Polymer Crystallization I pp 257-288

Part of the Advances in Polymer Science book series (POLYMER, volume 276)

| Cite as

Crystal Nucleation of Polymers at High Supercooling of the Melt

Chapter

Abstract

Analysis of the crystallization kinetics of numerous polymers has revealed a bimodal dependence of the gross crystallization rate on temperature, often leading to the occurrence of two crystallization-rate maxima at widely different temperatures. This review discusses possible reasons for this observation, including temperature-controlled changes in the mechanism of primary crystal nucleation, activation of growth at different crystal faces, and formation of different crystal polymorphs as a result of variation of the supercooling. It is suggested that crystallization proceeds via homogeneous crystal nucleation at high supercooling of the melt, which is supported by estimation of the nucleation density from morphological analyses, crystallization experiments performed on heterogeneity-free droplets, and a link between the time scales of molecular relaxations in the glassy state and primary crystal nucleation. The final part of this review presents an example of the application of Tammann’s nuclei development method to obtain nucleation rates in polymer glasses.

Keywords

Crystal morphology Homogenous crystal nucleation Nucleation density Nucleation rate Tammann’s nuclei development method 

References

  1. 1.
    Hoffmann JD, Davis GT, Lauritzen JI Jr (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay HB (ed) Treatise on solid state chemistry, crystalline and noncrystalline solids, vol 3. Plenum, New YorkGoogle Scholar
  2. 2.
    Wunderlich B (1976) Crystal nucleation, growth, annealing, vol 2, Macromolecular physics. Academic, New YorkGoogle Scholar
  3. 3.
    Becker R (1938) Die Keimbildung bei der Ausscheidung von metallischen Mischkristallen. Ann Phys 32:128–140CrossRefGoogle Scholar
  4. 4.
    Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73CrossRefGoogle Scholar
  5. 5.
    Turnbull D (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18:198–203CrossRefGoogle Scholar
  6. 6.
    Binsbergen FL (1977) Natural and artificial heterogeneous nucleation in polymer crystallization. J Polym Sci Polym Symp 59:11–27CrossRefGoogle Scholar
  7. 7.
    Hoffman JD, Lauritzen JI Jr (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Natl Bur Stand 65A:297–336CrossRefGoogle Scholar
  8. 8.
    Hoffman JD (1964) Theoretical aspects of polymer crystallization with chain folds: bulk polymers. SPE Trans 4:315–362Google Scholar
  9. 9.
    Lauritzen JI Jr, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44:297–336CrossRefGoogle Scholar
  10. 10.
    Wunderlich B, Mehta A (1974) Macromolecular nucleation. J Polym Sci Polym Phys 12:255–263CrossRefGoogle Scholar
  11. 11.
    Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization? Eur Phys J E3:165–183Google Scholar
  12. 12.
    Strobl G (2005) A thermodynamic multiphase scheme treating polymer crystallization and melting. Eur Phys J E18:295–309Google Scholar
  13. 13.
    Strobl G (2006) Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31:398–442CrossRefGoogle Scholar
  14. 14.
    Long Y, Shanks RA, Stachurski ZH (1995) Kinetics of polymer crystallization. Prog Polym Sci 20:651–701CrossRefGoogle Scholar
  15. 15.
    Booth A, Hay JN (1969) The use of differential scanning calorimetry to study polymer crystallization kinetics. Polymer 10:95–104CrossRefGoogle Scholar
  16. 16.
    Chan TW, Isayev AI (1994) Quiescent polymer crystallization: modeling and measurements. Polym Eng Sci 34:461–471CrossRefGoogle Scholar
  17. 17.
    Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test 26:222–231CrossRefGoogle Scholar
  18. 18.
    Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  19. 19.
    Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  20. 20.
    Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys 9:177–183CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and K g) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25:733–738CrossRefGoogle Scholar
  22. 22.
    Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63CrossRefGoogle Scholar
  23. 23.
    Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7CrossRefGoogle Scholar
  24. 24.
    Minakov AA, Adamovsky SA, Schick C (2005) Non adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432:177–185CrossRefGoogle Scholar
  25. 25.
    Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, BerlinGoogle Scholar
  26. 26.
    Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberg RL, van der Vegte EW (2002) High-speed calorimetry for the study of the kinetics of (de)vitrification, crystallization, and melting of macromolecules. Macromolecules 35:3601–3613CrossRefGoogle Scholar
  27. 27.
    Kolesov IS, Androsch R, Radusch HJ (2004) Non-isothermal crystallization of polyethylenes as function of cooling rate and concentration of short chain branching. J Therm Anal Calorim 78:885–895CrossRefGoogle Scholar
  28. 28.
    Ding Z, Spruiell JE (1996) An experimental method for studying nonisothermal crystallization of polymers at very high cooling rates. J Polym Sci Polym Phys 34:2783–2804CrossRefGoogle Scholar
  29. 29.
    Boyer SAE, Haudin JM (2010) Crystallization of polymers at constant and high cooling rates: a new hot-stage microscopy set-up. Polym Test 29:445–452CrossRefGoogle Scholar
  30. 30.
    Märtson T, Ots A, Krumme A, Lohmus A (2010) Development of a faster hot-stage for microscopy studies of polymer crystallization. Polym Test 29:127–131CrossRefGoogle Scholar
  31. 31.
    Kamal MR, Chu E (1983) Isothermal and non-isothermal crystallization of polyethylene. Polym Eng Sci 23:27–31CrossRefGoogle Scholar
  32. 32.
    van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:46–52CrossRefGoogle Scholar
  33. 33.
    Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78:073902CrossRefGoogle Scholar
  34. 34.
    De Santis S, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031CrossRefGoogle Scholar
  35. 35.
    Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:875–881CrossRefGoogle Scholar
  36. 36.
    van Drongelen M, Meijer-Vissers T, Cavallo D, Portale G, Vanden Poel G, Androsch R (2013) Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter. Thermochim Acta 563:33–37CrossRefGoogle Scholar
  37. 37.
    Rhoades AM, Williams JL, Androsch R (2015) Crystallization of polyamide 66 at processing-relevant cooling conditions and at high supercooling. Thermochim Acta 603:103–109CrossRefGoogle Scholar
  38. 38.
    Mollova A, Androsch R, Mileva D, Schick C, Benhamida A (2013) Effect of supercooling on crystallization of polyamide 11. Macromolecules 46:828–835CrossRefGoogle Scholar
  39. 39.
    Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML et al (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci Polym Phys 44:1364–1377CrossRefGoogle Scholar
  40. 40.
    Schawe JEK (2014) Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Calorim 116:1165–1173CrossRefGoogle Scholar
  41. 41.
    Androsch R, Rhoades AM, Stolte I, Schick C (2015) Density of heterogeneous and homogeneous crystal nuclei in poly(butylene terephthalate). Eur Polym J 66:180–189CrossRefGoogle Scholar
  42. 42.
    Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(ε-caprolactone). Polymer 52:1983–1997CrossRefGoogle Scholar
  43. 43.
    Wurm A, Zhuravlev E, Eckstein K, Jehnichen D, Pospiech D, Androsch R, Wunderlich B, Schick C (2012) Crystallization and homogeneous nucleation kinetics of poly(ε-caprolactone) (PCL) with different molar masses. Macromolecules 45:3816–3828CrossRefGoogle Scholar
  44. 44.
    Mileva D, Androsch R (2012) Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Colloid Polym Sci 290:465–471CrossRefGoogle Scholar
  45. 45.
    Cavallo D, Gardella L, Alfonso GC, Mileva D, Androsch R (2012) Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher α-olefins. Polymer 53:4429–4437CrossRefGoogle Scholar
  46. 46.
    Supaphol P, Spruiell JE (2001) Isothermal melt- and cold-crystallization kinetics and subsequent melting behavior in syndiotactic polypropylene: a differential scanning calorimetry study. Polymer 42:699–712CrossRefGoogle Scholar
  47. 47.
    Stolte I, Androsch R, Di Lorenzo ML, Schick C (2013) Effect of aging the glass of isotactic polybutene-1 on Form II nucleation and cold-crystallization. J Phys Chem B117:15196–15203CrossRefGoogle Scholar
  48. 48.
    Keller A (1955) The spherulitic structure of crystalline polymers. Part I. Investigations with the polarizing microscope. J Polym Sci 17:291–308CrossRefGoogle Scholar
  49. 49.
    Keller A (1955) The spherulitic structure of crystalline polymers. Part II. The problem of molecular orientation in polymer spherulites. J Polym Sci 17:351–364CrossRefGoogle Scholar
  50. 50.
    Keller A, Waring JRS (1955) The spherulitic structure of crystalline polymers. Part III. Geometrical factors in spherulitic growth and the fine‐structure. J Polym Sci 17:447–472CrossRefGoogle Scholar
  51. 51.
    Magill JH (2001) Review spherulites: a personal perspective. J Mater Sci 36:3143–3164CrossRefGoogle Scholar
  52. 52.
    Roche EJ, Stein RS, Thomas EL (1980) Electron microscopy study of the structure of normal and abnormal poly(butylene terephthalate) spherulites. J Polym Sci Polym Phys 18:1145–1158CrossRefGoogle Scholar
  53. 53.
    Stein RS, Misra A (1980) Morphological studies on poly(butylene terephthalate). J Polym Sci Polym Phys 18:327–342CrossRefGoogle Scholar
  54. 54.
    Piccarolo S (1992) Morphological changes in isotactic polypropylene as a function of cooling rate. J Macromol Sci Phys B31:501–511CrossRefGoogle Scholar
  55. 55.
    Zia Q, Androsch R, Radusch HJ, Piccarolo S (2006) Morphology, reorganization, and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172CrossRefGoogle Scholar
  56. 56.
    Zia Q, Androsch R, Radusch HJ (2010) Effect of structure at the micrometer and nanometer length scales on the light transmission of isotactic polypropylene. J Appl Polym Sci 117:1013–1020CrossRefGoogle Scholar
  57. 57.
    Mileva D, Zia Q, Androsch R, Radusch HJ, Piccarolo S (2009) Mesophase formation in poly(propylene-ran-1-butene) by rapid cooling. Polymer 50:5482–5489CrossRefGoogle Scholar
  58. 58.
    Mileva D, Androsch R, Radusch HJ (2009) Effect of structure on light transmission in isotactic polypropylene and random propylene-1-butene copolymers. Polym Bull 62:561–571CrossRefGoogle Scholar
  59. 59.
    Mileva D, Kolesov I, Androsch R (2012) Morphology of cold-ordered polyamide 6. Colloid Polym Sci 290:971–978CrossRefGoogle Scholar
  60. 60.
    Mileva D, Androsch R, Zhuravlev E, Schick C (2012) Morphology of mesophase and crystals of polyamide 6 prepared in a fast scanning chip calorimeter. Polymer 53:3994–4001CrossRefGoogle Scholar
  61. 61.
    Wunderlich B (1973) Crystal structure, morphology defects, vol 1, Macromolecular physics. Academic, New YorkGoogle Scholar
  62. 62.
    Gezovich DM, Geil PH (1968) Morphology of quenched polypropylene. Polym Eng Sci 8:202–209CrossRefGoogle Scholar
  63. 63.
    Hsu CC, Geil PH, Miyaji H, Asai K (1983) Structure and properties of polybutylene crystallized from the glassy state. II. Electron microscopy. J Macromol Sci Phys B22:489–496Google Scholar
  64. 64.
    Yeh GSY, Geil PH (1967) Crystallization of polyethylene terephthalate from the glassy state. J Macromol Sci Phys B1:235–249CrossRefGoogle Scholar
  65. 65.
    Meyer M, Van der Sande J, Uhlmann DR (1978) On the structure of glassy polymers. VI. Electron microscopy of polycarbonate, poly(ethylene terephthalate), poly(vinyl chloride), and polystyrene. J Polym Sci Polym Phys 16:2005–2014CrossRefGoogle Scholar
  66. 66.
    Kanig G (1983) Application of the short-time staining for the electron microscopic investigation of the crystallization of polyethylene. Colloid Polym Sci 261:373–374CrossRefGoogle Scholar
  67. 67.
    Caldas V, Brown GR, Nohr RS, MacDonald JG, Raboin LE (1994) The structure of the mesomorphic phase of quenched isotactic polypropylene. Polymer 35:899–907CrossRefGoogle Scholar
  68. 68.
    Ogawa T, Miyaji M, Asai K (1985) Nodular structure of polypropylene. J Phys Soc Jpn 54:3668–3670CrossRefGoogle Scholar
  69. 69.
    Wang ZG, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Cheng SZD et al (2001) Phase transformation in quenched mesomorphic isotactic polypropylene. Polymer 42:7561–7566CrossRefGoogle Scholar
  70. 70.
    Grubb DT, Yoon DY (1986) Morphology of quenched and annealed isotactic polypropylene. Polym Commun 27:84–88Google Scholar
  71. 71.
    Zia Q, Androsch R, Radusch HJ, Ingolič E (2008) Crystal morphology of rapidly cooled isotactic polypropylene: a comparative study by TEM and AFM. Polym Bull 60:791–798CrossRefGoogle Scholar
  72. 72.
    Miyamoto Y, Fukao K, Yoshida T, Tsurutani N, Miyaji H (2000) Structure formation of isotactic polypropylene from the glass. J Phys Soc Jpn 69:1735–1740CrossRefGoogle Scholar
  73. 73.
    Manabe N, Yokota Y, Minami H, Uegomori Y, Komoto T (2002) A TEM study on melt-crystallized poly(butylene terephthalate). J Electron Microsc 51:11–19CrossRefGoogle Scholar
  74. 74.
    Schaper A, Hirte R, Ruscher C, Hillebrand R, Walenta E (1986) The electron microscope characterization of the fine structure of nylon 6: I. The supermolecular structure in melt-cast, isotropic bulk material. Colloid Polym Sci 264:649–658CrossRefGoogle Scholar
  75. 75.
    Cormia RL, Price FP, Turnbull D (1962) Kinetics of crystal nucleation in polyethylene. J Chem Phys 37:1333–1340CrossRefGoogle Scholar
  76. 76.
    Cormia RL, Turnbull D (1961) Kinetics of crystal nucleation in some normal alkane liquids. J Chem Phys 34:820–827CrossRefGoogle Scholar
  77. 77.
    Burns JR, Turnbull D (1966) Kinetics of crystal nucleation in molten isotactic polypropylene. J Appl Phys 37:4021–4026CrossRefGoogle Scholar
  78. 78.
    Koutsky JA, Walton AG, Baer E (1967) Nucleation of polymer droplets. J Appl Phys 38:1832–1839CrossRefGoogle Scholar
  79. 79.
    Gornick F, Ross GS, Frolen LJ (1967) Crystal nucleation in polyethylene: the droplet experiment. J Polym Sci Polym Symp 18:79–91CrossRefGoogle Scholar
  80. 80.
    Langhe DS, Hiltner A, Baer E (2011) Transformation of isotactic polypropylene droplets from the mesophase into the α-Phase. J Polym Sci Polym Phys 49:1672–1682CrossRefGoogle Scholar
  81. 81.
    Jin Y, Hiltner A, Baer E, Masirek R, Piorkowska E, Galeski A (2006) Formation and transformation of smectic polypropylene nanodroplets. J Polym Sci Polym Phys 44:1795–1803CrossRefGoogle Scholar
  82. 82.
    Ibarretxe J, Groeninckx G, Bremer L, Mathot VBF (2009) Quantitative evaluation of fractionated and homogeneous nucleation of polydisperse distributions of water-dispersed maleic anhydride-grafted-polypropylene micro- and nano-sized droplets. Polymer 50:4584–4595CrossRefGoogle Scholar
  83. 83.
    Salmerón Sánchez M, Mathot V, Vanden Poel G, Groeninckx G, Bruls W (2006) Crystallization of polyamide confined in sub-micrometer droplets dispersed in a molten polyethylene matrix. J Polym Sci Polym Phys 44:815–825CrossRefGoogle Scholar
  84. 84.
    Mileva D, Androsch R, Cavallo D, Alfonso GC (2012) Structure formation of random isotactic copolymers of propylene and 1-hexene or 1-octene at rapid cooling. Eur Polym J 48:1082–1092CrossRefGoogle Scholar
  85. 85.
    Zia Q, Androsch R (2009) Effect of atomic force microscope tip geometry on the evaluation of the crystal size of semicrystalline polymers. Meas Sci Technol 20:097003 (4pp)CrossRefGoogle Scholar
  86. 86.
    Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53:277–282CrossRefGoogle Scholar
  87. 87.
    Androsch R, Di Lorenzo ML (2013) Crystal nucleation in glassy poly(l-lactic acid). Macromolecules 46:6048–6056CrossRefGoogle Scholar
  88. 88.
    Androsch R, Di Lorenzo ML (2013) Kinetics of crystal nucleation of poly(l-lactic acid). Polymer 54:6882–6885CrossRefGoogle Scholar
  89. 89.
    Illers KH (1971) Geordnete Strukturen in “amorphem” Polyäthylenterephthalat. Kolloid Z Z Polym 245:393–398CrossRefGoogle Scholar
  90. 90.
    Androsch R, Schick C, Schmelzer JWP (2014) Sequence of enthalpy relaxation, homogeneous crystal nucleation and crystal growth in glassy polyamide 6. Eur Polym J 53:100–108CrossRefGoogle Scholar
  91. 91.
    Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169:211–266CrossRefGoogle Scholar
  92. 92.
    Moynihan CT, Easteal AJ, De Bolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16CrossRefGoogle Scholar
  93. 93.
    Moynihan CT, Easteal AJ, Wilder J, Tucker J (1974) Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem 78:2673–2677CrossRefGoogle Scholar
  94. 94.
    Wunderlich B (2003) Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450CrossRefGoogle Scholar
  95. 95.
    Schick C, Krämer L, Mischok W (1985) Der Einfluß struktureller Veränderungen auf den Glasübergang in teilkristallinem Polyethylenterephthalat I. Isotherme Kristallisation. Acta Polym 36:47–53CrossRefGoogle Scholar
  96. 96.
    Schick C, Fabry F, Schnell U, Stoll G, Deutschbein L, Mischok W (1988) Der Einfluß struktureller Veränderungen auf den Glasübergang in teilkristallinem Poly(ethylenterephthalat) 2. Charakterisierung der übermolekularen Struktur. Acta Polym 39:705–710CrossRefGoogle Scholar
  97. 97.
    Schick C, Wigger J, Mischok W (1990) Der Einfluß struktureller Veränderungen auf den Glasübergang in teilkristallinem Poly(ethylenterephthalat) 3. Der Glasübergang in den zwischenlamellaren Bereichen. Acta Polym 41:137–142CrossRefGoogle Scholar
  98. 98.
    Androsch R, Wunderlich B (2005) The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer 46:12556–12566CrossRefGoogle Scholar
  99. 99.
    Zia Q, Mileva D, Androsch R (2008) The rigid amorphous fraction in isotactic polypropylene. Macromolecules 41:8095–8102CrossRefGoogle Scholar
  100. 100.
    Kolesov I, Androsch R (2012) The rigid amorphous fraction of cold-crystallized polyamide 6. Polymer 53:4070–4077CrossRefGoogle Scholar
  101. 101.
    12th Laehnwitz Seminar on Calorimetry: Interplay between nucleation, crystallization, and the glass transition, 10–15 June 2012, Rostock, Germany.Google Scholar
  102. 102.
    Michell RM, Blaszczyk-Lezak I, Mijangos C, Müller AJ (2013) Confinement effects on polymer crystallization: from droplets to alumina nanopores. Polymer 54:4059–4077CrossRefGoogle Scholar
  103. 103.
    Carvalho JL, Dalnoki-Veress K (2010) Homogeneous bulk, surface, and edge nucleation in crystalline nanodroplets. Phys Rev Lett 105:237801CrossRefGoogle Scholar
  104. 104.
    Hayes NW, Beamson G, Clark DT, Law DSL, Raval R (1996) Crystallization of PET from the amorphous state: observation of different rates for surface and bulk using XPS and FTIR. Surf Interface Anal 24:723–728CrossRefGoogle Scholar
  105. 105.
    De Cupere VM, Rouxhet PG (2002) Surface crystallization of poly(ethylene terephthalate) studied by atomic force microscopy. Polymer 43:5571–5576CrossRefGoogle Scholar
  106. 106.
    Jukes PC, Das A, Durell M, Trolley D, Higgins AM, Geoghegan M, MacDonald JE, Jones RAL, Brown S, Thompson P (2005) Kinetics of surface crystallization in thin films of poly(ethylene terephthalate). Macromolecules 38:2315–2320CrossRefGoogle Scholar
  107. 107.
    Durell M, MacDonald JE, Trolley D, Wehrum A, Jukes PC, Jones RAL, Walker CJ, Brown S (2002) The role of surface-induced ordering in the crystallization of PET films. Europhys Lett 58:844–850CrossRefGoogle Scholar
  108. 108.
    Zia Q, Ingolič E, Androsch R (2010) Surface and bulk morphology of cold-crystallized poly(ethylene terephthalate). Colloid Polym Sci 288:819–825CrossRefGoogle Scholar
  109. 109.
    Wunderlich B, Grebowicz J (1984) Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules. Adv Polym Sci 60(61):1–59CrossRefGoogle Scholar
  110. 110.
    Auriemma F, De Rosa C, Corradini P (2005) Solid mesophases in semicrystalline polymers: structural analysis by diffraction techniques. Adv Polym Sci 181:1–74CrossRefGoogle Scholar
  111. 111.
    Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662CrossRefGoogle Scholar
  112. 112.
    Natta G, Peraldo M, Corradini P (1959) Smectic mesomorphic form of isotactic polypropylene. Rend Accad Naz Lincei 26:14–17Google Scholar
  113. 113.
    Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cimento 15(Suppl):40–51CrossRefGoogle Scholar
  114. 114.
    Natta G (1960) Progress in the stereospecific polymerization. Makromol Chem 35:94–131CrossRefGoogle Scholar
  115. 115.
    Grebowicz J, Lau SF, Wunderlich B (1984) The thermal properties of polypropylene. J Polym Sci Polym Symp 71:19–37CrossRefGoogle Scholar
  116. 116.
    Mileva D, Androsch R, Zhuravlev E, Schick C (2009) The temperature of melting of the mesophase of isotactic polypropylene. Macromolecules 42:7275–7278CrossRefGoogle Scholar
  117. 117.
    Schaefer D, Spiess HW, Suter UW, Fleming WW (1990) Two-dimensional solid-state NMR studies of ultraslow chain motion: glass transition in atactic poly(propylene) versus helical jumps in isotactic poly(propylene). Macromolecules 23:3431–3439CrossRefGoogle Scholar
  118. 118.
    Bunn CW, Garner EV (1947) The crystal structures of two polyamides (‘nylons’). Proc R Soc Lond A Math Phys Sci 18:39–68CrossRefGoogle Scholar
  119. 119.
    Aelion R (1948) Preparation and structure of some new types of polyamides. Ann Chim Appl 3:5–61Google Scholar
  120. 120.
    Slichter WP (1959) Crystal structures in polyamides made from ω-amino acids. J Polym Sci 36:259–266CrossRefGoogle Scholar
  121. 121.
    Little K (1959) Investigation of Nylon “texture” by X-ray diffraction. Br J Appl Phys 10:225–230CrossRefGoogle Scholar
  122. 122.
    Advanced Thermal Analysis System (ATHAS) Data Base. Implemented into SpringerMaterials, available at materials.springer.com
  123. 123.
    Wunderlich B (2008) Thermal properties of aliphatic Nylons and their link to crystal structure and molecular motion. J Therm Anal Calorim 93:7–17CrossRefGoogle Scholar
  124. 124.
    Schmidt GF, Stuart HA (1958) Gitterstrukturen mit räumlichen Wasserstoffbrückensystemen und Gitterumwandlungen bei Polyamiden. Z Naturforsch A 13:222–225Google Scholar
  125. 125.
    Ziabicki A (1959) Über die mesomorphe β-Form von Polycapronamid und ihre Umwandlung in die kristalline Form α. Kolloid Z 167:132–141CrossRefGoogle Scholar
  126. 126.
    Cavallo D, Gardella L, Alfonso GC, Portale G, Balzano L, Androsch R (2011) Effect of cooling rate on the crystal/mesophase polymorphism of polyamide 6. Colloid Polym Sci 289:1073–1079CrossRefGoogle Scholar
  127. 127.
    Haberkorn H, Illers KH, Simak P (1979) Molekülordnung und Kristallinität in Polyhexamethylenadipamid. Colloid Polym Sci 257:820–840CrossRefGoogle Scholar
  128. 128.
    Brill R (1942) Über das Verhalten von Polyamiden beim Erhitzen. J Prakt Chem 161:49–64CrossRefGoogle Scholar
  129. 129.
    Brill R (1956) Beziehungen zwischen Wasserstoffbindung und einigen Eigenschaften von Polyamiden. Makromol Chem 18:294–309CrossRefGoogle Scholar
  130. 130.
    Androsch R, Stolp M, Radusch HJ (1996) Crystallization of amorphous polyamides from the glassy state. Acta Polym 47:99–104CrossRefGoogle Scholar
  131. 131.
    Fichera A, Malta V, Marega C, Zannetti R (1988) Temperature dependence of the polymorphous phases of nylon 6. Makromol Chem 189:1561–1567CrossRefGoogle Scholar
  132. 132.
    Threlfall T (2003) Structural and thermodynamic explanations of Ostwald’s rule. Org Process Res Dev 7:1017–1027CrossRefGoogle Scholar
  133. 133.
    Yokouchi M, Sakakibara Y, Chatani Y, Tadokori H, Tanaka T, Yoda K (1976) Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules 9:266–273CrossRefGoogle Scholar
  134. 134.
    Son K (2000) Formation of polymorphic structure and its influences on properties in uniaxially stretched polybutylene terephthalate films. J Appl Polym Sci 78:412–423CrossRefGoogle Scholar
  135. 135.
    Bornschlegl E, Bonart R (1980) Small angle X-ray scattering studies of poly(ethylene terephthalate) and poly(butylene terephthalate). Colloid Polym Sci 258:319–331CrossRefGoogle Scholar
  136. 136.
    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRefGoogle Scholar
  137. 137.
    Cocca M, Androsch R, Righetti MC, Malinconico M, Di Lorenzo ML (2014) Conformationally disordered crystals and their influence on material properties: the cases of isotactic polypropylene, isotactic poly(1-butene), and poly(l-lactic acid). J Mol Struct 1078:114–132CrossRefGoogle Scholar
  138. 138.
    De Santis P, Kovacs AJ (1968) Molecular conformation of poly(S-lactic acid). Biopolymers 6:299–306CrossRefGoogle Scholar
  139. 139.
    Kalb B, Pennings AJ (1980) General crystallization behaviour of poly(L-lactic acid). Polymer 21:607–612CrossRefGoogle Scholar
  140. 140.
    Hoogsteen W, Postema AR, Pennings AJ, Ten Brinke G, Zugenmaier P (1990) Crystal structure, conformation, and morphology of solution-spun poly(L-lactide) fibers. Macromolecules 23:634–642CrossRefGoogle Scholar
  141. 141.
    Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(l-lactide). J Appl Polym Sci 107:54–62CrossRefGoogle Scholar
  142. 142.
    Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules 40:6898–6905CrossRefGoogle Scholar
  143. 143.
    Zhang J, Tashiro K, Domb AJ, Tsuji H (2006) Confirmation of disorder α form of poly(l-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp 242:274–278CrossRefGoogle Scholar
  144. 144.
    Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021CrossRefGoogle Scholar
  145. 145.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007) Crystallization and melting behavior of poly(l-lactic acid). Macromolecules 40:9463–9469CrossRefGoogle Scholar
  146. 146.
    Androsch R, Schick C, Di Lorenzo ML (2014) Melting of conformationally disordered crystals (α′-phase) of poly(l-lactic acid). Macromol Chem Phys 215:1134–1139CrossRefGoogle Scholar
  147. 147.
    Androsch R, Zhuravlev E, Schick C (2014) Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α′-phase) of poly(l-lactic acid). Polymer 55:4932–4941CrossRefGoogle Scholar
  148. 148.
    Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Crystallization behavior of poly(l-lactic acid). Polymer 47:7554–7563CrossRefGoogle Scholar
  149. 149.
    Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agents. Polymer 47:3826–3837CrossRefGoogle Scholar
  150. 150.
    Tsuji H, Ikada Y (1996) Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys 197:3483–3499CrossRefGoogle Scholar
  151. 151.
    Li X, Li Z, Zhong G, Li L (2008) Steady – shear-induced isothermal crystallization of poly(l-lactide) (PLLA). J Macromol Sci Phys 47:511–522CrossRefGoogle Scholar
  152. 152.
    Tammann G (1898) Number of nuclei in supercooled liquids. Z Phys Chem 25:41–479Google Scholar
  153. 153.
    Di Lorenzo ML (2006) The crystallization and melting processes of poly(l-lactic acid). Macromol Symp 234:176–183CrossRefGoogle Scholar
  154. 154.
    Di Lorenzo ML (2001) Determination of spherulite growth rates of poly(l-lactic acid) using combined isothermal and non-isothermal procedures. Polymer 42:9441–9446CrossRefGoogle Scholar
  155. 155.
    Di Lorenzo ML (2005) Crystallization behavior of poly(l-lactic acid). Eur Polym J 41:569–575CrossRefGoogle Scholar
  156. 156.
    De Santis F, Pantani R, Titomanlio G (2011) Nucleation and crystallization kinetics of poly(lactic acid). Thermochim Acta 522:128–134CrossRefGoogle Scholar
  157. 157.
    Sánchez MS, Mathot VBF, Vanden Poel G, Ribelles JLG (2007) Effect of cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40:7989–7997CrossRefGoogle Scholar
  158. 158.
    Hernández Sánchez F, Molina Mateo J, Romero Colomer FJ, Salmerón Sánchez M, Gómez Ribelles JL, Mano JF (2005) Influence of low-temperature nucleation on the crystallization process of poly(l-lactide). Biomacromolecules 6:3283–3290CrossRefGoogle Scholar
  159. 159.
    Zhang T, Hu J, Duan Y, Pi F, Zhang J (2011) Physical aging enhanced mesomorphic structure in melt-quenched poly(l-lactic acid). J Phys Chem B 115:13835–13841CrossRefGoogle Scholar
  160. 160.
    Androsch R, Monami A, Kucera J (2014) Effect of an alpha-phase nucleating agent on the crystallization kinetics of a propylene/ethylene random copolymer at largely different supercooling. J Cryst Growth 408:91–96CrossRefGoogle Scholar
  161. 161.
    Zhuravlev E, Wurm A, Pötschke P, Androsch R, Schmelzer JWP, Schick C (2014) Kinetics of nucleation and crystallization of poly(ε-caprolactone) – multiwalled carbon nanotube composites. Eur Polym J 52:1–11CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Martin-Luther-University Halle-Wittenberg, Center of Engineering SciencesHalle/SaaleGermany
  2. 2.University of Rostock, Institute of PhysicsRostockGermany

Personalised recommendations