Kinetics of Nucleation and Growth of Crystals of Poly(l-lactic acid)

  • René Androsch
  • Christoph Schick
  • Maria Laura Di Lorenzo
Part of the Advances in Polymer Science book series (POLYMER, volume 279)


Prediction of the supermolecular structure and properties of poly(l-lactic acid) requires in-depth knowledge of the relation between the conditions of melt solidification and the crystallization process. Crystallization involves primary crystal nucleation, which then is followed by crystal growth. Both processes require chain segment mobility at different length scales, and exhibit different temperature and cooling-rate dependencies, as described in this review. Following an introduction to polymer crystallization and general information about crystallization of poly(l-lactic acid), data are presented on the kinetics of primary crystal nucleation, covering a wide range of temperatures. Crystal nuclei formation in the glassy state requires completion of the glass relaxation process, as shown by enthalpy relaxation experiments. Discussion of the nucleation behavior is then followed by information about crystal growth rates, which reveal a bimodal temperature dependence as a result of the specific α′/α-crystal polymorphism. Throughout this review, the effects of molar mass and optical purity on the kinetics of nucleation and growth of crystals are discussed.


Crystal growth rate Crystal nucleation Crystallization rate Enthalpy relaxation Poly(l-lactic acid) 



Financial support by the Deutsche Forschungsgemeinschaft (DFG) (Grant AN 212/20) is gratefully acknowledged.


  1. 1.
    Mullin JW (2001) Crystallization. Butterworth-Heinemann, OxfordGoogle Scholar
  2. 2.
    Mandelkern L (2004) Crystallization of polymers, vol 2, Kinetics and mechanisms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Wunderlich B (1976) Macromolecular physics, vol 2: Crystal nucleation, growth, annealing. Academic, New YorkGoogle Scholar
  4. 4.
    Strobl G (1996) The physics of polymers: concepts for understanding their structures and behavior. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Hoffmann JD, Davis GT, Lauritzen JI Jr (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay HB (ed) Treatise on solid state chemistry, crystalline and noncrystalline solids, vol 3. Plenum Press, New YorkGoogle Scholar
  6. 6.
    Hu W (2007) Intramolecular crystal nucleation. In: Reiter G, Strobl GR (eds) Progress in understanding of polymer crystallization. Lecture notes in physics 714. Springer, BerlinGoogle Scholar
  7. 7.
    Piorkowska E, Rutledge GC (2013) Handbook of polymer crystallization. Wiley, HobokenCrossRefGoogle Scholar
  8. 8.
    Gibbs JW (1906) The scientific papers of J. Williard Gibbs. Longman, Greens and Company, LondonGoogle Scholar
  9. 9.
    Zettlemoyer AC (1969) Nucleation. Dekker, New YorkGoogle Scholar
  10. 10.
    Volmer M (1938) Kinetik der Phasenbildung. Verlag von Theodor Steinkopff, DresdenGoogle Scholar
  11. 11.
    Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73CrossRefGoogle Scholar
  12. 12.
    Turnbull D (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18:198–203CrossRefGoogle Scholar
  13. 13.
    Schmelzer JWP (2005) Nucleation theory and applications. Wiley, WeinheimCrossRefGoogle Scholar
  14. 14.
    Oxtoby DW (1992) Homogeneous nucleation: theory and experiment. J Phys Condens Matter 4:7627–7650CrossRefGoogle Scholar
  15. 15.
    Fokin VM, Zanotto ED, Yuritsyn NS, Schmelzer JWP (2006) Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J Non Cryst Solids 352:2681–2714CrossRefGoogle Scholar
  16. 16.
    Binsbergen FL (1977) Natural and artificial heterogeneous nucleation in polymer crystallization. J Polym Sci Polym Symp 59:11–27CrossRefGoogle Scholar
  17. 17.
    Blundell DJ, Keller A, Kovacs AJ (1966) A new self-nucleation phenomenon and its application to the growing of polymers crystals from solution. J Polym Sci Polym Lett 4:481–486CrossRefGoogle Scholar
  18. 18.
    Long Y, Shanks RA, Stachurski ZH (1995) Kinetics of polymer crystallization. Prog Polym Sci 20:651–701CrossRefGoogle Scholar
  19. 19.
    Booth A, Hay JN (1969) The use of differential scanning calorimetry to study polymer crystallization kinetics. Polymer 10:95–104CrossRefGoogle Scholar
  20. 20.
    Chan TW, Isayev AI (1994) Quiescent polymer crystallization: modeling and measurements. Polym Eng Sci 34:461–471CrossRefGoogle Scholar
  21. 21.
    Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test 26:222–231CrossRefGoogle Scholar
  22. 22.
    Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  23. 23.
    Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  24. 24.
    Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys 9:177–183CrossRefGoogle Scholar
  25. 25.
    Di Lorenzo ML, Rubino P, Cocca M (2014) Isothermal and non-isothermal crystallization of poly(l-lactic acid)/poly(butylene terephthalate) blends. J Appl Polym Sci 131:40372CrossRefGoogle Scholar
  26. 26.
    Di Lorenzo M, Wunderlich B (1999) Temperature-modulated calorimetry of the crystallization of polymers analyzed by measurements and model calculations. J Therm Anal Cal 57:459–472CrossRefGoogle Scholar
  27. 27.
    Dosière M (1993) Crystallization of polymers, Chapter 2: Polymer crystal growth. Volume 405 of the NATO ASI Series. Kluwer Academic Publishers, Dordrecht, pp 51–93Google Scholar
  28. 28.
    Hoffman JD, Lauritzen JI Jr (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Nat Bur Stand 65A:297–336CrossRefGoogle Scholar
  29. 29.
    Hoffman JD (1964) Theoretical aspects of polymer crystallization with chain folds: bulk polymers. SPE Trans 4:315–362Google Scholar
  30. 30.
    Lauritzen JI Jr, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44:297–336CrossRefGoogle Scholar
  31. 31.
    Bassett DC (1981) Principles of polymer morphology. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Bassett DC (1994) Lamellae and the organization in melt-crystallized polymers. Philos Trans R Soc Lond A 348:29–43CrossRefGoogle Scholar
  33. 33.
    Magill JH (2001) Review spherulites: a personal perspective. J Mater Sci 36:3143–3164CrossRefGoogle Scholar
  34. 34.
    Yeh GSY, Geil PH (1967) Crystallization of polyethylene terephthalate from the glassy state. J Macromol Sci Phys B1:235–249CrossRefGoogle Scholar
  35. 35.
    Ogawa T, Miyaji M, Asai K (1985) Nodular structure of polypropylene. J Phys Soc Jpn 54:3668–3670CrossRefGoogle Scholar
  36. 36.
    Zia Q, Androsch R, Radusch HJ, Piccarolo S (2006) Morphology, reorganization, and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172CrossRefGoogle Scholar
  37. 37.
    Zia Q, Androsch R, Radusch HJ, Ingolič E (2008) Crystal morphology of rapidly cooled isotactic polypropylene: a comparative study by TEM and AFM. Polym Bull 60:791–798CrossRefGoogle Scholar
  38. 38.
    Mileva D, Kolesov I, Androsch R (2012) Morphology of cold-ordered polyamide 6. Coll Polym Sci 290:971–978CrossRefGoogle Scholar
  39. 39.
    Mileva D, Androsch R, Zhuravlev E, Schick C (2012) Morphology of mesophase and crystals of polyamide 6 prepared in a fast scanning chip calorimeter. Polymer 53:3994–4001CrossRefGoogle Scholar
  40. 40.
    Bensason S, Minick J, Moet A, Chum S, Hiltner A, Baer E (1996) Classification of homogeneous ethylene-octene copolymers based on comonomer content. J Polym Sci Polym Phys 34:1301–1315CrossRefGoogle Scholar
  41. 41.
    Poon B, Rogunova M, Chum SP, Hiltner A, Baer E (2004) Classification of homogeneous copolymers of propylene and 1-octene based on comonomer content. J Polym Sci Polym Phys 42:4357–4370CrossRefGoogle Scholar
  42. 42.
    Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung YW, Chum S (1999) Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-octene copolymers. Macromolecules 32:6221–6235CrossRefGoogle Scholar
  43. 43.
    Mathot VBF, Scherrenberg RL, Pijpers TFJ (1998) Metastability and order in linear, branched and copolymerized polyethylenes. Polymer 39:4541–4559CrossRefGoogle Scholar
  44. 44.
    Kolesov IS, Androsch R, Radusch HJ (2005) Effect of crystal morphology and crystallinity on the mechanical α- and β-relaxation processes of short-chain branched polyethylene. Macromolecules 38:445–453CrossRefGoogle Scholar
  45. 45.
    Gibbs JW (1876) On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy 1874–1879, Vol IIIGoogle Scholar
  46. 46.
    Rybnikař F (1960) Secondary crystallization of polymers. J Polym Sci 44:517–522CrossRefGoogle Scholar
  47. 47.
    Strobl GR, Engelke T, Meier H, Urban G (1982) Zum Mechanismus der Polymerkristallisation. Colloid Polym Sci 260:394–403CrossRefGoogle Scholar
  48. 48.
    Goderis B, Reynaers H, Koch MHJ (2002) Primary and secondary crystallization in a homogeneous ethylene-1-octene copolymer: crystallinity heterogeneity studied by SAXS. Macromolecules 35:5840–5853CrossRefGoogle Scholar
  49. 49.
    Statton WO, Geil PH (1960) Recrystallization of polyethylene during annealing. J Appl Polym Sci 3:357–361CrossRefGoogle Scholar
  50. 50.
    Kawai T (1969) On the thickening of lamellar crystals during isothermal crystallization. Colloid Polym Sci 229:116–124Google Scholar
  51. 51.
    Hikosaka M, Amano K, Rastogi S, Keller A (1997) Lamellar thickening growth of an extended chain single crystal of polyethylene. 1. Pointers to a new crystallization mechanism of polymers. Macromolecules 30:2067–2074Google Scholar
  52. 52.
    Hikosaka M, Amano K, Rastogi S, Keller A (2000) Lamellar thickening growth of an extended chain single crystal of polyethylene (II): ΔT dependence of lamellar thickening growth rate and comparison with lamellar thickening. J Mater Sci 35:5157–5168CrossRefGoogle Scholar
  53. 53.
    Strobl G, Cho TY (2007) Growth kinetics of polymer crystals in bulk. Eur Phys J E Soft Matter 23:55–65CrossRefGoogle Scholar
  54. 54.
    Sommer JU, Luo C (2010) Molecular dynamics simulations of semicrystalline polymers: crystallization, melting, and reorganization. J Polym Sci Polym Phys 48:2222–2232CrossRefGoogle Scholar
  55. 55.
    Luo C, Sommer JU (2011) Growth pathway and precursor states in single lamellar crystallization: MD simulations. Macromolecules 44:1523–1529CrossRefGoogle Scholar
  56. 56.
    Luo C, Sommer JU (2014) Frozen topology: entanglements control nucleation and crystallization in polymers. Phys Rev Lett 112:195702CrossRefGoogle Scholar
  57. 57.
    Yi P, Locker CR, Rutledge GC (2013) Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene. Macromolecules 46:4723–4733CrossRefGoogle Scholar
  58. 58.
    Wunderlich B (2003) Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450CrossRefGoogle Scholar
  59. 59.
    Schick C, Krämer L, Mischok W (1985) Der Einfluß struktureller Veränderungen auf den Glasübergang in teilkristallinem Polyethylenterephthalat I. Isotherme Kristallisation. Acta Polym 36:47–53CrossRefGoogle Scholar
  60. 60.
    Schick C, Fabry F, Schnell U, Stoll G, Deutschbein L, Mischok W (1988) Der Einfluß struktureller Veränderungen auf den Glasübergang in teilkristallinem Poly(ethylenterephthalat) 2. Charakterisierung der übermolekularen Struktur. Acta Polym 39:705–710CrossRefGoogle Scholar
  61. 61.
    Schick C, Wigger J, Mischok W (1990) Der Einfluß struktureller Veränderungen auf den Glasübergang in teilkristallinem Poly(ethylenterephthalat) 3. Der Glasübergang in den zwischenlamellaren Bereichen. Acta Polym 41:137–142CrossRefGoogle Scholar
  62. 62.
    Androsch R, Wunderlich B (2005) The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer 46:12556–12566CrossRefGoogle Scholar
  63. 63.
    Zia Q, Mileva D, Androsch R (2008) The rigid amorphous fraction in isotactic polypropylene. Macromolecules 41:8095–8102CrossRefGoogle Scholar
  64. 64.
    Kolesov I, Androsch R (2012) The rigid amorphous fraction of cold-crystallized polyamide 6. Polymer 53:4070–4077CrossRefGoogle Scholar
  65. 65.
    Di Lorenzo ML, Righetti MC (2008) The three-phase structure of isotactic poly(1-butene). Polymer 49:1323–1331Google Scholar
  66. 66.
    Righetti MC, Tombari E, Angiuli M, Di Lorenzo ML (2007) Enthalpy-based determination of crystalline, mobile amorphous and rigid amorphous fractions in semicrystalline polymers: poly(ethylene terephthalate). Thermochim Acta 462:15–24CrossRefGoogle Scholar
  67. 67.
    Righetti MC, Tombari E, Di Lorenzo ML (2008) Crystalline, mobile amorphous and rigid amorphous fractions in isotactic polystyrene. Eur Polym J 44:2659–2667CrossRefGoogle Scholar
  68. 68.
    Wunderlich B (2008) Thermodynamics and kinetics of crystallization of flexible molecules. J Polym Sci Polym Phys 46:2647–2659CrossRefGoogle Scholar
  69. 69.
    Wunderlich B (2012) Termination of crystallization or ordering of flexible, linear macromolecules. J Therm Anal Cal 109:1117–1132CrossRefGoogle Scholar
  70. 70.
    Pingping Z, Dezhu M (1997) Double cold crystallization peaks of poly(ethylene terephthalate)–1. Samples isothermally crystallized at low temperature. Eur Polym J 33:1817–1818CrossRefGoogle Scholar
  71. 71.
    Pingping Z, Dezhu M (1999) Study on the double cold crystallization peaks of poly(ethylene terephthalate) (PET): 2. Samples isothermally crystallized at high temperature. Eur Polym J 35:739–742CrossRefGoogle Scholar
  72. 72.
    Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML et al (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci Polym Phys 44:1364–1377CrossRefGoogle Scholar
  73. 73.
    Di Lorenzo M, Gazzano M, Righetti MC (2012) The role of the rigid amorphous fraction on cold crystallization of poly(3-hydroxybutyrate). Macromolecules 45:5684–5691CrossRefGoogle Scholar
  74. 74.
    Di Lorenzo ML, Righetti MC (2013) Effect of thermal history on the evolution of crystal and amorphous fractions of poly[(R)-3-hydroxybutyrate] upon storage at ambient temperature. Eur Polym J 49:510–517CrossRefGoogle Scholar
  75. 75.
    Sohn S, Alizadeh A, Marand H (2000) On the multiple melting behavior of bisphenol-A polycarbonate. Polymer 41:8879–8886CrossRefGoogle Scholar
  76. 76.
    Sauer BB, Hsiao BS (1995) Effect of the heterogeneous distribution of lamellar stacks on amorphous relaxations in semicrystalline polymers. Polymer 36:2553–2558CrossRefGoogle Scholar
  77. 77.
    Xu H, Ince S, Cebe P (2003) Development of the crystallinity and rigid amorphous fraction in cold-crystallized isotactic polystyrene. J Polym Sci Polym Phys 41:3026–3036CrossRefGoogle Scholar
  78. 78.
    Lu H, Cebe P (2004) Heat capacity study of isotactic polystyrene: dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules 37:2797–2806CrossRefGoogle Scholar
  79. 79.
    Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718CrossRefGoogle Scholar
  80. 80.
    Zuza E, Ugartemendia JM, Lopez A, Meaurio E, Lejardi A, Sarasua JR (2008) Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions. Polymer 49:4427–4432CrossRefGoogle Scholar
  81. 81.
    Magon A, Pyda M (2009) Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis. Polymer 50:3967–3973CrossRefGoogle Scholar
  82. 82.
    Righetti MC, Tombari E (2011) Crystalline, mobile amorphous and rigid amorphous fractions in poly(l-lactic acid) by TMDSC. Thermochim Acta 522:118–127CrossRefGoogle Scholar
  83. 83.
    Di Lorenzo M, Cocca M, Malinconico M (2011) Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochim Acta 522:110–117CrossRefGoogle Scholar
  84. 84.
    De Santis S, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031CrossRefGoogle Scholar
  85. 85.
    Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:875–881CrossRefGoogle Scholar
  86. 86.
    van Drongelen M, Meijer-Vissers T, Cavallo D, Portale G, Vanden Poel G, Androsch R (2013) Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter. Thermochim Acta 563:33–37CrossRefGoogle Scholar
  87. 87.
    Rhoades AM, Williams JL, Androsch R (2015) Crystallization of polyamide 66 at processing-relevant cooling conditions and at high supercooling. Thermochim Acta 603:103–109CrossRefGoogle Scholar
  88. 88.
    Mollova A, Androsch R, Mileva D, Schick C, Benhamida A (2013) Effect of supercooling on crystallization of polyamide 11. Macromolecules 46:828–835CrossRefGoogle Scholar
  89. 89.
    Schawe JEK (2014) Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Cal 116:1165–1173CrossRefGoogle Scholar
  90. 90.
    Androsch R, Rhoades AM, Stolte I, Schick C (2015) Density of heterogeneous and homogeneous crystal nuclei in poly(butylene terephthalate). Eur Polym J 66:180–189CrossRefGoogle Scholar
  91. 91.
    Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(ε-caprolactone). Polymer 52:1983–1997CrossRefGoogle Scholar
  92. 92.
    Androsch R, Schick C (2016) Crystal nucleation of polymers at high supercooling of the melt. Adv Polym Sci 276:257–288. doi: 10.1007/12_2015_325 CrossRefGoogle Scholar
  93. 93.
    Schick C, Androsch R (2016) New insights into polymer crystallization by fast scanning chip calorimetry. In: Schick C, Mathot VBF (eds) Fast scanning calorimetry. Springer, Berlin, pp 463–565Google Scholar
  94. 94.
    Schick C, Zhuravlev E, Androsch R, Wurm A, Schmelzer JWP (2014) Influence of thermal prehistory on crystal nucleation and growth in polymers (Chapter 1). In: Schmelzer JWP (ed) Glass, selected properties and crystallization. De Gruyter, Berlin, pp 1–94Google Scholar
  95. 95.
    Androsch R, Schick C, Schmelzer JWP (2014) Sequence of enthalpy relaxation, homogeneous crystal nucleation and crystal growth in glassy polyamide 6. Eur Polym J 53:100–108CrossRefGoogle Scholar
  96. 96.
    Stolte I, Androsch R, Di Lorenzo ML, Schick C (2013) Effect of aging the glass of isotactic polybutene-1 on form II nucleation and cold-crystallization. J Phys Chem B 117:15196–15203CrossRefGoogle Scholar
  97. 97.
    Mamun A, Okui N, Gee R (2013) Enthalpy relaxation and nucleation density for isotactic polystyrene: annealing effect. Int J Eng Res Rev 1:29–36Google Scholar
  98. 98.
    Angell CA, MacFarlane DR, Oguni M (2006) The Kauzmann paradox, metastable liquids, and ideal glasses. Ann N Y Acad Sci 484:241–247CrossRefGoogle Scholar
  99. 99.
    Zhuravlev E, Schmelzer JWP, Abyzov A, Fokin V, Androsch R, Schick C (2015) Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst Growth Des 15:786–789CrossRefGoogle Scholar
  100. 100.
    Androsch R, Schick C, Rhoades AM (2015) Application of Tammann’s two-stage crystal nuclei development method for analysis of the thermal stability of homogeneous crystal nuclei of poly(ethylene terephthalate). Macromolecules 48:8082–8089CrossRefGoogle Scholar
  101. 101.
    Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53:277–282CrossRefGoogle Scholar
  102. 102.
    Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1,000 K/s). Polymer 45:3755–3763CrossRefGoogle Scholar
  103. 103.
    Minakov AA, Mordvintsev DA, Schick C (2005) Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 K s-1; 5 ms). Faraday Discuss 128:261–270CrossRefGoogle Scholar
  104. 104.
    Minakov AA, Mordvintsev DA, Tol R, Schick C (2006) Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). Thermochim Acta 442:25–30CrossRefGoogle Scholar
  105. 105.
    Toda A, Androsch R, Schick C (2016) Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer 91:239–263Google Scholar
  106. 106.
    Androsch R, Schick C, Di Lorenzo ML (2014) Melting of conformationally disordered crystals (α′-phase) of poly(l-lactic acid). Macromol Chem Phys 215:1134–1139CrossRefGoogle Scholar
  107. 107.
    Androsch R, Zhuravlev E, Schick C (2014) Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α’-phase) of poly(l-lactic acid). Polymer 55:4932–4941CrossRefGoogle Scholar
  108. 108.
    Androsch R, Di Lorenzo ML (2016) Stability and reorganization of α′-crystals in random l/d-lactide copolymers. Macromol Chem Phys 217:1534–1538CrossRefGoogle Scholar
  109. 109.
    Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly(lactic acid): a review. Polym Rev 45:325–349Google Scholar
  110. 110.
    Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, HobokenCrossRefGoogle Scholar
  111. 111.
    Zhang C (2015) Biodegradable polyesters: synthesis, properties, applications. In: Fakirov S (ed) Biodegradable polyesters. Wiley-VCH, WeinheimGoogle Scholar
  112. 112.
    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRefGoogle Scholar
  113. 113.
    Müller AJ, Ávila M, Saenz G, Salazar J (2015) Crystallization of PLA-based materials. In: Jiménez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, London, pp 68–98Google Scholar
  114. 114.
    Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRefGoogle Scholar
  115. 115.
    Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640CrossRefGoogle Scholar
  116. 116.
    De Santis P, Kovacs AJ (1968) Molecular conformation of poly(S-lactic acid). Biopolymers 6:299–306CrossRefGoogle Scholar
  117. 117.
    Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G (1990) Crystal structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642CrossRefGoogle Scholar
  118. 118.
    Alemán C, Lotz B, Puiggalí J (2001) Crystal structure of the α-form of poly(l-lactide). Macromolecules 34:4795–4801CrossRefGoogle Scholar
  119. 119.
    Sasaki S, Asakura T (2003) Helix distortion and crystal structure of the α form of poly(l-lactide). Macromolecules 36:8385–8390CrossRefGoogle Scholar
  120. 120.
    Zhang J, Tashiro K, Domb AJ, Tsuji H (2006) Confirmation of disorder α form of poly(l-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp 242:274–278CrossRefGoogle Scholar
  121. 121.
    Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(l-lactide). J Appl Polym Sci 107:54–62CrossRefGoogle Scholar
  122. 122.
    Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021CrossRefGoogle Scholar
  123. 123.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007) Crystallization and melting behavior of poly(l-lactic acid). Macromolecules 40:9463–9469CrossRefGoogle Scholar
  124. 124.
    Cocca M, Androsch R, Righetti MC, Malinconico M, Di Lorenzo ML (2014) Conformationally disordered crystals and their influence on material properties: the cases of isotactic polypropylene, isotactic poly(1-butene), and poly(l-lactic acid). J Mol Struct 1078:114–132CrossRefGoogle Scholar
  125. 125.
    Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules 40:6898–6905CrossRefGoogle Scholar
  126. 126.
    Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 41:4296–4304CrossRefGoogle Scholar
  127. 127.
    Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357CrossRefGoogle Scholar
  128. 128.
    Wasanuk K, Tashiro K (2011) Structural regularization in the crystallization process from the glass or melt of poly(l-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings. Macromolecules 44:9650–9660CrossRefGoogle Scholar
  129. 129.
    Eling B, Gogolewski S, Pennings AJ (1982) Biodegradable materials of poly(l-lactic acid). 1. Melt-spun and solution-spun fibres. Polymer 23:1587–1593CrossRefGoogle Scholar
  130. 130.
    Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggalí LB (2000) Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 41:8909–8919CrossRefGoogle Scholar
  131. 131.
    Kalish JP, Aou K, Yang X, Hsu SL (2011) Spectroscopic and thermal analyses of α' and α crystalline forms of poly(l-lactic acid). Polymer 52:814–821CrossRefGoogle Scholar
  132. 132.
    Cocca M, Di Lorenzo ML, Malinconico M, Frezza V (2011) Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). Eur Polym J 47:1073–1080CrossRefGoogle Scholar
  133. 133.
    Righetti MC, Gazzano M, Di Lorenzo ML, Androsch R (2015) Enthalpy of melting of α′- and α-crystals of poly(l-lactic acid). Eur Polym J 70:215–220CrossRefGoogle Scholar
  134. 134.
    Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of poly(l-lactic acid). Polymer 24:175–178CrossRefGoogle Scholar
  135. 135.
    Marega C, Marigo A, Di Noto V, Zannetti R (1992) Structure and crystallization kinetics of poly(l-lactic acid). Makromol Chem 193:1599–1606CrossRefGoogle Scholar
  136. 136.
    Di Lorenzo ML (2001) Determination of spherulite growth rates of poly(l-lactic acid) using combined isothermal and non-isothermal procedures. Polymer 42:9441–9446CrossRefGoogle Scholar
  137. 137.
    Abe H, Kikkawa Y, Inoue Y, Doi Y (2001) Morphological and kinetic analyses of regime transition for poly[(S)-lactide] crystal growth. Biomacromolecules 2:1007–1014CrossRefGoogle Scholar
  138. 138.
    Di Lorenzo ML (2005) Crystallization behavior of poly(l-lactic acid). Eur Polym J 41:569–575CrossRefGoogle Scholar
  139. 139.
    De Santis F, Pantani R, Titomanlio G (2011) Nucleation and crystallization kinetics of poly(lactic acid). Thermochim Acta 522:128–134CrossRefGoogle Scholar
  140. 140.
    Kolstad JJ (1996) Crystallization kinetics of poly(l-lactide-co-meso-lactide). J Appl Polym Sci 62:1079–1091CrossRefGoogle Scholar
  141. 141.
    Huang J, Lisowski MS, Runt J, Hall ES, Kean RT, Buehler N, Lin JS (1998) Crystallization and microstructure of poly(l-lactide-co-meso-lactide) copolymers. Macromolecules 31:2593–2599CrossRefGoogle Scholar
  142. 142.
    Di Lorenzo ML, Rubino P, Luijkx R, Hélou M (2014) Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 1: Effect of optical purity of the monomer. Colloid Polym Sci 292:399–409CrossRefGoogle Scholar
  143. 143.
    Tsuji H, Ikada Y (1996) Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys 197:3483–3499CrossRefGoogle Scholar
  144. 144.
    Androsch R, Di Lorenzo ML, Schick C (2016) Crystal nucleation in random l/d-lactide copolymers. Eur Polym J 75:474–485CrossRefGoogle Scholar
  145. 145.
    Thakur KAM, Kean RT, Zupfer JM, Buehler NU, Doscotoch MA, Munson EJ (1996) Solid state 13C CP-MAS NMR studies of the crystallinity and morphology of poly(l-lactide). Macromolecules 29:8844–8851Google Scholar
  146. 146.
    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  147. 147.
    Baratian S, Hall ES, Lin JS, Xu R, Runt J (2001) Crystallization and solid-state structure of random polylactide copolymers: poly(l-lactide-co-d-lactide)s. Macromolecules 34:4857–4864CrossRefGoogle Scholar
  148. 148.
    Cho J, Baratian S, Kim J, Yeh F, Hsiao BS, Runt J (2003) Crystallization and structure formation of poly(l-lactide-co-meso-lactide) random copolymers: a time-resolved wide- and small-angle X-ray scattering study. Polymer 44:711–717CrossRefGoogle Scholar
  149. 149.
    Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid Z Z Polymere 251:980–990CrossRefGoogle Scholar
  150. 150.
    Urayama H, Kanamori T, Kimura Y (2001) Microstructure and thermomechanical properties of glassy polylactides with different optical purity of the lactate units. Macromol Mater Eng 286:705–713CrossRefGoogle Scholar
  151. 151.
    Urayama H, Moon SI, Kimura Y (2003) Microstructure and thermal properties of polylactides with different l- and d-unit sequences: Importance of the helical nature of the l-sequenced segments. Macromol Mater Eng 288:137–143CrossRefGoogle Scholar
  152. 152.
    Velazquez-Infante JC, Gamez-Perez J, Franco-Urquiza EA, Santana OO, Carrasco F, Maspoch ML (2013) Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with different l-isomer content. J Appl Polym Sci 127:2661–2669CrossRefGoogle Scholar
  153. 153.
    Bigg DM (2005) Polylactide copolymers: effect of copolymer ratio and end capping on their properties. Adv Polym Technol 24:69–82CrossRefGoogle Scholar
  154. 154.
    Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Crystallization behavior of poly(l-lactic acid). Polymer 47:7554–7563CrossRefGoogle Scholar
  155. 155.
    Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agents. Polymer 47:3826–3837CrossRefGoogle Scholar
  156. 156.
    Tammann G (1898) Über die Abhängigkeit der Zahl der Kerne, welche sich in verschiedenen unterkühlten Flüssigkeiten bilden, von der Temperatur. Z Phys Chem 25:441–479Google Scholar
  157. 157.
    Tammann G, Jenckel E (1930) Die Kristallisationsgeschwindigkeit und die Kernzahl des Glycerins in Abhängigkeit von der Temperatur. Zeitschrift für anorganische und allgemeine Chemie 193:76–80CrossRefGoogle Scholar
  158. 158.
    Nascimento MLF, Fokin VM, Zanotto ED, Abyzov AS (2011) Dynamic processes in a silicate liquid from above melting to below the glass transition. J Chem Phys 135(19):194703Google Scholar
  159. 159.
    Illers KH (1971) Geordnete Strukturen in “amorphem” Polyäthylenterephthalat. Kolloid Z Z Polym 245:393–398CrossRefGoogle Scholar
  160. 160.
    Androsch R, Di Lorenzo ML (2013) Crystal nucleation in glassy poly(l-lactic acid). Macromolecules 46:6048–6056CrossRefGoogle Scholar
  161. 161.
    Androsch R, Di Lorenzo ML (2013) Kinetics of crystals nucleation of poly(l-lactic acid). Polymer 54:6882–6885CrossRefGoogle Scholar
  162. 162.
    Hutchinson JM (1995) Physical aging of polymers. Prog Polym Sci 20:703–760CrossRefGoogle Scholar
  163. 163.
    Struik LCE (1977) Physical aging in amorphous polymer and other materials. PhD thesis, DelftGoogle Scholar
  164. 164.
    Aou K, Hsu SL, Kleiner WK, Tang FW (2007) Role of conformational and configurational defects on the physical aging of amorphous poly(lactic acid). J Phys Chem 111:12322–12327CrossRefGoogle Scholar
  165. 165.
    Kwon M, Lee SC, Jeong YG (2010) Influences of physical aging on enthalpy relaxation behavior, gas permeability, and dynamic mechanical property of polylactide films with various d-isomer contents. Macromol Res 18:346–351CrossRefGoogle Scholar
  166. 166.
    Sánchez MS, Mathot VBF, Vanden Poel G, Ribelles JLG (2007) Effect of cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40:7989–7997CrossRefGoogle Scholar
  167. 167.
    Androsch R, Iqbal N, Schick C (2015) Non-isothermal crystal nucleation of poly(l-lactic acid). Polymer 81:151–158CrossRefGoogle Scholar
  168. 168.
    Hernández Sánchez F, Molina Mateo J, Romero Colomer FJ, Salmerón Sánchez M, Gómez Ribelles JL, Mano JF (2005) Influence of low-temperature nucleation on the crystallization process of poly(l-lactide). Biomacromolecules 6:3283–3290CrossRefGoogle Scholar
  169. 169.
    Zhang T, Hu J, Duan Y, Pi F, Zhang J (2011) Physical aging enhanced mesomorphic structure in melt-quenched poly(l-lactic acid). J Phys Chem B 115:13835–13841CrossRefGoogle Scholar
  170. 170.
    Na B, Lv R, Zou S, Li Z, Tian N (2010) Spectroscopic evidence of melting of ordered structures in the aged glassy poly(l-lactide). Macromolecules 43:1702–1705CrossRefGoogle Scholar
  171. 171.
    Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non Cryst Solids 169:211–266CrossRefGoogle Scholar
  172. 172.
    Moynihan CT, Easteal AJ, De Bolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16Google Scholar
  173. 173.
    Moynihan CT, Easteal AJ, Wilder J, Tucker J (1974) Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem 78:2673–2677CrossRefGoogle Scholar
  174. 174.
    Androsch R, Schick C (2016) Interplay between the relaxation of the glass of random l/d-lactide copolymers and homogeneous crystal nucleation: Evidence for segregation of chain defects. J Phys Chem B 120:4522–4528CrossRefGoogle Scholar
  175. 175.
    Pyda M, Bopp RC, Wunderlich B (2004) Heat capacity of poly(lactic acid). J Chem Thermodyn 36:731–742CrossRefGoogle Scholar
  176. 176.
    Yoshioka T, Kawazoe N, Tateishi T, Chen G (2011) Effects of structural change induced by physical aging on the biodegradation behavior of PLGA films at physiological temperature. Macromol Mater Eng 296:1028–1034CrossRefGoogle Scholar
  177. 177.
    Avolio R, Castaldo R, Gentile G, Ambrogi V, Fiori S, Avella M, Cocca M, Errico ME (2015) Plasticization of poly(lactic acid) through blending with oligomers of lactic acid: effect of the physical aging on properties. Eur Polym J 66:533–542Google Scholar
  178. 178.
    Cai H, Dave V, Cross RA, McCarthy SP (1996) Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci Polym Phys 34:2701–2708CrossRefGoogle Scholar
  179. 179.
    Pan P, Zhu B, Inoue Y (2007) Enthalpy relaxation and embrittlement of poly(l-lactic acid) during physical aging. Macromolecules 40:9664–9671CrossRefGoogle Scholar
  180. 180.
    Wang Y, Mano JF (2006) Effect of structural relaxation at physiological temperature on the mechanical property of poly(l-lactic acid) studied by microhardness measurements. J App Polym Sci 100:2628–2633CrossRefGoogle Scholar
  181. 181.
    Di Lorenzo ML (2006) The crystallization and melting processes of poly(l-lactic acid). Macromol Symp 234:176–183CrossRefGoogle Scholar
  182. 182.
    Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662CrossRefGoogle Scholar
  183. 183.
    Flory PJ (1955) Theory of crystallization in copolymers. Trans Faraday Soc 51:848–857CrossRefGoogle Scholar
  184. 184.
    Sanchez IC, Eby RK (1975) Thermodynamics and crystallization of random copolymers. Macromolecules 8:638–641CrossRefGoogle Scholar
  185. 185.
    Wurm A, Zhuravlev E, Eckstein K, Jehnichen D, Pospiech D, Androsch R, Wunderlich B, Schick C (2012) Crystallization and homogeneous nucleation kinetics of poly(ε-caprolactone) (PCL) with different molar masses. Macromolecules 45:3816–3828CrossRefGoogle Scholar
  186. 186.
    He Y, Fan Z, Hu Y, Wu T, Wei J, Li S (2007) DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur Polym J 43:4431–4439CrossRefGoogle Scholar
  187. 187.
    Di Lorenzo ML, Rubino P, Immirzi B, Luijkx R, Hélou M, Androsch R (2015) Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 2: Effect of molar mass on the crystal growth rate and semicrystalline morphology. Coll Polym Sci 293:2459–2467CrossRefGoogle Scholar
  188. 188.
    Sarasua JR, Prud’homme RE, Wisniewski M, Le Borgne A, Spassky N (1998) Crystallization and melting behavior of polylactides. Macromolecules 31:3895–3905CrossRefGoogle Scholar
  189. 189.
    Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci Polym Phys 42:25–32CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • René Androsch
    • 1
  • Christoph Schick
    • 2
  • Maria Laura Di Lorenzo
    • 3
  1. 1.Center of Engineering SciencesMartin Luther University Halle-WittenbergHalle/SaaleGermany
  2. 2.Institute of PhysicsUniversity of RostockRostockGermany
  3. 3.Institute of Polymers, Composites and BiomaterialsConsiglio Nazionale delle Ricerche (CNR)PozzuoliItaly

Personalised recommendations