Advertisement

Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines

  • Klaus P. Luef
  • Richard Hoogenboom
  • Ulrich S. Schubert
  • Frank WiesbrockEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 274)

Abstract

More than any other polymer class, the synthesis of (co-)poly(2-oxazoline)s has benefited tremendously from the introduction of microwave reactors into chemical laboratories. This review focuses on research activities in the area of (co-)poly(2-oxazoline)s prepared by microwave-assisted syntheses and summarizes the current state-of-the-art for microwave-assisted syntheses of 2-oxazoline monomers, microwave-assisted ring-opening (co-)polymerizations of 2-oxazolines, and prominent examples of post-polymerization modifications of (co-)poly(2-oxazoline)s. Special attention is paid to kinetic analyses of the microwave-assisted polymerization of 2-oxazolines and to the discussion of non-thermal microwave effects.

Keywords

Microwave-assisted polymerization Non-thermal microwave effects Poly(2-oxazoline) Post-polymerization modification Ring-opening polymerization 

Abbreviations

AFM

Atomic force microscopy

Bu=Ox

2-But-3′-enyl-2-oxazoline

CH

Conventional heating

CROP

Cationic ring-opening polymerization

Dc=Ox

2-Dec-9′-enyl-2-oxazoline

DLS

Dynamic light scattering

DP

Degree of polymerization

EtOx

2-Ethyl-2-oxazoline

IL

Ionic liquid

MALDI-TOF

Matrix-assisted laser desorption ionization – time-of-flight

MeOx

2-Methyl-2-oxazoline

MW

Microwave

NonOx

2-Nonyl-2-oxazoline

pBu=Ox

Poly(2-but-3′-enyl-2-oxazoline)

pDc=Ox

Poly(2-dec-9′-enyl-2-oxazoline)

PEG

Poly(ethylene glycol)

PEI

Poly(ethylene imine)

PET

Poly(ethylene terephthalate)

pEtOx

Poly(2-ethyl-2-oxazoline)

PhOx

2-Phenyl-2-oxazoline

pMeOx

Poly(2-methyl-2-oxazoline)

pNonOx

Poly(2-nonyl-2-oxazoline)

pPBO

Poly(1,3-phenylene-bis-2-oxazoline)

pPhOx

Poly(2-phenyl-2-oxazoline)

ROP

Ring-opening polymerization

SEC

Size-exclusion chromatography

wt%

Weight percent

Notes

Acknowledgement

F.W. and K.P.L. would like to gratefully acknowledge the Austrian Science Fund FWF for funding of the project I1123-N19 (MimiFlow). The work was performed at the PCCL in the context of the project PolyComp within the framework of the COMET-program of the Federal Ministry for Transport, Innovation and Technology and Federal Ministry for Economy, Family and Youth. The PCCL is funded by the Austrian Government and the State Governments of Styria, Lower Austria and Upper Austria. U.S.S. thanks the Carl-Zeiss Foundation and the TMWWdG (State of Thuringia).

References

  1. 1.
    Seeliger W, Aufderhaar E, Diepers W, Feinauer R, Nehring R, Thier W, Hellmann H (1966) Recent syntheses and reactions of cyclic imidic esters. Angew Chem Int Ed 5:875–888CrossRefGoogle Scholar
  2. 2.
    Tomalia DA, Sheetz DP (1966) Homopolymerization of 2-alkyl- and 2-aryl-2-oxazolines. J Polym Sci A Polym Chem 4:2253–2265CrossRefGoogle Scholar
  3. 3.
    Bassiri TG, Levy A, Litt M (1967) Polymerization of cyclic imino ethers. I. Oxazolines. J Polym Sci B Polym Lett 5:871–879CrossRefGoogle Scholar
  4. 4.
    Kagiya T, Narisawa S, Maeda T, Fukui K (1966) Ring-opening polymerisation of 2-substituted 2-oxazolines. J Polym Sci B Polym Lett 4:441–445CrossRefGoogle Scholar
  5. 5.
    Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73:36–47CrossRefGoogle Scholar
  6. 6.
    Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978–7994CrossRefGoogle Scholar
  7. 7.
    Rossegger E, Schenk V, Wiesbrock F (2013) Design strategies for functionalized poly(2-oxazoline)s and derived materials. Polymers 5:956–1011CrossRefGoogle Scholar
  8. 8.
    Hoogenboom R (2007) Poly(2-oxazoline)s: alive and kicking. Macromol Chem Phys 208:18–25CrossRefGoogle Scholar
  9. 9.
    Kelly AM, Wiesbrock F (2012) Strategies for the synthesis of poly(2-oxazoline)-based hydrogels. Macromol Rapid Commun 33:1632–1647CrossRefGoogle Scholar
  10. 10.
    Hartlieb M, Kempe K, Schubert US (2015) Covalently cross-linked poly(2-oxazoline) materials for biomedical applications – from hydrogels to self-assembled and templated structures. J Mater Chem B 3:526–538CrossRefGoogle Scholar
  11. 11.
    de la Rosa VR (2014) Poly(2-oxazoline)s as materials for biomedical applications. J Mater Sci Mater Med 25:1211–1225CrossRefGoogle Scholar
  12. 12.
    Konradi R, Acikgoz C, Textor M (2012) Polyoxazolines for nonfouling surface coatings – a direct comparison to the gold standard PEG. Macromol Rapid Commun 33:1663–1676CrossRefGoogle Scholar
  13. 13.
    Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33:1613–1631CrossRefGoogle Scholar
  14. 14.
    Guillerm B, Monge S, Lapinte V, Robin J-J (2012) How to modulate the chemical structure of polyoxazolines by appropriate functionalization. Macromol Rapid Commun 33:1600–1612CrossRefGoogle Scholar
  15. 15.
    Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525CrossRefGoogle Scholar
  16. 16.
    Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M (2012) Poly(2-oxazoline)s – are they more advantageous for biomedical applications than other polymers? Macromol Rapid Commun 33:1648–1662CrossRefGoogle Scholar
  17. 17.
    Witte H, Seeliger W (1974) Cyclische Imidsaeureester aus Nitrilen und Aminoalkoholen. Liebigs Ann Chem 6:996–1009CrossRefGoogle Scholar
  18. 18.
    Beck M, Birnbrich P, Eicken U, Fischer H, Fristad WE, Hase B, Krause H-J (1994) Polyoxazoline auf fettchemischer Basis. Angew Makromol Chem 223:217–233CrossRefGoogle Scholar
  19. 19.
    Gress A, Voelkel A, Schlaad H (2007) Thio-click modification of poly[2-(3-butenyl)-2-oxazoline]. Macromolecules 40:7928–7933CrossRefGoogle Scholar
  20. 20.
    García-Tellado F, Loupy A, Petit A, Marrero-Terrero AL (2003) Solvent-free microwave-assisted efficient synthesis of 4,4-disubstituted 2-oxazolines. Eur J Org Chem 2003:4387–4391CrossRefGoogle Scholar
  21. 21.
    Arsalani N, Zare P, Namazi H (2009) Solvent free microwave assisted preparation of new telechelic polymers based on poly(ethylene glycol). Express Polym Lett 3(7):429–436CrossRefGoogle Scholar
  22. 22.
    Wei W, Zhang D, Yuan Q, Shen D, Huang B (2004) Synthesis of 2-(α-hydroxyalkyl)-2-oxazoline under microwave irradiation in bulk. Yingyong Huaxue 21(12):1329–1330Google Scholar
  23. 23.
    Mamaghani M, Nahmoodi NO, Fallah Ghasemi S (2010) An efficient synthesis of new chiral oxazolines. J Iran Chem Soc 7(4):972–977CrossRefGoogle Scholar
  24. 24.
    Katritzky AR, Cai C, Suzuki K, Singh SK (2004) Facile syntheses of oxazolines and thiazolines with N-acylbenzotriazoles under microwave irradiation. J Org Chem 69:811–814CrossRefGoogle Scholar
  25. 25.
    Parab YS, Shah RV, Shukla SR (2012) Microwave irradiated synthesis and characterization of 1,4-phenylene bis-oxazoline from bis-(2-hydroxyethyl) terephthalamide obtained by depolymerization of poly(ethylene terephthalate) bottle waste. Curr Chem Lett 2012:81–90CrossRefGoogle Scholar
  26. 26.
    Clarke DS, Wood R (1996) A facile one stage synthesis of oxazolines under microwave irradiation. Synth Commun 26(7):1335–1340CrossRefGoogle Scholar
  27. 27.
    Oussaid B, Berlan J, Soufiaoui M, Garrigues B (1995) Improved synthesis of oxazoline under microwave irradiation. Synth Commun 25(5):659–665CrossRefGoogle Scholar
  28. 28.
    Fraga-Dubreuil J, Cherouvrier JR, Bazureau JP (2000) Clean solvent-free dipolar cycloaddition reactions assisted by focused microwave irradiations for the synthesis of new ethyl 4-cyano-2-oxazoline-4-carboxylates. Green Chem 2:226–229CrossRefGoogle Scholar
  29. 29.
    Benfatti F, Cardillo G, Gentilucci L, Tolomelli A, Monari M, Piccinelli F (2007) A microwave-enhanced, Lewis acid-catalyzed synthesis of 1,3-dioxanes and oxazolines from epoxides. Adv Synth Catal 349:1256–1264CrossRefGoogle Scholar
  30. 30.
    Silva S, Tardy S, Routier S, Suzenet F, Tatibouet A, Rauter AP, Rollin P (2008) 1,3-Oxazoline and 1,3-oxazolidine-2-thiones as substrates in direct modified Stille and Suzuki cross-coupling. Tetrahedron Lett 49(39):5583–5586CrossRefGoogle Scholar
  31. 31.
    Wiesbrock F, Hoogenboom R, Abeln CH, Schubert US (2004) Single-mode microwave ovens as new reaction devices: accelerating the living polymerization of 2-ethyl-2-oxaoline. Macromol Rapid Commun 25:1895–1899CrossRefGoogle Scholar
  32. 32.
    Wiesbrock F, Hoogenboom R, Leenen MAM, Meier MAR, Schubert US (2005) Investigation of the living cationic ring-opening polymerization of 2-methyl-, 2-ethyl-, 2-nonyl-, and 2-phenyl-2-oxazoline in a single-mode microwave reactor. Macromolecules 38:5025–5034CrossRefGoogle Scholar
  33. 33.
    Sinnwell S, Ritter H (2005) Microwave accelerated polymerization of 2-phenyl-2-oxazoline. Macromol Rapid Commun 26:160–163CrossRefGoogle Scholar
  34. 34.
    Hoogenboom R, Leenen MAM, Wiesbrock F, Schubert US (2005) Microwave accelerated polymerization of 2-phenyl-2-oxazoline: microwave or temperature effects? Macromol Rapid Commun 26:1773–1778CrossRefGoogle Scholar
  35. 35.
    Hoogenboom R, Fijten MWM, Thijs HML, Van Lankwelt BM, Schubert US (2005) Microwave-assisted synthesis and properties of a series of poly(2-alkyl-2-oxazoline)s. Des Monomers Polym 8(6):659–671CrossRefGoogle Scholar
  36. 36.
    Hoogenboom R, Wiesbrock F, Leenen MAM, Meier MAR, Schubert US (2005) Accelerating the living polymerization of 2-nonyl-2-oxazoline by implementing a microwave synthesizer into a high-throughput experimentation workflow. J Comb Chem 7(1):10–13CrossRefGoogle Scholar
  37. 37.
    Glassner M, D’hooge DR, Park JY, van Steenberge PHM, Monnery BD, Reyniers M-F, Hoogenboom R (2015) Systematic investigation of alkyl sulfonate initiators for the cationic ring-opening polymerization of 2-oxazolines revealing optimal combinations of monomers and initiators. Eur Polym J 65:298–304CrossRefGoogle Scholar
  38. 38.
    Vergaelen M, Verbraeken B, Monnery BD, Hoogenboom R (2015) Sulfolane as common rate accelerating solvent for the cationic ring-opening polymerization of 2-oxazolines. ACS Macro Lett 4:825–828CrossRefGoogle Scholar
  39. 39.
    Hu F, Xie S, Jiang L, Shen Z (2014) Living cationic ring-opening polymerization of 2-oxazolines initiated by rare-earth metal triflates. RSC Adv 4:59917–59926CrossRefGoogle Scholar
  40. 40.
    Fimberger M, Luef KP, Payerl C, Fischer RC, Stelzer F, Kállay M, Wiesbrock F (2015) The π-electron delocalization in 2-oxazolines revisited: quantification and comparison with its analogue in esters. Materials 8:5385–5397CrossRefGoogle Scholar
  41. 41.
    Lobert M, Köhn U, Hoogenboom R, Schubert US (2008) Synthesis and microwave assisted polymerization of fluorinated 2-phenyl-2-oxazolines: the fastest 2-oxazoline monomer to date. Chem Commun 2008(12):1458–1460Google Scholar
  42. 42.
    Lobert M, Thijs HML, Erdmenger T, Eckardt R, Ulbricht C, Hoogenboom R, Schubert US (2008) Synthesis, microwave-assisted polymerization, and polymer properties of fluorinated 2-phenyl-2-oxazolines: a systematic study. Chem Eur J 14:10396–10407CrossRefGoogle Scholar
  43. 43.
    Bloksma MM, Rogers S, Schubert US, Hoogenboom R (2010) Secondary structure formation of main-chain chiral poly(2-oxazoline)s in solution. Soft Matter 6:994–1003CrossRefGoogle Scholar
  44. 44.
    Bloksma MM, Rogers S, Schubert US, Hoogenboom R (2011) Main-chain chiral poly(2-oxazoline)s: influence of alkyl side-chains on secondary structure formation in solution. J Polym Sci A Polym Chem 49:2790–2801CrossRefGoogle Scholar
  45. 45.
    Bloksma MM, Weber C, Perevyazko IY, Kuse A, Baumgärtel A, Vollrath A, Hoogenboom R, Schubert US (2011) Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by cyclopropyl to thermoresponsive properties. Macromolecules 44:4057–4064CrossRefGoogle Scholar
  46. 46.
    Bloksma MM, Paulus RM, Van Kuringen HPC, Van der Woerdt F, Lambermont-Thijs HML, Schubert US, Hoogenboom R (2012) Thermoresponsive poly(2-oxazoline)s. Macromol Rapid Commun 33:92–96CrossRefGoogle Scholar
  47. 47.
    Sinnwell S, Ritter H (2006) Microwave accelerated polymerization of 2-phenyl-5,6-dihydro-4H-1,3-oxazine: kinetics and influence of end-groups on glass transition temperature. Macromol Rapid Commun 27:1335–1340CrossRefGoogle Scholar
  48. 48.
    Bouten PJM, Hertsen D, Vergaelen M, Monnery BD, Boerman MA, Goossens H, Catak S, van Hest JCM, van Speybroeck V, Hoogenboom R (2015) Accelerated living cationic ring-opening polymerization of a methyl ester functionalized 2-oxazoline monomer. Polym Chem 6:514–518CrossRefGoogle Scholar
  49. 49.
    Bouten PJM, Hertsen D, Vergaelen M, Monnery BD, Catak S, van Hest JCM, van Speybroeck V, Hoogenboom R (2015) J Polym Sci A Polym Chem 53:2649–2661Google Scholar
  50. 50.
    Hoogenboom R, Schubert US (2006) Microwave-assisted cationic ring-opening polymerization of a soy-based 2-oxazoline monomer. Green Chem 8:895–899CrossRefGoogle Scholar
  51. 51.
    Hoogenboom R, Leenen MAM, Huang H, Fustin C-A, Gohy J-F, Schubert US (2006) Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s. Colloid Polym Sci 284:1313–1318CrossRefGoogle Scholar
  52. 52.
    Guerrero-Sanchez C, Hoogenboom R, Schubert US (2006) Fast and “green” living cationic ring opening polymerization of 2-ethyl-2-oxazoline in ionic liquids under microwave irradiation. Chem Commun 2006(36):3797–3799CrossRefGoogle Scholar
  53. 53.
    Guerrero-Sanchez C, Lobert M, Hoogenboom R, Schubert US (2007) Microwave-assisted homogeneous polymerizations in water-soluble ionic liquids: an alternative and green approach for polymer synthesis. Macromol Rapid Commun 28:456–464CrossRefGoogle Scholar
  54. 54.
    Hoogenboom R, Paulus RM, Pilotti A, Schubert US (2006) Scale-up of microwave-assisted polymerizations in batch mode: the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 27:1556–1560CrossRefGoogle Scholar
  55. 55.
    Paulus RM, Erdmenger T, Becer CR, Hoogenboom R, Schubert US (2007) Scale-up of microwave-assisted polymerizations in continuous-flow mode: cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 28:484–491CrossRefGoogle Scholar
  56. 56.
    Wiesbrock F, Hoogenboom R, Leenen M, Van Nispen SFGM, Van der Loop M, Abeln CH, Van den Berg AMJ, Schubert US (2005) Microwave-assisted synthesis of a 42-membered library of diblock copoly(2-oxazoline)s and chain-extended homo poly(2-oxazoline)s and their thermal characterization. Macromolecules 38:7957–7966CrossRefGoogle Scholar
  57. 57.
    Kranenburg JM, Tweedie CA, Hoogenboom R, Wiesbrock F, Thijs HML, Hendriks CE, Van Vliet KJ, Schubert US (2007) Elastic moduli for a diblock copoly(2-oxazoline) library obtained by high-throughput screening. J Mater Chem 17:2713–2721CrossRefGoogle Scholar
  58. 58.
    Hoogenboom R, Wiesbrock F, Huang H, Leenen MAM, Thijs HML, Van Nispen SFGM, Van der Loop M, Fustin C-A, Jonas AM, Gohy J-F, Schubert US (2006) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines: a powerful method for the synthesis of amphiphilic triblock copolymers. Macromolecules 39:4719–4725CrossRefGoogle Scholar
  59. 59.
    Hoogenboom R, Wiesbrock F, Leenen MAM, Thijs HML, Huang H, Fustin C-A, Guillet P, Gohy J-F, Schubert US (2007) Synthesis and aqueous micellization of amphiphilic tetrablock ter- and quaterpoly(2-oxazoline)s. Macromolecules 40:2837–2843CrossRefGoogle Scholar
  60. 60.
    Kempe K, Baumgärtel A, Hoogenboom R, Schubert US (2010) Design of new amphiphilic triblock copoly(2-oxazoline)s containing a fluorinated segment. J Polym Sci A Polym Chem 48:5100–5108CrossRefGoogle Scholar
  61. 61.
    Fijten MWM, Kranenburg JM, Thijs HML, Paulus RM, Van Lankvelt BM, De Hullu J, Springintveld M, Thielen DJG, Tweedie CA, Hoogenboom R, Van Vliet KJ, Schubert US (2007) Synthesis and structure–property relationships of random and block copolymers: a direct comparison for copoly(2-oxazoline)s. Macromolecules 40:5879–5886CrossRefGoogle Scholar
  62. 62.
    Wijnans S, De Gans B-J, Wiesbrock F, Hoogenboom R, Schubert US (2004) Characterization of a poly(2-oxazoline) library by high-throughput, automated contact-angle measurements and surface-energy calculations. Macromol Rapid Commun 25:1958–1962CrossRefGoogle Scholar
  63. 63.
    Hoeppener S, Wiesbrock F, Hoogenboom R, Thijs HML, Schubert US (2006) Morphologies of spin-coated films of a library of diblock copoly(2-oxazoline)s and their correlation to the corresponding surface energies. Macromol Rapid Commun 27:405–411CrossRefGoogle Scholar
  64. 64.
    Kempe K, Jacobs S, Lambermont-Thijs HML, Fijten MWM, Hoogenboom R, Schubert US (2010) Rational design of an amorphous poly(2-oxazoline) with a low glass-transition temperature: monomer synthesis, copolymerization and properties. Macromolecules 43:4098–4104CrossRefGoogle Scholar
  65. 65.
    Kempe K, Rettler EF-J, Paulus RM, Kuse A, Hoogenboom R, Schubert US (2013) A systematic investigation of the effect of side chain branching on the glass transition temperature and mechanical properties of aliphatic (co-)poly(2-oxazoline)s. Polymer 54:2036–2042CrossRefGoogle Scholar
  66. 66.
    Hoogenboom R, Thijs HML, Fijten MWM, Schubert US (2007) Synthesis, characterization, and cross-linking of a library of statistical copolymers based on 2-“soy alkyl”-2-oxazoline and 2-ethyl-2-oxazoline. J Polym Sci A Polym Chem 45:5371–5379CrossRefGoogle Scholar
  67. 67.
    Lambermont-Thijs HML, Fijten MWM, Van der Linden AJT, Van Lankvelt BM, Bloksma MM, Schubert US, Hoogenboom R (2011) Efficient cationic ring-opening polymerization of diverse cyclic imino ethers: unexpected copolymerization behavior. Macromolecules 44:4320–4325CrossRefGoogle Scholar
  68. 68.
    Hoogenboom R, Wiesbrock F, Leenen MAM, Van der Loop M, Van Nispen SFGM, Schubert US (2007) Kinetic investigations on microwave-assisted statistical terpolymerizations of 2-oxazoline monomers. Aust J Chem 60:656–661CrossRefGoogle Scholar
  69. 69.
    Hoogenboom R, Thijs HML, Fijten MWM, Van Lankvelt BM, Schubert US (2007) One-pot synthesis of 2-phenyl-2-oxazoline-containing quasi-diblock copoly(2-oxazoline)s under microwave irradiation. J Polym Sci A Polym Chem 45:416–422CrossRefGoogle Scholar
  70. 70.
    Lambermont-Thijs HML, Jochems MJHC, Hoogenboom R, Schubert US (2009) Synthesis and properties of gradient copolymers based on 2-phenyl-2-oxazoline and 2-nonyl-2-oxazoline. J Polym Sci A Polym Chem 47:6433–6440CrossRefGoogle Scholar
  71. 71.
    Lobert M, Hoogenboom R, Fustin C-A, Gohy J-F, Schubert US (2008) Amphiphilic gradient copolymers containing fluorinated 2-phenyl-2-oxazolines: microwave-assisted one-pot synthesis and self-assembly in water. J Polym Sci A Polym Chem 46:5859–5868CrossRefGoogle Scholar
  72. 72.
    Lava K, Verbraeken B, Hoogenboom R (2015) Poly(2-oxazoline)s and click chemistry: a versatile toolbox toward multi-functional polymers. Eur Polym J 65:98–111CrossRefGoogle Scholar
  73. 73.
    Luxenhofer R, Jordan R (2006) Click chemistry with poly(2-oxazoline)s. Macromolecules 39:3509–3516CrossRefGoogle Scholar
  74. 74.
    Lav T-X, Lemechko P, Renard E, Amiel C, Langlois V, Volet G (2013) Development of a new azido-oxazoline monomer for the preparation of amphiphilic graft copolymers by combination of cationic ring-opening polymerization and click chemistry. React Funct Polym 73:1001–1008CrossRefGoogle Scholar
  75. 75.
    Le Fer G, Amiel C, Volet G (2015) Copolymers based on azidopentyl-2-oxazoline: synthesis, characterization and LCST behavior. Eur Polym J 71:523–533CrossRefGoogle Scholar
  76. 76.
    Taubmann C, Luxenhofer R, Cesana S, Jordan R (2005) First aldehyde-functionalized poly(2-oxazoline)s for chemoselective ligation. Macromol Biosci 5:603–612CrossRefGoogle Scholar
  77. 77.
    Legros C, de Pauw-Gillet M-C, Tam KC, Lecommandoux S, Taton D (2015) Aldehyde-functional copolymers based on poly(2-oxazoline) for post-polymerization modification. Eur Polym J 62:322–330CrossRefGoogle Scholar
  78. 78.
    Kempe K, Vollrath A, Schaefer HW, Poehlmann TG, Biskup C, Hoogenboom R, Hornig S, Schubert US (2010) Multifunctional poly(2-oxazoline) nanoparticles for biological applications. Macromol Rapid Commun 31:1869–1873CrossRefGoogle Scholar
  79. 79.
    Mero A, Pasut G, Dalla Via L, Fijten MWM, Schubert US, Hoogenboom R, Veronese FM (2008) Synthesis and characterization of poly(2-ethyl-2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates. J Control Release 125:87–95CrossRefGoogle Scholar
  80. 80.
    Kempe K, Neuwirth T, Czaplewska J, Gottschaldt M, Hoogenboom R, Schubert US (2011) Poly(2-oxazoline) glycopolymers with tunable LCST behavior. Polym Chem 2:1737–1743CrossRefGoogle Scholar
  81. 81.
    Haensch C, Erdmenger T, Fijten MWM, Hoeppner S, Schubert US (2009) Fast surface modification by microwave assisted click reactions on silicon substrates. Langmuir 25(14):8019–8024CrossRefGoogle Scholar
  82. 82.
    Kempe K, Hoogenboom R, Schubert US (2011) A green approach for the synthesis and thiol-ene modification of alkene functionalized poly(2-oxazoline)s. Macromol Rapid Commun 32:1484–1489CrossRefGoogle Scholar
  83. 83.
    Schenk V, Ellmaier L, Rossegger E, Edler M, Griesser T, Weidinger G, Wiesbrock F (2012) Water-developable poly(2-oxazoline)-based negative photoresists. Macromol Rapid Commun 33:396–400CrossRefGoogle Scholar
  84. 84.
    Wiesbrock F, Stelzer F, Schenk V, Ellmaier L, Polymer Competence Center Leoben GmbH, Austria Technologie & Systemtechnik AG (2013) Patent WO 2013/036979Google Scholar
  85. 85.
    Petit C, Luef KP, Edler M, Griesser T, Kremsner JM, Stadler A, Grassl B, Reynaud S, Wiesbrock F (2015) Microwave-assisted syntheses in recyclable ionic liquids: photoresists based on renewable resources. ChemSusChem. doi: 10.1002/cssc.201500847 Google Scholar
  86. 86.
    Huang H, Hoogenboom R, Leenen MAM, Guillet P, Jonas AM, Schubert US, Gohy J-F (2006) Solvent induced morphological transistion in core-cross-linked block copolymer micelles. J Am Chem Soc 128:3784–3788CrossRefGoogle Scholar
  87. 87.
    Farrugia BL, Kempe K, Schubert US, Hoogenboom R, Dargaville TR (2013) Poly(2-oxazoline) hydrogels for controlled fibroblast attachment. Biomacromolecules 14:2724–2732CrossRefGoogle Scholar
  88. 88.
    Kelly AM, Hecke A, Wirnsberger B, Wiesbrock F (2011) Synthesis of poly(2-oxazoline)-based hydrogels with tailor-made swelling degrees capable of stimuli-triggered compound release. Macromol Rapid Commun 32:1815–1819CrossRefGoogle Scholar
  89. 89.
    Li T, Tang H, Wu P (2015) Structural investigation of thermo-responsive poly(2-isopropyl-2-oxazoline) hydrogel across the volume phase transition. Soft Matter 11:1911–1918CrossRefGoogle Scholar
  90. 90.
    Dargaville TR, Forster R, Farrugia BL, Kempe K, Voorhaar L, Schubert US, Hoogenboom R (2012) Poly(2-oxazoline) hydrogel monoliths via thiol-ene coupling. Macromol Rapid Commun 33:1695–1700CrossRefGoogle Scholar
  91. 91.
    Dargaville TR, Holier BG, Shokoohmand A, Hoogenboom R (2014) Poly(2-oxazoline) hydrogels as next generation three-dimensional cell supports. Cell Adh Migr 8(2):88–93CrossRefGoogle Scholar
  92. 92.
    Hartlieb M, Pretzel D, Kempe K, Fritzsche C, Paulus RM, Gottschaldt M, Schuber US (2013) Cationic poly(2-oxazoline) hydrogels for reversible DNA binding. Soft Matter 9:4693–4704CrossRefGoogle Scholar
  93. 93.
    Cesana S, Auernheimer J, Jordan R, Kessler H, Nuyken O (2006) First poly(2-oxazoline)s with pendant amino groups. Macromol Chem Phys 207:183–192CrossRefGoogle Scholar
  94. 94.
    Hartlieb M, Schubert S, Kempe K, Windhab N, Schubert US (2015) Stabilization of factor VIII by poly(2-oxazoline) hydrogels. J Polym Sci A Polym Chem 53:10–14CrossRefGoogle Scholar
  95. 95.
    Schenk V, Rossegger E, Ebner C, Bangerl F, Reichmann K, Hoffmann B, Höpfner M, Wiesbrock F (2014) RGD-functionalization of poly(2-oxazoline)-based networks for enhanced adhesion to cancer cells. Polymers 6:264–279CrossRefGoogle Scholar
  96. 96.
    Tauhardt L, Kempe K, Knop K, Altuntas E, Jäger M, Schubert S, Fischer D, Schubert US (2011) Linear polyethyleneimine: optimized synthesis and characterization – on the way to “pharmagrade” batches. Macromol Chem Phys 212:1918–1924Google Scholar
  97. 97.
    De la Rosa VR, Bauwens E, Monnery BD, De Geest BG, Hoogenboom R (2014) Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethlenimine copolymers. Polym Chem 5:4957–4964CrossRefGoogle Scholar
  98. 98.
    Van Kuringen HPC, Lenoir J, Adriaens E, Bender J, De Geest BG, Hoogenboom R (2012) Partial hydrolysis of poly(2-ethyl-2-oxazoline) and potential implications for biomedical applications? Macromol Biosci 12:1114–1123CrossRefGoogle Scholar
  99. 99.
    Lambermont-Thijs HML, Heuts JPA, Hoeppener S, Hoogenboom R, Schubert US (2011) Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles. Polym Chem 2:313–322CrossRefGoogle Scholar
  100. 100.
    Van Kuringen HPC, De la Rosa VR, Fijten MWM, Heuts JPA, Hoogenboom R (2012) Enhanced selectivity for the hydrolysis of block copoly(2-oxazoline)s in ethanol-water resulting in linear poly(ethylene imine) copolymers. Macromol Rapid Commun 33:827–832CrossRefGoogle Scholar
  101. 101.
    Kelly AM, Kaltenhauser V, Mühlbacher I, Rametsteiner K, Kren H, Slugovc C, Stelzer F, Wiesbrock F (2013) Poly(2-oxazoline)-derived contact biocides: contributions to the understanding of antimicrobial activity. Macromol Biosci 13:116–125CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Klaus P. Luef
    • 1
    • 2
  • Richard Hoogenboom
    • 3
  • Ulrich S. Schubert
    • 4
    • 5
  • Frank Wiesbrock
    • 1
    Email author
  1. 1.Polymer Competence Center Leoben GmbHLeobenAustria
  2. 2.Graz University of Technology, Institute for Chemistry and Technology of Materials, NAWI GrazGrazAustria
  3. 3.Supramolecular Chemistry Group, Department of Organic and Macromolecular ChemistryGhent UniversityGhentBelgium
  4. 4.Laboratory for Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
  5. 5.Jena Center for Soft Matter (JCSM), Friedrich Schiller University JenaJenaGermany

Personalised recommendations