Advertisement

Real-Time Fast Structuring of Polymers Using Synchrotron WAXD/SAXS Techniques

  • Giuseppe Portale
  • Enrico M. Troisi
  • Gerrit W. M. Peters
  • Wim Bras
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 277)

Abstract

In industrial processes, polymer melts are often exposed to a combination of fast cooling rates, high flow fields, and high pressures. The processing conditions have an ultimate impact on the structure that develops during cooling. The final structure at the nano- and microscopic level determines the properties of the final polymer product. Small and wide angle X-ray scattering and diffraction (SAXS/WAXD) are the best techniques for investigating in-situ and real-time fast polymer structuring at a scale ranging from 0.1 to 100 nm. This contribution reviews the main quantities that can be extracted from SAXS and WAXD experiments on semicrystalline polymers and shows the most recent results on real-time investigation of polymer structuring with millisecond time resolution. Examples of structuring during fast cooling, flow in confined geometry, and uniaxial stretching are discussed. Future directions for the use of synchrotron SAXS/WAXD to study fast polymer structuring are also discussed.

Keywords

Millisecond time resolution Polymer crystallization Processing SAXS Shear induced crystallization WAXS 

References

  1. 1.
    Keller A (1957) Philos Mag 2:1171CrossRefGoogle Scholar
  2. 2.
    Till PH (1957) J Polym Sci 24:301CrossRefGoogle Scholar
  3. 3.
    Kantz MR, Newman HD, Stigale FH (1972) J Appl Polym Sci 16:1249CrossRefGoogle Scholar
  4. 4.
    Katti SS, Schultz M (1982) Polym Eng Sci 22:1001CrossRefGoogle Scholar
  5. 5.
    Lauritzen JI Jr, Hoffman JD (1959) J Chem Phys 31:1680CrossRefGoogle Scholar
  6. 6.
    Keller A, Machin MJ (1967) J Macromol Sci Part B Phys 1:41CrossRefGoogle Scholar
  7. 7.
    Norton DR, Keller A (1985) Polymer 26:704CrossRefGoogle Scholar
  8. 8.
    Armistead K, Goldbeck-Wood G, Keller A (1992) Polymer crystallization theories. In: Armistead KA (ed) Macromolecules: synthesis, order and advanced properties, vol 100/1, Advances in polymer science. Springer, Berlin, pp 219–312CrossRefGoogle Scholar
  9. 9.
    Keller A, Goldbeck-Wood G, Hikosaka M (1993) Faraday Discuss 95:109CrossRefGoogle Scholar
  10. 10.
    Strobl G (2000) Eur Phys J E 3:165CrossRefGoogle Scholar
  11. 11.
    Strobl G (2006) Prog Polym Sci 31:398CrossRefGoogle Scholar
  12. 12.
    Okada T, Saito H, Inoue T (1992) Macromolecules 25:1908CrossRefGoogle Scholar
  13. 13.
    Lee CH, Saito H, Inoue T (1993) Macromolecules 26:6566CrossRefGoogle Scholar
  14. 14.
    Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M (1999) Macromolecules 32:8932CrossRefGoogle Scholar
  15. 15.
    Bulkin BJ, Lewin M, Kim J (1987) Macromolecules 20:830CrossRefGoogle Scholar
  16. 16.
    Bark M, Zachmann HG, Alamo R, Mandelkern L (1992) Makromol Chem 193:2363CrossRefGoogle Scholar
  17. 17.
    Bras W, Derbyshire GE, Ryan AJ, Mant GR, Felton A, Lewis RA, Hall CJ, Greaves GN (1993) Nucl Instrum Methods Phys Res, Sect A 326:587CrossRefGoogle Scholar
  18. 18.
    Wang Z-G, Hsiao BS, Sirota EB, Agarwal P, Srinivas S (2000) Macromolecules 33:978CrossRefGoogle Scholar
  19. 19.
    Heeley EL, Maidens AV, Olmsted PD, Bras W, Dolbnya IP, Fairclough JPA, Terrill NJ, Ryan AJ (2003) Macromolecules 36:3656CrossRefGoogle Scholar
  20. 20.
    Pogodina NV, Siddiquee SK, Van Egmond JW, Winter HH (1999) Macromolecules 32:1167CrossRefGoogle Scholar
  21. 21.
    Sasaki S, Tashiro K, Kobayashi M, Izumi Y, Kobayashi K (1999) Polymer 40:7125CrossRefGoogle Scholar
  22. 22.
    Bras W, Derbyshire GE, Bogg D, Cooke J, Elwell MJ, Komanschek BU, Naylor S, Ryan AJ (1995) Science 267:996CrossRefGoogle Scholar
  23. 23.
    Bryant GK, Gleeson HF, Ryan AJ, Fairclough JPA, Bogg D, Goossens JGP, Bras W (1998) Rev Sci Instrum 69:2114CrossRefGoogle Scholar
  24. 24.
    Urban V, Panine P, Ponchut C, Boesecke P, Narayanan T (2003) J Appl Crystallogr 36:809CrossRefGoogle Scholar
  25. 25.
    Kellermann G, Vicentin F, Tamura E, Rocha M, Tolentino H, Barbosa A, Craievich A, Torriani I (1997) J Appl Crystallogr 30:880CrossRefGoogle Scholar
  26. 26.
    Bras W, Dolbnya IP, Detollenaere D, van Tol R, Malfois M, Greaves GN, Ryan AJ, Heeley E (2003) J Appl Crystallogr 36:791CrossRefGoogle Scholar
  27. 27.
    Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H (2010) J Phys Conf Ser 247(1):012007. doi: 10.1088/1742-6596/247/1/012007 CrossRefGoogle Scholar
  28. 28.
    Kirby NM, Mudie ST, Hawley AM, Cookson DJ, Mertens HD, Cowieson N, Samardzic-Boban V (2013) J Appl Crystallogr 46:1670CrossRefGoogle Scholar
  29. 29.
    Keller A (1959) J Polym Sci 39:151CrossRefGoogle Scholar
  30. 30.
    Bassett DC, Hodge AM (1978) Polymer 19:469CrossRefGoogle Scholar
  31. 31.
    Keith HD, Padden FJ (1996) Macromolecules 29:7776CrossRefGoogle Scholar
  32. 32.
    Roozemond PC, van Drongelen M, Ma Z, Spoelstra AB, Hermida-Merino D, Peters GWM (2015) Macromol Rapid Commun 36:385CrossRefGoogle Scholar
  33. 33.
    Kumaraswamy G, Issaian AM, Kornfield JA (1999) Macromolecules 32:7537CrossRefGoogle Scholar
  34. 34.
    Fernandez-Ballester L, Gough T, Meneau F, Bras W, Ania F, Balta-Calleja FJ, Kornfield JA (2008) J Synchrotron Radiat 15:185CrossRefGoogle Scholar
  35. 35.
    Hsiao BS, Yang L, Somani RH, Avila-Orta CA, Zhu L (2005) Phys Rev Lett 94:117802CrossRefGoogle Scholar
  36. 36.
    Bunn CW, Holmes DR (1958) Discuss Faraday Soc 25:95CrossRefGoogle Scholar
  37. 37.
    Natta G, Corradini P (1960) Il Nuovo Cimento 1955–1965. 15:40Google Scholar
  38. 38.
    Balta-Calleja FJ, Vonk CG (1989) X-ray scattering of synthetic polymers. Elsevier, AmsterdamGoogle Scholar
  39. 39.
    Hermans JJ, Hermans PH, Vermaas D, Weidinger A (1946) Recl Trav Chim Pays-Bas 65:427CrossRefGoogle Scholar
  40. 40.
    Wilchinsky ZW (1960) J Appl Phys 31:1969CrossRefGoogle Scholar
  41. 41.
    Stein RS (1958) J Polym Sci 31:327CrossRefGoogle Scholar
  42. 42.
    Stein RS (1958) J Polym Sci 31:335CrossRefGoogle Scholar
  43. 43.
    Norris FH, Stein RS (1958) J Polym Sci 27:87CrossRefGoogle Scholar
  44. 44.
    Guinier A, Fournet G (1955) Small angle X-rays. Wiley, New YorkGoogle Scholar
  45. 45.
    Glatter O, Kratky O (1982) Small angle scattering. Academic, New YorkGoogle Scholar
  46. 46.
    Brumberger H (1994) Modern aspects of small-angle scattering. Springer, The NetherlandsGoogle Scholar
  47. 47.
    Zemb T, Lindner P (2002) Neutrons, X-rays and light: scattering methods applied to soft condensed matter, North-Holland delta series. Elsevier, AmsterdamGoogle Scholar
  48. 48.
    G. Porod (1952) Kolloid Z 125(1):51 doi:10.1007/BF01519615Google Scholar
  49. 49.
    Ryan AJ, Bras W, Mant GR, Derbyshire GE (1994) Polymer 35:4537CrossRefGoogle Scholar
  50. 50.
    Goderis B, Reynaers H, Koch MHJ, Mathot VBF (1999) J Polym Sci B Polym Phys 37:1715CrossRefGoogle Scholar
  51. 51.
    Porod G (1951) Colloid Polym Sci 124:83Google Scholar
  52. 52.
    Vonk CG (1973) J Appl Crystallogr 6:81CrossRefGoogle Scholar
  53. 53.
    Ciccariello S, Goodisman J, Brumberger H (1988) J Appl Crystallogr 21:117CrossRefGoogle Scholar
  54. 54.
    Ciccariello S (1985) Acta Crystallogr A 41:560CrossRefGoogle Scholar
  55. 55.
    Koberstein JT, Morra B, Stein RS (1980) J Appl Crystallogr 13:34CrossRefGoogle Scholar
  56. 56.
    Vonk CG (1978) J Appl Crystallogr 11:541CrossRefGoogle Scholar
  57. 57.
    Brämer R, Gerdes C, Wenig W (1983) Colloid Polym Sci 261:293CrossRefGoogle Scholar
  58. 58.
    Ruland W, Smarsly B (2004) J Appl Crystallogr 37:575CrossRefGoogle Scholar
  59. 59.
    Hosemann R, Bagchi SN (1962) Direct analysis of diffraction by matter. North-Holland, AmsterdamGoogle Scholar
  60. 60.
    Vonk CG, Kortleve G (1967) Kolloid Z Z Polym 220:19CrossRefGoogle Scholar
  61. 61.
    Strobl GR, Schneider M (1980) J Polym Sci Polym Phys Ed 18:1343CrossRefGoogle Scholar
  62. 62.
    Ruland W (1977) Colloid Polym Sci 255:417CrossRefGoogle Scholar
  63. 63.
    Stribeck N, Ruland W (1978) J Appl Crystallogr 11:535CrossRefGoogle Scholar
  64. 64.
    Stribeck N (2001) J Appl Crystallogr 34:496CrossRefGoogle Scholar
  65. 65.
    Debye P, Anderson HR Jr, Brumberger H (1957) J Appl Phys 28:679CrossRefGoogle Scholar
  66. 66.
    Debye P, Bueche AM (1949) J Appl Phys 20:518CrossRefGoogle Scholar
  67. 67.
    Keum JK, Zuo F, Hsiao BS (2008) Macromolecules 41:4766CrossRefGoogle Scholar
  68. 68.
    Avila-Orta CA, Burger C, Somani R, Yang L, Marom G, Medellin-Rodriguez FJ, Hsiao BS (2005) Polymer 46:8859CrossRefGoogle Scholar
  69. 69.
    Keum JK, Burger C, Hsiao BS, Somani R, Yang L, Chu B, Kolb R, Chen H, Lue CT (2005) Prog Colloid Polym Sci 130:114Google Scholar
  70. 70.
    Liu J, Pancera S, Boyko V, Shukla A, Narayanan T, Huber K (2010) Langmuir 26:17405CrossRefGoogle Scholar
  71. 71.
    Worgan JS, Lewis R, Fore NS, Sumner IL, Berry A, Parker B, D’Annunzio F, Martin-Fernandez ML, Towns-Andrews E, Harries JE, MantGR, Diakun GP, Bordas J (1990) Nucl Instrum Methods Phys Res Sect A 191:447Google Scholar
  72. 72.
    Lewis R, Worgan JS, Fore NS, d’Annunzio F, Hall C, Parker B (1991) Nucl Instrum Methods Phys Res, Sect A 310:70CrossRefGoogle Scholar
  73. 73.
    Henrich B, Bergamaschi A, Broennimann C, Dinapoli R, Eikenberry EF, Johnson I, Kobas M, Kraft P, Mozzanica A, Schmitt B (2009) Nucl Instrum Methods Phys Res, Sect A 607:247CrossRefGoogle Scholar
  74. 74.
    Labiche J-C, Mathon O, Pascarelli S, Newton MA, Ferre GG, Curfs C, Vaughan G, Homs A, Carreiras DF (2007) Rev Sci Instrum 78:091301CrossRefGoogle Scholar
  75. 75.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. John Wiley, New YorkGoogle Scholar
  76. 76.
    Kraft P, Bergamaschi A, Broennimann C, Dinapoli R, Eikenberry EF, Henrich B, Johnson I, Mozzanica A, Schlepütz CM, Willmott PR et al (2009) J Synchrotron Radiat 16:368CrossRefGoogle Scholar
  77. 77.
    Mathot V, Pyda M, Pijpers T, Poel GV, Van de Kerkhof E, Van Herwaarden S, Van Herwaarden F, Leenaers A (2011) Thermochim Acta 522:36CrossRefGoogle Scholar
  78. 78.
    Pijpers TF, Mathot VB, Goderis B, Scherrenberg RL, van der Vegte EW (2002) Macromolecules 35:3601CrossRefGoogle Scholar
  79. 79.
    Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Eur Phys J Spec Top 141:153CrossRefGoogle Scholar
  80. 80.
    Zhuravlev E, Schick C (2010) Thermochim Acta 505:1CrossRefGoogle Scholar
  81. 81.
    Zhuravlev E, Schick C (2010) Thermochim Acta 505:14CrossRefGoogle Scholar
  82. 82.
    Portale G, Cavallo D, Alfonso GC, Hermida-Merino D, van Drongelen M, Balzano L, Peters GWM, Goossens JGP, Bras W (2013) J Appl Crystallogr 46:1681CrossRefGoogle Scholar
  83. 83.
    Cavallo D, Azzurri F, Floris R, Alfonso GC, Balzano L, Peters GW (2010) Macromolecules 43:2890CrossRefGoogle Scholar
  84. 84.
    Cavallo D, Portale G, Balzano L, Azzurri F, Bras W, Peters GW, Alfonso GC (2010) Macromolecules 43:10208CrossRefGoogle Scholar
  85. 85.
    Cavallo D, Gardella L, Alfonso GC, Portale G, Balzano L, Androsch R (2011) Colloid Polym Sci 289:1073CrossRefGoogle Scholar
  86. 86.
    Mileva D, Cavallo D, Gardella L, Alfonso GC, Portale G, Balzano L, Androsch R (2011) Polym Bull 67:497CrossRefGoogle Scholar
  87. 87.
    Mileva D, Androsch R, Cavallo D, Alfonso GC (2012) Eur Polym J 48:1082CrossRefGoogle Scholar
  88. 88.
    McAllister PB, Carter TJ, Hinde RM (1978) J Polym Sci Polym Phys Ed 16:49CrossRefGoogle Scholar
  89. 89.
    Grange RA, Kiefer JM (1941) Trans ASM 29:85Google Scholar
  90. 90.
    Moniz BJ (1994) Metallurgy. American Technical, HomewoodGoogle Scholar
  91. 91.
    Davenport ES, Bain EC (1970) Metall Mater Trans B 1:3503Google Scholar
  92. 92.
    Bas C, Grillet AC, Thimon F, Alberola ND (1995) Eur Polym J 31:911CrossRefGoogle Scholar
  93. 93.
    Maffezzoli A, Kenny JM, Nicolais L (1993) J Mater Sci 28:4994CrossRefGoogle Scholar
  94. 94.
    Strobl GR, Strobl GR (1997) The physics of polymers. Springer, BerlinCrossRefGoogle Scholar
  95. 95.
    Muthukumar M (2004) Adv Chem Phys 128:1Google Scholar
  96. 96.
    Libster D, Aserin A, Garti N (2007) Polym Adv Technol 18:685CrossRefGoogle Scholar
  97. 97.
    Gahleitner M, Grein C, Kheirandish S, Wolfschwenger J (2011) Int Polym Process 26:2CrossRefGoogle Scholar
  98. 98.
    Haas TW, Maxwell B (1969) Polym Eng Sci 9:225CrossRefGoogle Scholar
  99. 99.
    Wolkowicz MD (1978) J Polym Sci Polym Symp 63(1):365–382. doi: 10.1002/polc.5070630129 CrossRefGoogle Scholar
  100. 100.
    Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E (1993) Int Polym Process 8:236CrossRefGoogle Scholar
  101. 101.
    Balzano L, Rastogi S, Peters GW (2009) Macromolecules 42:2088CrossRefGoogle Scholar
  102. 102.
    Ma Z, Balzano L, van Erp T, Portale G, Peters GW (2013) Macromolecules 46:9249CrossRefGoogle Scholar
  103. 103.
    Housmans J-W, Balzano L, Santoro D, Peters GWM, Meijer HEH (2009) Int Polym Process 24:185CrossRefGoogle Scholar
  104. 104.
    Troisi EM, Portale G, Ma Z, van Drongelen M, Hermida-Merino D, Peters GWM (2015) Macromolecules 48(8):2551–2560CrossRefGoogle Scholar
  105. 105.
    Barham PJ, Keller A (1985) J Mater Sci 20:2281CrossRefGoogle Scholar
  106. 106.
    Hill MJ, Barham PJ, Keller A (1980) Colloid Polym Sci 258:1023CrossRefGoogle Scholar
  107. 107.
    Wunderlich B (1980) Macromolecular physics. Elsevier, AmsterdamGoogle Scholar
  108. 108.
    Smith P, Lemstra PJ (1980) J Mater Sci 15:505CrossRefGoogle Scholar
  109. 109.
    Cui K, Meng L, Tian N, Zhou W, Liu Y, Wang Z, He J, Li L (2012) Macromolecules 45:5477CrossRefGoogle Scholar
  110. 110.
    Liu D, Tian N, Cui K, Zhou W, Li X, Li L (2013) Macromolecules 46:3435CrossRefGoogle Scholar
  111. 111.
    Sentmanat ML (2004) Rheol Acta 43:657CrossRefGoogle Scholar
  112. 112.
    Stellamanns E, Meissner D, Lohmann M, Struth B (2013) J Phys Conf Ser 425:202007. doi: 10.1088/1742-6596/425/20/202007 CrossRefGoogle Scholar
  113. 113.
    Struth B, Hyun K, Kats E, Meins T, Walther M, Wilhelm M, Grübel G (2011) Langmuir 27:2880CrossRefGoogle Scholar
  114. 114.
    Pulamagatta B, Ostas E, Herbst F, Struth B, Binder WH (2012) Eur Polym J 48:1127CrossRefGoogle Scholar
  115. 115.
    Lettinga MP, Holmqvist P, Ballesta P, Rogers S, Kleshchanok D, Struth B (2012) Phys Rev Lett 109:246001CrossRefGoogle Scholar
  116. 116.
    Pogodina NV, Lavrenko VP, Srinivas S, Winter HH (2001) Polymer 42:9031CrossRefGoogle Scholar
  117. 117.
    Housmans J-W, Steenbakkers RJ, Roozemond PC, Peters GW, Meijer HE (2009) Macromolecules 42:5728CrossRefGoogle Scholar
  118. 118.
    van Drongelen M, Cavallo D, Balzano L, Portale G, Vittorias I, Bras W, Alfonso GC, Peters GW (2014) Macromol Mater Eng 299:1494CrossRefGoogle Scholar
  119. 119.
    Russell TP, Koberstein JT (1985) J Polym Sci Polym Phys Ed 23:1109CrossRefGoogle Scholar
  120. 120.
    Koberstein JT, Russell TP (1986) Macromolecules 19:714CrossRefGoogle Scholar
  121. 121.
    Bras W, Ryan AJ (1998) Adv Colloid Interface Sci 75:1CrossRefGoogle Scholar
  122. 122.
    Semmler K, Meyer HW, Quinn PJ (2000) Biochim Biophys Acta Biomembr 1509:385CrossRefGoogle Scholar
  123. 123.
    Turković A, Dubček P, Juraić K, Bernstorff S, Buljan M (2013) Am J Nanosci Nanotechnol 1:6CrossRefGoogle Scholar
  124. 124.
    van Drongelen M, Meijer-Vissers T, Cavallo D, Portale G, Poel GV, Androsch R (2013) Thermochim Acta 563:33CrossRefGoogle Scholar
  125. 125.
    Rosenthal M, Doblas D, Hernandez JJ, Odarchenko YI, Burghammer M, Di Cola E, Spitzer D, Antipov AE, Aldoshin LS, Ivanov DA (2014) J Synchrotron Radiat 21:223CrossRefGoogle Scholar
  126. 126.
    Baeten D, Mathot VB, Pijpers TF, Verkinderen O, Portale G, Van Puyvelde P, Goderis B (2015) Macromol Rapid Commun 36(12):1184–1191CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giuseppe Portale
    • 1
  • Enrico M. Troisi
    • 2
  • Gerrit W. M. Peters
    • 2
  • Wim Bras
    • 3
  1. 1.Department of Polymer ChemistryZernike Institute for Advanced Materials, University of GroningenGroningenThe Netherlands
  2. 2.Department of Mechanical EngineeringMaterials Technology Institute, Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.DUBBLE CRG BM26@ESRF, Netherlands Organization for Scientific Research (NWO), European Synchrotron Radiation FacilityGrenoble CedexFrance

Personalised recommendations