle Scholar
  9. 9.
    Hirose H, Shibayama M (1998). Macromolecules 31:5336CrossRefGoogle Scholar
  10. 10.
    Holtus G, Borchard W (1989). Colloid Polym Sci 267:1133CrossRefGoogle Scholar
  11. 11.
    Lee WF, Hsu CH (1998). J Appl Polym Sci 69:1793CrossRefGoogle Scholar
  12. 12.
    House JE (1980). Inorg Nucl Chem Lett 16:185CrossRefGoogle Scholar
  13. 13.
    House JE (1980). Thermochim Acta 40:225CrossRefGoogle Scholar
  14. 14.
    Walas SM (1990) 10 mixing and agitation. Chemical process equipment: selection and design. Butterworth–Heinemann, NewtonGoogle Scholar
  15. 15.
    Kolmogorov AN (1949). Dokl Akad Nauk SSSR 66:825Google Scholar
  16. 16.
    Höhne P, Krüger K, Tauer K (2013). Colloid Polym Sci 291:483CrossRefGoogle Scholar
  17. 17.
    Metcalfe G, Ottino JM (1994). Phys Rev Lett 72:2875CrossRefGoogle Scholar
  18. 18.
    Epstein IR (1995). Nature 374:321CrossRefGoogle Scholar
  19. 19.
    Newton I (1726) Philosophiae Naturalis Principia Mathematica. LondonGoogle Scholar
  20. 20.
    Nakano A, Minoura Y (1972). J Appl Polym Sci 16:627CrossRefGoogle Scholar
  21. 21.
    Nakano A, Minoura Y (1977). J Appl Polym Sci 21:2877CrossRefGoogle Scholar
  22. 22.
    Nakano A, Minoura Y (1975). Macromolecules 8:677CrossRefGoogle Scholar
  23. 23.
    Nakano A, Minoura Y (1975). J Appl Polym Sci 19:2119CrossRefGoogle Scholar
  24. 24.
    di Sessa AA (1980). Am J Phys 48:365CrossRefGoogle Scholar
  25. 25.
    Vazquez M, Schmalzing D, Matsudaira P, Ehrlich D, McKinley G (2001). Anal Chem 73:3035CrossRefGoogle Scholar
  26. 26.
    Izzat N, Slaiman IN, Al-Qamaje HM, Abdul-Jabbar MF, Al-shifee HS (2011). J Eng 17:1143Google Scholar
  27. 27.
    Shanshool J, Abdul Jabbar MF, Slaiman IN (2011). Pet Coal 53:218Google Scholar
  28. 28.
    Nghe P, Tabeling P, Ajdari A (2010). J Non-Newtonian Fluid 165:313CrossRefGoogle Scholar
  29. 29.
    Kai Kang K, Lee LJ, Koelling KW (2005). Exp Fluids 38:222CrossRefGoogle Scholar
  30. 30.
    Kean ZS, Ramirez ALB, Craig SL (2012). J Polym Sci Polym Chem 50:3481CrossRefGoogle Scholar
  31. 31.
    Kondepudi DK, Kaufman RJ, Singh N (1990). Science 250:975CrossRefGoogle Scholar
  32. 32.
    Kondepudi DK, Hall JK (1992). Physica A 188:113CrossRefGoogle Scholar
  33. 33.
    Kondepudi DK, Bullock KL, Digits JA, Hall JK, Miller JM (1993). J Am Chem Soc 115:10211CrossRefGoogle Scholar
  34. 34.
    Martin B, Tharrington A, Wu XL (1996). Phys Rev Lett 77:2826CrossRefGoogle Scholar
  35. 35.
    Krüger K, Wei CX, Nuasaen S, Höhne P, Tangboriboonrat P, Tauer K (2015). Colloid Polym Sci 293:761CrossRefGoogle Scholar
  36. 36.
    Wei C, Tauer K (2016). Macromol Symp 370:99CrossRefGoogle Scholar
  37. 37.
    Wei C, Plucinski A, Nuasaen S, Tripathi A, Tangboriboonrat P, Tauer K (2017). Macromolecules 50:349CrossRefGoogle Scholar
  38. 38.
    Tripathi A, Wei C, Tauer K (2017). Colloid Polym Sci 295:189CrossRefGoogle Scholar
  39. 39.
    van Herk A, Gilbert B (2005) Emulsion polymerisation. In: van Herk A (ed) Chemistry and technology of emulsion polymerisation. Blackwell, Hoboken, pp 46–78CrossRefGoogle Scholar
  40. 40.
    van Herk A (2013) Chemistry and technology of emulsion polymerisation. Wiley, ChichesterCrossRefGoogle Scholar
  41. 41.
    Harkins WD (1947). J Am Chem Soc 69:1428CrossRefGoogle Scholar
  42. 42.
    Mason SG (1973). Chem Can 25:29Google Scholar
  43. 43.
    Ludwig A, Flechtner U, Prüss J, Warnecke H-J (1997). Chem Eng Technol 20:149CrossRefGoogle Scholar
  44. 44.
    Polat H, Polat M, Chander S (1999). AICHE J 45:1866CrossRefGoogle Scholar
  45. 45.
    Bancroft WD (1912). J Phys Chem 16:177CrossRefGoogle Scholar
  46. 46.
    Kozempel S, Tauer K, Rother G (2005). Polymer 46:1169CrossRefGoogle Scholar
  47. 47.
    Kozempel S (2005) Emulgatorfreie emulsionspolymerisation - Monomerlösungszustand und Teilchenbildung. PhD, University of Potsdam, PotsdamGoogle Scholar
  48. 48.
    Pelissetto A, Vicari E (2002). Physics Rep Rev Sect Phys Lett 368(6):549–727Google Scholar
  49. 49.
    Tauer K, Kozempel S, Rother G (2007). J Colloid Interface Sci 312:432CrossRefGoogle Scholar
  50. 50.
    Tauer K, Nozari S, Ali AMI, Kozempel S (2005). Macromol Rapid Commun 26:1228CrossRefGoogle Scholar
  51. 51.
    Tauer K, Hernandez H, Kozempel S, Lazareva O, Nazaran P (2008). Colloid Polym Sci 286:499CrossRefGoogle Scholar
  52. 52.
    Lane WH (1946). Ind Eng Chem Anal Ed 18:295CrossRefGoogle Scholar
  53. 53.
    Kabalnov A (2001). J Dispers Sci Technol 22:1CrossRefGoogle Scholar
  54. 54.
    Kabalnov AS, Pertzov AV, Shchukin ED (1987). Colloid Surf 24:19CrossRefGoogle Scholar
  55. 55.
    Höhne P, Tauer K (2014). Colloid Polym Sci 292:2983CrossRefGoogle Scholar
  56. 56.
    Okubo M, Ise E, Yamashita T (1998). J Polym Sci Part A: Polym Chem 36:2513CrossRefGoogle Scholar
  57. 57.
    Okubo M, Shiozaki M, Tsujihiro M, Tsukuda Y (1991). Colloid Polym Sci 269:222CrossRefGoogle Scholar
  58. 58.
    Krüger K, Tauer K, Yagci Y, Moszner N (2011). Macromolecules 44:9539CrossRefGoogle Scholar
  59. 59.
    Wei C (2017) On the role of monomer drops and swelling in aqueous heterophase polymerization. University of Potsdam, PotsdamGoogle Scholar
  60. 60.
    Coehn A (1898). Ann Phys 300:217CrossRefGoogle Scholar
  61. 61.
    Beattie JK, Djerdjev AM (2004). Angew Chem Int Ed 43:3568CrossRefGoogle Scholar
  62. 62.
    Beattie JK, Djerdjev AM, Warr GG (2009). Faraday Discuss 141:31CrossRefGoogle Scholar
  63. 63.
    Creux P, Lachaise J, Graciaa A, Beattie JK, Djerdjev AM (2009). J Phys Chem B 113:14146CrossRefGoogle Scholar
  64. 64.
    Leunissen ME, Van Blaaderen A, Hollingsworth AD, Sullivan MT, Chaikin PM (2007). Proc Natl Acad Sci 104:2585CrossRefGoogle Scholar
  65. 65.
    Marinova K, Alargova R, Denkov N, Velev O, Petsev D, Ivanov I, Borwankar R (1996). Langmuir 12:2045CrossRefGoogle Scholar
  66. 66.
    Siretanu I, Chapel JP, Drummond C (2011). ACS Nano 5:2939CrossRefGoogle Scholar
  67. 67.
    Stachurski J, MichaŁek M (1996). J Colloid Interface Sci 184:433CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Klaus Tauer
    • 1
    Email author
  • Chunxiang Wei
    • 1
  • Amit Tripathi
    • 1
  • Olga Kiryutina
    • 1
  1. 1.Max Planck Institute of Colloids and InterfacesGolmGermany

Personalised recommendations