Advertisement

Modeling of Suspension Vinyl Chloride Polymerization: From Kinetics to Particle Size Distribution and PVC Grain Morphology

  • Costas KiparissidesEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 280)

Abstract

A comprehensive multiscale, multiphase modeling approach is developed to describe the dynamic evolution of polymerization rate, average molecular weight, and morphological properties of poly(vinyl chloride) (PVC) produced in batch suspension polymerization reactors. Dynamic evolution of the molecular (molecular weight distribution, long chain branching, short chain branching, terminal double bonds) and morphological (particle size distribution, grain porosity) properties of PVC can be calculated from the numerical solution of the proposed integrated model. In particular, polymer molecular properties are determined by employing a detailed kinetic mechanism that describes the free-radical polymerization of vinyl chloride monomer in both monomer- and polymer-rich phases. The initial monomer droplet size distribution and final polymer particle size distribution depend on the type and concentration of the surface-active agents, the quality of agitation (reactor geometry, impeller type, power input, etc.) and the physical properties (density, viscosity, interfacial tension, etc.) of the continuous and dispersed phases. A dynamic discretized particle population balance equation (PBE) is numerically solved to calculate the dynamic evolution of the particle size distribution of the produced PVC in a batch suspension reactor. Furthermore, the primary particle size distribution inside the polymerizing monomer droplets, which affects the porosity of the final PVC grains, is determined from the solution of a PBE governing the nucleation, growth, and aggregation of primary particles inside the polymerizing monomer droplets. Theoretical model predictions are compared successfully with a comprehensive series of experimental data on polymerization kinetics, particle size distribution, and PVC grain morphology.

Keywords

Grain morphology Molecular weight distribution Multiphase modeling Multiscale Particle size distribution Primary particle size distribution Suspension PVC process 

Abbreviations

DH

Degree of hydrolysis

DSD

Droplet size distribution

HCl

Hydrogen chloride

HPMC

Hydroxypropyl methylcellulose

LCB

Long chain branch

LP40

Lauroyl peroxide

LUP610

3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate

PBE

Population balance equation

PDEH

Di (2-ethylhexyl) peroxydicarbonate

PPSD

Primary particle size distribution

PSD

Particle size distribution

PVA

Poly(vinyl alcohol)

PVC

Poly(vinyl chloride)

SCB

Short chain branch

SEM

Scanning electron microscope

TDB

Terminal double bond

TNCLD

Total number chain length distribution

VCM

Vinyl chloride monomer

References

  1. 1.
    Smallwood PV (1990) Vinyl chloride polymers, polymerization. In: Mark H (ed) Encyclopedia of polymer science and technology, vol 17. Wiley, New York, p. 295Google Scholar
  2. 2.
    Saeki Y, Emura T (2002) Technical progresses for PVC production. Prog Polym Sci 27:2055Google Scholar
  3. 3.
    Burgess RH (1982) Manufacturing and processing of PVC. Applied Science, LondonGoogle Scholar
  4. 4.
    Langsam M (1986) In: Nass LI, Heiberger CA (eds) Encyclopedia of PVC, vol 1, 2nd edn. Marcel Dekker, New York, p. 48Google Scholar
  5. 5.
    Tornell BE (1988) Recent developments in PVC polymerization. Polym-Plast Technol Eng 27:1Google Scholar
  6. 6.
    Xie TY, Hamielec AE, Wood PE, Woods DR (1991) Suspension, bulk and emulsion polymerization of vinyl chloride–mechanism, kinetics and modelling. J Vinyl Technol 13(1):2Google Scholar
  7. 7.
    Xie TY, Hamielec AE, Wood PE, Woods DR (1991) Experimental investigation of vinyl chloride polymerization at high conversion: mechanism, kinetics and modelling. Polymer 32(3):537Google Scholar
  8. 8.
    Darvishi R, Esfahany MN, Bagheri R (2015) S-PVC grain morphology: a review. Ind Eng Chem Res 54(44):10953–10963Google Scholar
  9. 9.
    Mejdell T, Pettersen T, Naustdal C, Svendsen HF (1999) Modelling of industrial S-PVC reactor. Chem Eng Sci 54:2459Google Scholar
  10. 10.
    Sidiropoulou E, Kiparissides C (1990) Mathematical modelling of PVC suspension polymerization. J Makromol Sci Chem A27(3):257Google Scholar
  11. 11.
    Abdel-Alim AH, Hamielec AE (1972) Bulk polymerization of vinyl chloride. J Appl Polym Sci 16:783Google Scholar
  12. 12.
    Kuchanov SI, Bort GC (1973) Kinetics and mechanism of polymerization of vinyl chloride. Polym Sci A15:2712Google Scholar
  13. 13.
    Ray WH, Jain SK, Salovey R (1975) On the modelling of bulk PVC reactors. J Appl Polym Sci 19:1297Google Scholar
  14. 14.
    Ugelstad J, Moerk PC, Hansen FK, Kaggerund KH, Ellingsen T (1981) Kinetics and mechanism of vinyl chloride polymerization. Pure Appl Chem 53:323Google Scholar
  15. 15.
    Chan RKS, Langsam M, Hamielec AE (1982) Calculation and applications of VCM distribution in vapor/water/solid phase during VCM polymerization. J Macromol Sci Chem A17(6):969Google Scholar
  16. 16.
    Hamielec AE, Gomez-Vaillard R, Marten FL (1982) Diffusion controlled free radical polymerization. Effect on polymerization rate and molecular properties of PVC. J Macromol Sci Chem A17(6):1005Google Scholar
  17. 17.
    Kelsall DG, Maitland GC (1983) The interaction of process conditions and product properties for PVC. Munich, Polymer Reaction Engineering. Technical University of Berlin, Berlin, pp. 131–152Google Scholar
  18. 18.
    Weickert G, Henschel G, Weissenborn KD (1987) Kinetik der VC polymerisation. Angew Makromol Chem 147:1Google Scholar
  19. 19.
    Weickert G, Henschel G, Weissenborn KD (1987) Kinetik der VC polymerisation. Angew Makromol Chem 147:19Google Scholar
  20. 20.
    Xie TY, Hamielec AE, Wood PE, Woods DR (1991) Experimental investigation of vinyl chloride polymerization at high conversion: reactor dynamics. J Appl Polym Sci 43:1259Google Scholar
  21. 21.
    Dimian A, Van Diepen D, Van der Wal GA (1995) Dynamic simulation of a PVC suspension reactor. Comput Chem Eng 19S:S427Google Scholar
  22. 22.
    Lewin DR (1996) Modelling and control of an industrial PVC suspension polymerization reactor. Comput Chem Eng 20:S865Google Scholar
  23. 23.
    Kiparissides C, Daskalakis G, Achilias DS, Sidiropoulou E (1997) Dynamic simulation of industrial poly(vinyl chloride) batch suspension polymerization reactors. Ind Eng Chem Res 36:1253Google Scholar
  24. 24.
    Krallis A, Kotoulas C, Papadopoulos S, Kiparissides C, Bousquet J, Bonardi C (2004) A comprehensive kinetic model for the free-radical polymerization of vinyl chloride in the presence of monofunctional and bifunctional initiators. Ind Eng Chem Res 43:6382Google Scholar
  25. 25.
    Kotoulas C, Kiparissides C (2006) A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors. Chem Eng Sci 61:332Google Scholar
  26. 26.
    Alexopoulos A, Kiparissides C (2007) On the prediction of internal particle morphology in suspension polymerization of vinyl chloride. Part I: the effect of primary particle size distribution. Chem Eng Sci 62:3970Google Scholar
  27. 27.
    Starnes Jr WH, Zaikov VC, Chung HT, Wojciechowski BJ, Tran HV, Saylor K (1998) Intramolecular hydrogen transfers in vinyl chloride polymerization: routes to doubly branched structures and internal double bonds. Macromolecules 31:1508Google Scholar
  28. 28.
    Starnes Jr WH (2002) Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Prog Polym Sci 27:2133Google Scholar
  29. 29.
    Van Cauter K, Van Den Bossche BJ, Van Speybroeck V, Waroquier M (2007) Ab initio study of free-radical polymerization: defect structures in poly(vinyl chloride). Macromolecules 40:1321–1331Google Scholar
  30. 30.
    Van Cauter K, Van Speybroeck V, Waroquier M (2007) Ab initio study of poly(vinyl chloride) propagation kinetics: head-to-head versus head-to-tail additions. Chem Phys Chem 8:541–552PubMedGoogle Scholar
  31. 31.
    Wieme J, Marin GB, Reyniers M-F (2007) Modelling the formation of structural defects during the suspension polymerization of vinyl chloride. Chem Eng Sci 62:5300–5303Google Scholar
  32. 32.
    Wieme J, D’hooge DR, Reyniers M-F, Marin GB (2009) Importance of radical transfer in precipitation polymerization: the case of vinyl chloride suspension polymerization. Macromol React Eng 3:16–35Google Scholar
  33. 33.
    De Roo T, Wieme J, Heynderickx GJ, Marin GB (2005) Estimation of intrinsic rate coefficients in vinyl chloride suspension polymerization. Polymer 46:8340–8354Google Scholar
  34. 34.
    Dos Santos FN, Horiuchib LN, Pereira PAP (2014) Development of a method for the identification of organic contaminants in vinyl chloride monomer (VCM) by TD-GC-MS and multivariate analysis. Anal Methods 6:8946–8955Google Scholar
  35. 35.
    Achilias D, Kiparissides C (1992) Toward the development of a general framework for modeling molecular weight and compositional changes in free radical copolymerization reactions. J Macromol Sci Part C: Polym Rev C32:183–234Google Scholar
  36. 36.
    Mastan E, Zhu S (2015) Method of moments: a versatile tool for deterministic modeling of polymerization kinetics. Eur Polym J 68:139–160Google Scholar
  37. 37.
    D’hooge DR, Van Steenbergea PHM, Reyniersa MF, Marin GB (2016) The strength of multi-scale modeling to unveil the complexity of radical polymerization. Prog Polym Sci 58:59–89Google Scholar
  38. 38.
    Baltsas A, Achilias D, Kiparissides C (1996) A theoretical investigation of the production of branched copolymers in continuous stirred tank reactors. Macromol Theory Simul 5:477–497Google Scholar
  39. 39.
    Xie TY, Hamielec AE, Wood PE, Woods DR (1987) Experimental investigation of vinyl chloride polymerization at high conversion-temperature/pressure/conversion and monomer phase distribution relationships. J Appl Polym Sci 34:1749–1766Google Scholar
  40. 40.
    Achilias D, Kiparissides C (1992) Development of a general mathematical framework for modelling diffusion-controlled free radical polymerization reactions. Macromolecules 25:3739–3750Google Scholar
  41. 41.
    De Roo T, Heynderickx GJ, Marin GB (2004) Diffusion-controlled reactions in vinyl chloride suspension polymerization. Macromol Symp 206:215–228Google Scholar
  42. 42.
    Wieme J, Reyniers M-F, Marin GB (2009) Initiator efficiency modeling for vinyl chloride suspension polymerization. Chem Eng J 154:203–210Google Scholar
  43. 43.
    Allsopp MW (1982) In: Burgess RH (ed) Manufacture and processing of PVC. Applied Science Publishers, LondonGoogle Scholar
  44. 44.
    Allsopp MW, Vianello G (1992) Poly(vinyl chloride). In: Ullmann’s encyclopedia of industrial chemistry, vol A21. Wiley-VCH, New York, pp. 717–742Google Scholar
  45. 45.
    Yuan HG, Kalfas G, Ray WH (1991) Suspension polymerization. J Macromol Sci Part C: Polym Rev C31:215–299Google Scholar
  46. 46.
    Brooks BW (2010) Suspension polymerization processes. Chem Eng Technol 33(11):1737–1744Google Scholar
  47. 47.
    Bárkányi A, Németh S, Lakatos BG (2013) Modelling and simulation of suspension polymerization of vinyl chloride via population balance model. Comput Chem Eng 59:211–218Google Scholar
  48. 48.
    Chatzi EG, Kiparissides C (1992) Dynamic simulation of bimodal drop size distributions in low coalescence batch dispersion systems. Chem Eng Sci 47:445–456Google Scholar
  49. 49.
    Chatzi EG, Boutris CJ, Kiparissides C (1991) On-line monitoring of drop size distributions in agitated vessels. 1. Effects of temperature and impeller speed. Ind Eng Chem Res 30:536–543Google Scholar
  50. 50.
    Hartland S (1968) The coalescence of a liquid drop at a liquid-liquid interface. Part V: the effect of surface active agent. Trans Inst Chem Eng (London) 46:T275Google Scholar
  51. 51.
    Hamielec AE, Tobita H (1992) Polymerization processes. In: Ullmann’s encyclopedia of industrial chemistry, vol A21. Wiley-VCH, New York, pp. 305–428Google Scholar
  52. 52.
    Chatzi EG, Kiparissides C (1994) Drop size distributions in high holdup fraction suspension polymerization reactors: effect of the degree of hydrolysis of PVA stabilizer. Chem Eng Sci 49:5039–5052Google Scholar
  53. 53.
    Cheng JT, Langsam M (1985) Particle structure of PVC based on cellulosic suspension system. III. Effect of monomer refluxing. J Appl Polym Sci 30:1365–1378Google Scholar
  54. 54.
    Cebollada AF, Schmidt MJ, Farber JN, Cariati NJ, Valles EM (1989) Suspension polymerization of vinyl chloride. I. Influence of viscosity of suspension medium on resin properties. J Appl Polym Sci 37:145–166Google Scholar
  55. 55.
    Chatzi EG, Kiparissides C (1995) Steady state drop size distribution in high holdup fraction dispersion systems. AICHE J 41:1640–1652Google Scholar
  56. 56.
    Nilsson H, Silvegren C, Tornell B (1985) Suspension stabilizers for PVC production. I. Interfacial tension measurements. J Vinyl Technol 7(3):112–118Google Scholar
  57. 57.
    Lankveld JM, Lyklema J (1972) Adsorption of polyvinyl alcohol on the paraffin-water interface: I. Interfacial tension as a function of time and concentration. J Colloid Interface Sci 41:454–462Google Scholar
  58. 58.
    Maggioris D, Goulas A, Alexopoulos AH, Chatzi EG, Kiparissides C (2000) Prediction of particle size distribution in suspension polymerization reactors: effect of turbulence nonhomogeneity. Chem Eng Sci 55:4611–4627Google Scholar
  59. 59.
    Kiparissides C, Achilias DS, Chatzi E (1994) Dynamic simulation of primary particle-size distribution in vinyl chloride polymerization. J Appl Polym Sci 54:1423–1438Google Scholar
  60. 60.
    Kumar S, Ramkrishna D (1996) On the solution of population balance equations by discretization–I. A fixed pivot technique. Chem Eng Sci 51:1311–1332Google Scholar
  61. 61.
    Shinnar R, Church JM (1960) Predicting particle size in agitated dispersions. Ind Eng Chem 52:253–256Google Scholar
  62. 62.
    Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AICHE J 1:289–295Google Scholar
  63. 63.
    Narsimhan G, Gupta G, Ramkrishna D (1979) A model for translational breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem Eng Sci 34:257–265Google Scholar
  64. 64.
    Ward JP, Knudsen JG (1967) Turbulent flow of unstable liquid-liquid dispersions: drop sizes velocity distributions. AICHE J 13:356–367Google Scholar
  65. 65.
    Chen HT, Middleman S (1967) Drop size distribution in agitated liquid-liquid systems. AICHE J 13:989–996Google Scholar
  66. 66.
    Doulah MS (1975) An effect of hold-up on drop sizes in liquid-liquid dispersions. Ind Eng Chem Fundam 14(2):137–138Google Scholar
  67. 67.
    Coulaloglou CA, Tavlarides LL (1977) Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci 32:1289–1297Google Scholar
  68. 68.
    Wang CY, Calcabrese RV (1986) Drop breakup in trurbulent stirred-tank contactors. Part II: relative influence of viscosity and interfacial tension. AICHE J 32(4):667–676Google Scholar
  69. 69.
    Calabrese RV, Chang TPK, Dang PT (1986) Drop breakup in turbulent stirred-tank contactors. Part I: effect of dispersed phase viscosity. AICHE J 32:657–666Google Scholar
  70. 70.
    Lagisetty JS, Das PK, Kumar R, Gandhi KS (1986) Breakage of viscous and non-Newtonian drops in stirred dispersions. Chem Eng Sci 41:65–71Google Scholar
  71. 71.
    Laso M, Steiner L, Hartland S (1987) Dynamic simulation of agitated liquid-liquid disperions–II experimental determination of breakage and coalescence rates in a stirred tank. Chem Eng Sci 42:2437–2446Google Scholar
  72. 72.
    Chatzi EG, Gavrielides A, Kiparissides C (1989) Generalized model for prediction of the steady-state drop size distributions in batch stirred vessels. Ind Eng Chem Res 28:1704Google Scholar
  73. 73.
    Chatzi EG, Boutris CJ, Kiparissides C (1991) On-line monitoring of drop size distribution in agitated vessels. 2. Effect of stabilizer concentration. Ind Eng Chem Res 29:1307–1316Google Scholar
  74. 74.
    Zerfa M, Brooks BW (1996) Vinyl chloride dispersion with relation to suspension polymerization. Chem Eng Sci 51(14):3591–3611Google Scholar
  75. 75.
    Vivaldo-Lima E, Wood PE, Hamielec AE (1997) An updated review on suspension polymerization. Ind Eng Chem Res 36:939–965Google Scholar
  76. 76.
    Shinnar R (1961) On the behaviour of liquid dispersions in mixing vessels. J Fluid Mech 10:259–271Google Scholar
  77. 77.
    Arai K, Konno M, Matunaga Y, Saito S (1977) Effect of dispersed-phase viscosity on the maximum stable drop size for breakup in turbulent flow. J Chem Eng Jpn 10:325–239Google Scholar
  78. 78.
    Alvarez J, Alvarez J, Hernandez M (1994) A population balance approach for the description of particle size distribution in suspension polymerization reactors. Chem Eng Sci 49:99–113Google Scholar
  79. 79.
    Tsouris C, Tavlarides LL (1994) Breakage and coalescence models for drops in turbulent dispersions. AICHE J 40(3):395–406Google Scholar
  80. 80.
    Sathyagal AN, Ramkrishna D, Narshimhan G (1996) Droplet breakage in stirred dispersions. Breakage functions from experimental drop-size distributions. Chem Eng Sci 51(9):1377–1391Google Scholar
  81. 81.
    Chen Z, Pruss J, Warnacke H-J (1998) A population balance models for disperse systems: drop size distribution in emulsion. Chem Eng Sci 53(5):1059–1066Google Scholar
  82. 82.
    Kotoulas C, Kiparissides C (2007) Suspension polymerization. In: Asua JM (ed) Polymer reaction engineering. Blackwell, Oxford, pp. 209–230Google Scholar
  83. 83.
    Howarth WJ (1964) Coalescence of drops in a turbulent flow field. Chem Eng Sci 19:33–42Google Scholar
  84. 84.
    Delichatsios MA, Probstein RF (1976) The effect of coalescence on the average drop size in liquid-liquid dispersions. Ind Eng Chem Fundam 15:134–138Google Scholar
  85. 85.
    Sovova H (1981) Breakage and coalescence of drops in a batch stirred vessel. II. Comparison of model and experiments. Chem Eng Sci 36:1567–1573Google Scholar
  86. 86.
    Muralidhar R, Ramkrishna D (1986) Analysis of droplet coalescence in turbulent liquid-liquid dispersions. Ind Eng Chem Fundam 25:554–560Google Scholar
  87. 87.
    Muralidhar R, Ramkrishna D, Das PK, Kumar R (1988) Coalescence of rigid droplets in a stirred dispersion—II. Comparison of model and experiments. Chem Eng Sci 43:1559–1568Google Scholar
  88. 88.
    Kumar S, Kumar R, Gandhi KS (1993) A new model for coalescence efficiency of drops in stirred dispersions. Chem Eng Sci 48(11):2025–2038Google Scholar
  89. 89.
    Calabrese RV, Pacek AW, Nienow AW (1993) Coalescence of viscous drops in a stirred dispersion. In: The 1993 ICHEME research event. Institute of Chemical Engineers, London, pp. 642–645Google Scholar
  90. 90.
    Liu S, Li D (1999) Drop coalescence in turbulent dispersions. Chem Eng Sci 54:5667–5675Google Scholar
  91. 91.
    Bouyatiotis BA, Thornton JD (1967) Liquid-liquid extraction studies in stirred tanks. Part I. Droplet size and hold-up measurements in a seven-inch diameter baffled vessel. Instit Chem Eng (London) Symp Ser 26:43–51Google Scholar
  92. 92.
    Vermeulen T, Williams GM, Langlois GE (1995) Interfacial area in liquid-liquid and gas-liquid agitation. Chem Eng Prog 51:85FGoogle Scholar
  93. 93.
    Krieger IM (1972) Rheology of monodispersed lattices. Adv Colloid Interf Sci 3:111–136Google Scholar
  94. 94.
    Okaya T (1992) General properties of polyvinyl alcohol in relation to its applications. In: Finch CA (ed) Polyvinyl alcohol developments. Wiley, LondonGoogle Scholar
  95. 95.
    Defay R, Prigogine I, Bellemans A, Everett DH (1966) Surface tension and adsorption. Wiley, New YorkGoogle Scholar
  96. 96.
    Siow KS, Patterson D (1973) Surface thermodynamics of polymer solutions. J Phys Chem 77(3):356–368Google Scholar
  97. 97.
    Kiparissides C, Alexopoulos A, Roussos A, Dompazis G, Kotoulas C (2004) Population balance modelling of particulate polymerization processes. Ind Eng Chem Res 43:7290–7302Google Scholar
  98. 98.
    Hidy GM (1965) On the theory of the coagulation of noninteracting particles in Brownian motion. J Colloid Sci 20:123–144Google Scholar
  99. 99.
    Marchal P, David R, Klein JP, Villermaux J (1988) Crystallization and precipitation engineering-I. An efficient method for solving population balance in crystallization with agglomeration. Chem Eng Sci 43(1):59–67Google Scholar
  100. 100.
    Batterham RJ, Hall JS, Barton G (1981) Pelletizing kinetics and simulation for full-scale balling circuits. In: Proceedings 3rd International Symposium on aggregation, Nurnberg, W. Germany. A136Google Scholar
  101. 101.
    Hounslow MJ, Ryall RL, Marshall VR (1988) Discretized population balance for nucleation, growth, and aggregation. AICHE J 34(11):1821–1832Google Scholar
  102. 102.
    Kumar S, Ramkrishna D (1996) On the solution of population balance equations by discretization-II. A moving pivot technique. Chem Eng Sci 51(8):1333–1342Google Scholar
  103. 103.
    Bleck R (1970) A fast, approximate method for integrating the stochastic coalescence equation. J Geophys Res 75:5165–5171Google Scholar
  104. 104.
    Gelbard F, Seinfeld JH (1980) Simulation of multicomponent aerosol dynamics. J Colloid Interface Sci 78(2):485–501Google Scholar
  105. 105.
    Sastry KVS, Gaschignard P (1981) Discretization procedure for the coalescence equation of particulate processes. Ind Eng Chem Fundam 20:355–361Google Scholar
  106. 106.
    Gelbard F, Seinfeld JH (1979) Exact solution of the general dynamic equation for aerosol growth by condensation. J Colloid Interface Sci 68(1):173–183Google Scholar
  107. 107.
    Nicmanis M, Hounslow MJ (1998) Finite-element methods for steady-state population balance equations. AICHE J 44:2258–2272Google Scholar
  108. 108.
    Chen M-Q, Hwang C, Shih Y-P (1996) A wavelet-Galerkin method for solving population balance equations. Comput Chem Eng 20(2):131–145Google Scholar
  109. 109.
    Ramkrishna D (1985) The status of population balances. Rev Chem Eng 3(1):49–95Google Scholar
  110. 110.
    Dafniotis P (1996) Modelling of emulsion copolymerization reactors operating below the critical micelle concentration. PhD thesis, University of Wisconsin-MadisonGoogle Scholar
  111. 111.
    Alexopoulos AH, Roussos AI, Kiparissides C (2004) Part I: dynamic evolution of the particle size distribution in particulate processes undergoing combined particle growth and aggregation. Chem Eng Sci 59:5751–5769Google Scholar
  112. 112.
    Alexopoulos AH, Kiparissides C (2005) Part II: dynamic evolution of the particle size distribution in particulate processes undergoing simultaneous particle nucleation, growth and aggregation. Chem Eng Sci 60:4157–4169Google Scholar
  113. 113.
    Roussos AI, Alexopoulos AH, Kiparissides C (2005) Part III: dynamic evolution of the particle size distribution in batch and continuous particulate processes: a Galerkin on finite elements approach. Chem Eng Sci 60:6998–7010Google Scholar
  114. 114.
    Meimaroglou D, Roussos AI, Kiparissides C (2006) Part IV: dynamic evolution of the particle size distribution in particulate processes. A comparative study between Monte Carlo and the generalized method of moments. Chem Eng Sci 61:5620–5635Google Scholar
  115. 115.
    Johnson GR (1980) Effects of agitation during VCM suspension polymerization. J Vinyl Technol 2:138–140Google Scholar
  116. 116.
    Etesami N, Nasr Esfahany M, Bagheri R (2008) Effect of the phase ratio on the particle properties of poly(vinyl chloride) resins produced by suspension polymerization. J Appl Polym Sci 110:2748–2755Google Scholar
  117. 117.
    Etesami N, Nasr Esfahany M, Bagheri R (2010) Experimental study of the effect of reflux rate during suspension polymerization on particle properties of PVC resin. Ind Eng Chem Res 49:1997–2002Google Scholar
  118. 118.
    Etesami N, Nasr Esfahany M, Bagheri R (2010) Investigation of the effect of delayed reflux on PVC grain properties produced by suspension polymerization. J Appl Polym Sci 117:2506–2514Google Scholar
  119. 119.
    Alexopoulos AH, Maggioris D, Kiparissides C (2002) CFD analysis of turbulence non-homogeneity in mixing vessels. A two-compartment model. Chem Eng Sci 57:1735–1752Google Scholar
  120. 120.
    Oldshue JY (1983) Fluid mixing technology. McGraw-Hill, New YorkGoogle Scholar
  121. 121.
    Okufi S, Perez de Ortiz ES, Sawistowski H (1990) Scale-up of liquid-liquid dispersions in stirred tanks. Can J Chem Eng 68:400–406Google Scholar
  122. 122.
    Scully DB (1976) Scale-up in suspension polymerization. J Appl Polym Sci 20:2299–2303Google Scholar
  123. 123.
    Lewis MH, Johnson GR (1981) Agitation scale-up effects during VCM suspension polymerization. J Vinyl Technol 3(2):102–106Google Scholar
  124. 124.
    Ozkaya N, Erbay E, Bilgic T, Savasci T (1993) Agitation scale-up model for suspension polymerization of vinyl chloride. Angew Makromol Chem 211:35–51Google Scholar
  125. 125.
    Tregan R, Bonnemayre A (1970) Rev Plast Mod 23:7Google Scholar
  126. 126.
    Smallwood PV (1986) The formation of grains of suspension poly(vinyl chloride). Polymer 27:1609–1618Google Scholar
  127. 127.
    Davidson JA, Witenhafer DE (1980) Particle structure of suspension poly(vinyl chloride) and its origin in the polymerization process. J Appl Polym Sci Polym Phys Ed 18:51–69Google Scholar
  128. 128.
    Nilsson H, Norvitt T, Silvegren C, Tornell B (1985) Suspension stabilizers for PVC production II: drop size distribution. J Vinyl Technol 7(3):119–122Google Scholar
  129. 129.
    Allsopp MW (1981) The development of suspension PVC morphology. Pure Appl Chem 53:449–465Google Scholar
  130. 130.
    Marquez EF, Lagos LL (2004) Mathematical modeling of the porosity of suspension poly(vinyl chloride). AICHE J 50:3184–3194Google Scholar
  131. 131.
    Tornell BE, Uustalu JM (1982) The influence of additives on the primary particle nucleation and agglomeration in poly(vinyl-chloride). J Vinyl Technol 4(2):53–56Google Scholar
  132. 132.
    Geil PH (1977) Polymer morphology. J Macromol Sci Chem A11(7):1271–1280Google Scholar
  133. 133.
    Ravey M (1977) Mechanism of scale formation in PVC reactors. J Appl Polym Sci 21:839–840Google Scholar
  134. 134.
    Willmouth FM, Rance DG, Henman KM (1984) An investigation of precipitation polymerization in liquid vinyl chloride by photon correlation spectroscopy. Polymer 25:1185–1192Google Scholar
  135. 135.
    Tornell BE, Uustalu JM (1988) Formation of primary particles in vinyl chloride polymerization. J Appl Polym Sci 35:63–74Google Scholar
  136. 136.
    Tornell BE, Uustalu JM (1986) Primary particle stability in bulk polymerization of vinyl chloride at high ion strength. Polymer 27:250–252Google Scholar
  137. 137.
    Tornell BE, Uustalu JM, Jonsson B (1986) Colloidal stability of PVC primary particles in vinyl chloride. Colloid Polym Sci 264:439–444Google Scholar
  138. 138.
    Rance DG, Zichy EL (1981) The life-cycle of the two-phase system in vinyl chloride polymerization. Pure Appl Chem 53:377–384Google Scholar
  139. 139.
    Wilson JC, Zichy EL (1979) Observations of charge on nascent poly(vinyl chloride) particles in monomer. Polymer 20(2):264–265Google Scholar
  140. 140.
    Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Dover, New YorkGoogle Scholar
  141. 141.
    Boissel J, Fischer N (1977) Bulk polymerization of vinyl chloride: nucleation phase. Macromol Sci Chem A11(7):1249–1269Google Scholar
  142. 142.
    Kiparissides C, Moustakis I, Hamielec A (1993) Electrostatic and steric stabilization of PVC particles. J Appl Polym Sci 49:445–459Google Scholar
  143. 143.
    Ramkrishna D (2000) Population balances: theory and applications to particulate systems in engineering. Academic, San DiegoGoogle Scholar
  144. 144.
    Kiparissides C (1990) Prediction of the primary particle size distribution in vinyl chloride polymerization. Macromol Chem Macromol Symp 35(36):171–192Google Scholar
  145. 145.
    Talamini G, Visentini A, Kerr J (1998) Bulk and suspension polymerization of vinyl chloride: the two-phase model. Polymer 39(10):1879–1891Google Scholar
  146. 146.
    Endo K (2002) Synthesis and structure of poly(vinyl chloride). Prog Polym Sci 27:2021–2054Google Scholar
  147. 147.
    Fuchs NA (1964) The mechanics of aerosols. Pergamon, New YorkGoogle Scholar
  148. 148.
    Van de Ven TGM (1989) Colloidal hydrodynamics. Colloid Science, vol 4. Academic, New YorkGoogle Scholar
  149. 149.
    Van de Ven TGM, Mason SG (1977) The micro-rheology of colloidal dispersions. Part VIII: effect of shear on perikinetic doublet formation. Colloid Polym Sci 255:794–804Google Scholar
  150. 150.
    Chern CS, Kuo YN (1996) Shear-induced coagulation kinetics of semibatch seeded emulsion polymerization. Chem Eng Sci 51(7):1079–1087Google Scholar
  151. 151.
    Levich V (1962) Physicochemical hydrodynamics. Academic, LondonGoogle Scholar
  152. 152.
    Batchelor GK (2000) An introduction to fluid mechanics. Cambridge University Press, CambridgeGoogle Scholar
  153. 153.
    Einarson MB, Berg JC (1993) Electrosteric stabilization of colloidal dispersions. J Colloid Interface Sci 155(1):165–172Google Scholar
  154. 154.
    Lazaridis N, Alexopoulos AH, Chatzi EG, Kiparissides C (1999) Steric stabilization in emulsion polymerization using oligomeric nonionic surfactants. Chem Eng Sci 54:3251–3261Google Scholar
  155. 155.
    Litster JD, Smit DJ, Hounslow MJ (1995) Adjustable discretized population balance for growth and aggregation. AICHE J 41:591–603Google Scholar
  156. 156.
    Salovey R, Cortellucci R, Roaldi A (1974) The surface area of bulk poly(vinyl chloride). Polym Eng Sci 14(2):120–123Google Scholar
  157. 157.
    Nilsson H, Silvegren C, Tornell B, Lundqvist J, Pettersson S (1985) Suspension stabilizers for PVC production III: control of resin porosity. J Vinyl Technol 7(3):123–127Google Scholar
  158. 158.
    Sarkar N, Archer WL (1991) Utilizing cellulose ethers as suspension agents in the polymerization of vinyl chloride. J Vinyl Technol 13(1):26–36Google Scholar
  159. 159.
    Allsopp MW (1977) Effect of vinyl chloride injection on the morphology of suspension-polymerized PVC. J Macromol Sci Chem 11(7):1223–1234Google Scholar
  160. 160.
    Cheng J, Langsam MJ (1984) Effect of cellulose suspension agent structure on the particle morphology of PVC. Part II. Interfacial properties. Macromol Sci Chem A21(4):395–409Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Chemical Process & Energy Resources Institute, CERTHThessalonikiGreece

Personalised recommendations