Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges

  • Michael HummelEmail author
  • Anne Michud
  • Marjaana Tanttu
  • Shirin Asaadi
  • Yibo Ma
  • Lauri K. J. Hauru
  • Arno Parviainen
  • Alistair W. T. King
  • Ilkka Kilpeläinen
  • Herbert SixtaEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 271)


The constant worldwide increase in consumption of goods will also affect the textile market. The demand for cellulosic textile fibers is predicted to increase at such a rate that by 2030 there will be a considerable shortage, estimated at ~15 million tons annually. Currently, man-made cellulosic fibers are produced commercially via the viscose and Lyocell™ processes. Ionic liquids (ILs) have been proposed as alternative solvents to circumvent certain problems associated with these existing processes. We first provide a comprehensive review of the progress in fiber spinning based on ILs over the last decade. A summary of the reports on the preparation of pure cellulosic and composite fibers is complemented by an overview of the rheological characteristics and thermal degradation of cellulose–IL solutions. In the second part, we present a non-imidazolium-based ionic liquid, 1,5-diazabicyclo[4.3.0]non-5-enium acetate, as an excellent solvent for cellulose fiber spinning. The use of moderate process temperatures in this process avoids the otherwise extensive cellulose degradation. The structural and morphological properties of the spun fibers are described, as determined by WAXS, birefringence, and SEM measurements. Mechanical properties are also reported. Further, the suitability of the spun fibers to produce yarns for various textile applications is discussed.


[DBNH]OAc Cellulosic fiber Dry-jet wet fiber spinning Ionic liquid Rheology Yarn spinning 









Acid sulfite


Crossover point








Dimethyl sulfoxide


Full width at half maximum


Microcrystalline cellulose


N-Methylmorpholine N-oxide






Propyl gallate (propyl 3,4,5-trihydroxybenzoate)


Prehydrolysis kraft


Scanning electron microscopy


Wide angle X-ray scattering





This study is part of the Future Biorefinery program financed by the Finnish Bioeconomy Cluster (FIBIC) and the Finnish Funding Agency for Technology and Innovation (TEKES). The authors would like to thank Anders Persson and Anders Berntsson from the Swedish School of Textiles (University of Borås, Sweden) for their kind assistance with the yarn preparation.


  1. 1.
    Hämmerle FM (2011) The cellulose gap (the future of cellulose fibres). Lenzinger Ber 89:12–21Google Scholar
  2. 2.
    Eichinger D (2012) A vision of the world of cellulosic fibers in 2020. Lenzinger Ber 90:1–7Google Scholar
  3. 3.
    Shen L, Patel MK (2010) Life cycle assessment of man-made cellulose fibres. Lenzinger Ber 88:1–59Google Scholar
  4. 4.
    The Fiber Year (2013) World survey on textiles & nonwovens. The Fiber Year, Speicher. Accessed 20 Dec 2013
  5. 5.
    Bywater N (2011) The global viscose fibre industry in the 21st century – the first 10 years. Lenzinger Ber 89:22–29Google Scholar
  6. 6.
    Mikolajczyk W, Wawro D, Struszczyk H (1998) Cellulose carbamate spinning solutions prepared for the manufacture of fibers. Fibres Text East Eur 6:53–55Google Scholar
  7. 7.
    Fink H-P, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21(1):31–51. doi: 10.1007/s10570-013-0137-7 CrossRefGoogle Scholar
  8. 8.
    Weigel P, Fink H-P, Doss M (2005) Method for producing nonwovens from cellulose carbamate in a continuous procedure. Patent WO2005080660A1Google Scholar
  9. 9.
    Vehvilaeinen M, Kamppuri T, Rom M, Janicki J, Ciechanska D, Groenqvist S, Siika-Aho M, Elg Christoffersson K, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680. doi: 10.1007/s10570-008-9219-3 CrossRefGoogle Scholar
  10. 10.
    Horvath AL (2006) Solubility of structurally complicated materials: I. Wood. J Phys Chem Ref Data 35(1):77–92CrossRefGoogle Scholar
  11. 11.
    Hansen CM, Björkman A (1998) The ultrastructure of wood from a solubility parameter point of view. Holzforschung 52(4):335–344CrossRefGoogle Scholar
  12. 12.
    Heinze T, Dicke R, Koschella A, Kull AH, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201(6):627–631CrossRefGoogle Scholar
  13. 13.
    Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7(3):307–314CrossRefGoogle Scholar
  14. 14.
    Hattori K, Cuculo JA, Hudson SM (2002) New solvents for cellulose: hydrazine/thiocyanate salt system. J Polym Sci A Polym Chem 40(4):601–611. doi: 10.1002/pola.10135 CrossRefGoogle Scholar
  15. 15.
    Hattori K, Abe E, Yoshida T, Cuculo JA (2004) New solvents for cellulose. II. Ethylenediamine/thiocyanate salt system. Polym J 36(2):123–130. doi: 10.1295/polymj.36.123 CrossRefGoogle Scholar
  16. 16.
    Cuculo JA, Smith CB, Sangwatanaroj U, Stejskal EO, Sankar SS (1994) A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system. II. J Polym Sci A Polym Chem 32(2):241–247. doi: 10.1002/pola.1994.080320204 CrossRefGoogle Scholar
  17. 17.
    Cuculo JA, Smith CB, Sangwatanaroj U, Stejskal EO, Sankar SS (1994) A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system. I. J Polym Sci A Polym Chem 32(2):229–239. doi: 10.1002/pola.1994.080320203 CrossRefGoogle Scholar
  18. 18.
    Bredereck K, Hermanutz F (2005) Man-made cellulosics. Rev Prog Color 35:59–75CrossRefGoogle Scholar
  19. 19.
    Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert T, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS Symposium Series, vol 1033. American Chemical Society, Washington DC, pp 3–54. doi:10.1021/bk-2010-1033.ch001Google Scholar
  20. 20.
    Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524CrossRefGoogle Scholar
  21. 21.
    BISFA (2009) Terminology of man-made fibres. BISFA, BrusselsGoogle Scholar
  22. 22.
    Zikeli S, Ecker F, Schwenninger F, Jurkovic R, Ruef H (1995) Process and apparatus for producing cellulose fibers. Patent WO9501470A1Google Scholar
  23. 23.
    Wilhelm F, Eduard M, Hartmut R, Christoph S (1998) Method for producing cellulose fibres. Patent WO1998058103A1Google Scholar
  24. 24.
    Liu R, Shao H, Hu X (2001) The online measurement of lyocell fibers and investigation of elongational viscosity of cellulose N-methylmorpholine-N-oxide monohydrate solutions. Macromol Mater Eng 286:179–186. doi: 10.1002/1439-2054(20010301) CrossRefGoogle Scholar
  25. 25.
    Gindl W, Reifferscheid M, Adusumalli RB, Weber H, Roeder T, Sixta H, Schoeberl T (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49:792–799. doi: 10.1016/j.polymer.2007.12.016 CrossRefGoogle Scholar
  26. 26.
    Röder T, Moosbauer J, Kliba G, Schlader S, Zuckerstätter G, Sixta H (2009) Comparative characterisation of man-made regenerated cellulose fibres. Lenzinger Ber 87:98–105Google Scholar
  27. 27.
    Buijtenhuijs FA, Abbas M, Witteveen AJ (1986) The degradation and stabilization of cellulose dissolved in N-methylmorpholine N-oxide (NMMO). Papier 40:615–619Google Scholar
  28. 28.
    Wendler F, Kosan B, Krieg M, Meister F (2009) Cellulosic shapes from ionic liquids modified by activated charcoals and nanosilver particles. Lenzinger Ber 87:106–116Google Scholar
  29. 29.
    Kalt W, Maenner J, Firgo H (1995) Molding or spinning material containing cellulose and manufacture of molded or spun articles from. Patent WO9508010A1Google Scholar
  30. 30.
    Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26(9):1763–1837CrossRefGoogle Scholar
  31. 31.
    Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci (St Petersburg) 8:405–422Google Scholar
  32. 32.
    Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun 47:511–513. doi: 10.1039/c0cc02421j CrossRefGoogle Scholar
  33. 33.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083CrossRefGoogle Scholar
  34. 34.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRefGoogle Scholar
  35. 35.
    Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728CrossRefGoogle Scholar
  36. 36.
    Maeki-Arvela P, Anugwom I, Virtanen P, Sjoeholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review. Ind Crops Prod 32:175–201. doi: 10.1016/j.indcrop.2010.04.005 CrossRefGoogle Scholar
  37. 37.
    Brandt A, Grasvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15(3):550–583. doi: 10.1039/c2gc36364j CrossRefGoogle Scholar
  38. 38.
    Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41(4):1519–1537. doi: 10.1039/c2cs15311d CrossRefGoogle Scholar
  39. 39.
    Singh S, Simmons BA (2013) Ionic liquid pretreatment: mechanism, performance, and challenges. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 223–238. doi: 10.1002/9780470975831.ch11
  40. 40.
    Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194. doi: 10.1021/bm801430x CrossRefGoogle Scholar
  41. 41.
    Sescousse R, Le KA, Ries ME, Budtova T (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228. doi: 10.1021/jp1024203 CrossRefGoogle Scholar
  42. 42.
    Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699. doi: 10.1021/bm300407q CrossRefGoogle Scholar
  43. 43.
    Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. shear rheology. J Appl Polym Sci 110:1175–1181. doi: 10.1002/app.28733 CrossRefGoogle Scholar
  44. 44.
    Collier JR, Watson JL, Collier BJ, Petrovan S (2009) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. II. Solution character and preparation. J Appl Polym Sci 111:1019–1027. doi: 10.1002/app.28995 Google Scholar
  45. 45.
    Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28(118):619–622. doi: 10.1002/pol.1958.1202811812 CrossRefGoogle Scholar
  46. 46.
    Lu F, Cheng B, Song J, Liang Y (2012) Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. J Appl Polym Sci 124(4):3419–3425. doi: 10.1002/app.35363 CrossRefGoogle Scholar
  47. 47.
    Chen X, Zhang Y, Wang H, Wang S-W, Liang S, Colby RH (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J Rheol 55(3):485–494. doi: 10.1122/1.3553032 CrossRefGoogle Scholar
  48. 48.
    Schausberger A, Moslinger R (1999) Rheology of cellulose solutions. A tool for the characterization of cellulose. Papier 53:715–721Google Scholar
  49. 49.
    Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. III. Elongational rheology. J Appl Polym Sci 110:3203–3208. doi: 10.1002/app.28928 CrossRefGoogle Scholar
  50. 50.
    Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45:115–138. doi: 10.1122/1.1332389 CrossRefGoogle Scholar
  51. 51.
    Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2002) Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer. J Rheol 46:507–527. doi: 10.1122/1.1445185 CrossRefGoogle Scholar
  52. 52.
    Ma B, Qin A, Li X, He C (2013) Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethylsulfoxide system. Ind Eng Chem Res 52:9417–9421. doi: 10.1021/ie401097d CrossRefGoogle Scholar
  53. 53.
    Hummel M, Michud A, Sixta H (2012) Structure formation of cellulosic material upon regeneration from ionic liquid solutions. In: Abstracts 243rd National Meeting American Chemical Society, I&EC Division, San Diego. ACS, Washington DC, pp IEC-17Google Scholar
  54. 54.
    Le KA, Sescousse R, Budtova T (2012) Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 19:45–54. doi: 10.1007/s10570-011-9610-3 CrossRefGoogle Scholar
  55. 55.
    Boerstoel H (1998) Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns. Dissertation, Universit of GroningenGoogle Scholar
  56. 56.
    Boerstoel H, Maatman H, Westerink JB, Koenders BM (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42(17):7371–7379. doi: 10.1016/S0032-3861(01)00210-5 CrossRefGoogle Scholar
  57. 57.
    Onofrei MD, Dobos AM, Stoica I, Olaru N, Olaru L, Ioan S (2014) Lyotropic liquid crystal phases in cellulose acetate phthalate/hydroxypropyl cellulose blends. J Polym Environ 22(1):99–111. doi: 10.1007/s10924-013-0618-7 CrossRefGoogle Scholar
  58. 58.
    Boerstoel H, Maatman H, Picken SJ, Remmers R, Westerink JB (2001) Liquid crystalline solutions of cellulose acetate in phosphoric acid. Polymer 42(17):7363–7369. doi: 10.1016/S0032-3861(01)00209-9 CrossRefGoogle Scholar
  59. 59.
    Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42(19):8249–8264. doi: 10.1016/S0032-3861(01)00211-7 CrossRefGoogle Scholar
  60. 60.
    Kosan B, Schwikal K, Meister F (2010) Solution states of cellulose in selected direct dissolution agents. Cellulose 17(3):495–506. doi: 10.1007/s10570-010-9402-1 CrossRefGoogle Scholar
  61. 61.
    Song H, Zhang J, Niu Y, Wang Z (2010) Phase transition and rheological behaviors of concentrated cellulose/ionic liquid solutions. J Phys Chem B 114(18):6006–6013. doi: 10.1021/jp1013863 CrossRefGoogle Scholar
  62. 62.
    Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel–sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12(4):1087–1096. doi: 10.1021/bm101426p CrossRefGoogle Scholar
  63. 63.
    Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382. doi: 10.1122/1.549853 CrossRefGoogle Scholar
  64. 64.
    Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31(8):683–697. doi: 10.1122/1.549955 CrossRefGoogle Scholar
  65. 65.
    Swatloski RP, Rogers RD, Holbrey JD (2003) Dissolution and processing of cellulose using ionic liquids, cellulose solution, and regenerating cellulose. Patent WO2003029329A2Google Scholar
  66. 66.
    Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Roeder H, Roeder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Ber 84:71–85Google Scholar
  67. 67.
    Bentivoglio G, Roeder T, Fasching M, Buchberger M, Schottenberger H, Sixta H (2006) Cellulose processing with chloride-based ionic liquids. Lenzinger Ber 86:154–161Google Scholar
  68. 68.
    Vagt U (2010) Cellulose dissolution and processing with ionic liquids. Wiley-VCH, Weinheim, pp 123–136Google Scholar
  69. 69.
    Michels C, Kosan B (2006) Structure of lyocell fibers, spun from aqueous amino oxides and/or ionic liquids. Lenzinger Ber 86:144–153Google Scholar
  70. 70.
    Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66. doi: 10.1007/s10570-007-9160-x CrossRefGoogle Scholar
  71. 71.
    Kosan B, Dorn S, Meister F, Heinze T (2010) Preparation and subsequent shaping of cellulose acetates using ionic liquids. Macromol Mater Eng 295:676–681. doi: 10.1002/mame.201000022 CrossRefGoogle Scholar
  72. 72.
    Cai T, Yang G, Zhang H, Shao H, Hu X (2012) A new process for dissolution of cellulose in ionic liquids. Polym Eng Sci 52(8):1708–1714. doi: 10.1002/pen.23069 CrossRefGoogle Scholar
  73. 73.
    Cai T, Zhang H, Guo Q, Shao H, Hu X (2010) Structure and properties of cellulose fibers from ionic liquids. J Appl Polym Sci 115:1047–1053. doi: 10.1002/app.31081 CrossRefGoogle Scholar
  74. 74.
    Cai T, Wang YM, Yang YR, Wei M, Wang M (2013) Regenerated bamboo fiber from green solvent. Appl Mech Mater 423–426:370–372. doi: 10.4028/ 423-426.370 CrossRefGoogle Scholar
  75. 75.
    Ingildeev D, Effenberger F, Bredereck K, Hermanutz F (2013) Comparison of direct solvents for regenerated cellulosic fibers via the lyocell process and by means of ionic liquids. J Appl Polym Sci 128:4141–4150. doi: 10.1002/app.38470 CrossRefGoogle Scholar
  76. 76.
    Jiang G, Yuan Y, Wang B, Yin X, Mukuze KS, Huang W, Zhang Y, Wang H (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083. doi: 10.1007/s10570-012-9716-2 CrossRefGoogle Scholar
  77. 77.
    Hermanutz F, Ingeldeev D, Effenberger F (2013) Environmentally friendly process for producing continuous micro- or supermicrofibers based on cellulose. Patent DE102012005489A1Google Scholar
  78. 78.
    Kosan B, Schwikal K, Meister F (2012) Effects of pre-treatment and dissolution conditions for improved solution and processing properties of cellulose in ionic liquids. Lenzinger Ber 90:76–84Google Scholar
  79. 79.
    Michels C, Kosan B (2001) The lyocell process – present output limit from the material and technological viewpoint. Lenzinger Ber 80:13–21Google Scholar
  80. 80.
    Michels C, Kosan B (2005) Contribution to the dissolution state of cellulose and cellulose derivatives. Lenzinger Ber 84:62–70Google Scholar
  81. 81.
    Michels C, Kosan B (2000) Lyocell process - material and technological restrictions. Chem Fibers Int 50:556, 558–561Google Scholar
  82. 82.
    Jiang G, Huang W, Li L, Wang X, Pang F, Zhang Y, Wang H (2012) Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr Polym 87:2012–2018. doi: 10.1016/j.carbpol.2011.10.022 CrossRefGoogle Scholar
  83. 83.
    Sammons RJ, Collier JR, Rials TG, Spruiell JE, Petrovan S (2013) Orientation of carbon fiber precursors from 1-butyl-3-methylimidazolium chloride cellulose solutions. J Appl Polym Sci 128:951–957. doi: 10.1002/app.37906 CrossRefGoogle Scholar
  84. 84.
    Hermanutz F, Meister F, Uerdingen E (2006) New developments in the manufacture of cellulose fibers with ionic liquids. Chem Fibers Int 56:342, 344Google Scholar
  85. 85.
    Hermanutz F, Gaehr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23–27. doi: 10.1002/masy.200850203 CrossRefGoogle Scholar
  86. 86.
    Olsson C, Westman G (2013) Wet spinning of cellulose from ionic liquid solutions-viscometry and mechanical performance. J Appl Polym Sci 127:4542–4548. doi: 10.1002/app.38064 CrossRefGoogle Scholar
  87. 87.
    Li X, Li N, Xu J, Duan X, Sun Y, Zhao Q (2014) Cellulose fibers from cellulose/1-ethyl-3-methylimidazolium acetate solution by wet spinning with increasing spinning speeds. J Appl Polym Sci 131(9):40225. doi: 10.1002/app.40225
  88. 88.
    Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290. doi: 10.1039/b713194a CrossRefGoogle Scholar
  89. 89.
    Maxim ML, Sun N, Wang H, Sterner JR, Haque A, Rogers RD (2012) Reinforced magnetic cellulose fiber from ionic liquid solution. Nanomater Energy 1:225–236. doi: 10.1680/nme.12.00010 CrossRefGoogle Scholar
  90. 90.
    Maxim ML, Sun N, Swatloski RP, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2010) Properties of cellulose/TiO2 fibers processed from ionic liquids. ACS Symp Ser 1033:261–274. doi: 10.1021/bk-2010-1033.ch014 CrossRefGoogle Scholar
  91. 91.
    Song H-Z, Luo Z-Q, Wang C-Z, Hao X-F, Gao J-G (2013) Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydr Polym 98:161–167. doi: 10.1016/j.carbpol.2013.05.079 CrossRefGoogle Scholar
  92. 92.
    Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated cellulose/multiwalled carbon nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704. doi: 10.1002/adma.200600442 CrossRefGoogle Scholar
  93. 93.
    Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Gilman JW, Kumar S (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50:4577–4583. doi: 10.1016/j.polymer.2009.07.015 CrossRefGoogle Scholar
  94. 94.
    Wendler F, Kosan B, Krieg M, Meister F (2009) Possibilities for the physical modification of cellulose shapes using ionic liquids. Macromol Symp 280:112–122. doi: 10.1002/masy.200950613 CrossRefGoogle Scholar
  95. 95.
    Kosan B, Nechwatal A, Meister F (2008) Cellulose multi-component fibers from ionic liquids. Chem Fibers Int 58:234–236Google Scholar
  96. 96.
    Ingildeev D, Hermanutz F, Bredereck K, Effenberger F (2012) Novel cellulose/polymer blend fibers obtained using ionic liquids. Macromol Mater Eng 297:585–594. doi: 10.1002/mame.201100432 CrossRefGoogle Scholar
  97. 97.
    Yao Y, Mukuze KS, Zhang Y, Wang H (2014) Rheological behavior of cellulose/silk fibroin blend solutions with ionic liquid as solvent. Cellulose 21:675–684. doi: 10.1007/s10570-013-0117-y CrossRefGoogle Scholar
  98. 98.
    Wendler F, Meister F, Wawro D, Wesolowska E, Ciechanska D, Saake B, Puls J, Le Moigne N, Navard P (2010) Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Fibres Text East Eur 18:21–30Google Scholar
  99. 99.
    Wendler F, Persin Z, Stana-Kleinschek K, Reischl M, Ribitsch V, Bohn A, Fink H-P, Meister F (2011) Morphology of polysaccharide blend fibers shaped from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Cellulose 18:1165–1178. doi: 10.1007/s10570-011-9559-2 CrossRefGoogle Scholar
  100. 100.
    Lehmann A, Ebeling H, Fink H-P (2012) Method for economical production of lignin-containing precursor fibers for use in further production of carbon fibers. Patent WO2012156441A1Google Scholar
  101. 101.
    Sun N, Li W, Stoner B, Jiang X, Lu X, Rogers RD (2011) Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chem 13:1158–1161. doi: 10.1039/c1gc15033b CrossRefGoogle Scholar
  102. 102.
    Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655. doi: 10.1039/b822702k CrossRefGoogle Scholar
  103. 103.
    Hauru LKJ, Ma Y, Hummel M, Alekhina M, King AWT, Kilpelaeinen I, Penttilae PA, Serimaa R, Sixta H (2013) Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis pretreatment. RSC Adv 3:16365–16373. doi: 10.1039/c3ra41529e CrossRefGoogle Scholar
  104. 104.
    Lehmann A, Bohrisch J, Protz R, Fink H-P (2013) Method for preparing lignocellulose spinning solution and spin regenerated fibers from it without any initial preatreatments. Patent WO2013144082A1Google Scholar
  105. 105.
    Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21. doi: 10.1016/j.cej.2008.11.011 CrossRefGoogle Scholar
  106. 106.
    Köhler S, Liebert T, Schöbitz M, Schaller J, Meister F, Günther W, Heinze T (2007) Interactions of ionic liquids with polysaccharides 1. Unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate. Macromol Rapid Commun 28(24):2311–2317. doi: 10.1002/marc.200700529 CrossRefGoogle Scholar
  107. 107.
    Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971. doi: 10.1039/c003583a CrossRefGoogle Scholar
  108. 108.
    Ma B, Qin A, Li X, He C (2013) High tenacity regenerated chitosan fibers prepared by using the binary ionic liquid solvent (Gly · HCl)-[Bmim]Cl. Carbohydr Polym 97:300–305. doi: 10.1016/j.carbpol.2013.04.080 CrossRefGoogle Scholar
  109. 109.
    Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412(1–2):47–53. doi: 10.1016/j.tca.2003.08.022 CrossRefGoogle Scholar
  110. 110.
    Meine N, Benedito F, Rinaldi R (2010) Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem 12:1711–1714. doi: 10.1039/c0gc00091d CrossRefGoogle Scholar
  111. 111.
    Awad WH, Gilman JW, Nyden M, Harris RH Jr, Sutto TE, Callahan J, Trulove PC, DeLong HC, Fox DM (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409(1):3–11. doi: 10.1016/s0040-6031(03)00334-4 CrossRefGoogle Scholar
  112. 112.
    Liebner F, Patel I, Ebner G, Becker E, Horix M, Potthast A, Rosenau T (2010) Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64:161–166. doi: 10.1515/hf.2010.033 CrossRefGoogle Scholar
  113. 113.
    Aggarwal VK, Emme I, Mereu A (2002) Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis-Hillman reaction. Chem Commun 2002(15):1612–1613CrossRefGoogle Scholar
  114. 114.
    King AWT, Parviainen A, Karhunen P, Matikainen J, Hauru LKJ, Sixta H, Kilpelaeinen I (2012) Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv 2:8020–8026. doi: 10.1039/c2ra21287k CrossRefGoogle Scholar
  115. 115.
    Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49(51):7322–7324CrossRefGoogle Scholar
  116. 116.
    Wendler F, Todi L-N, Meister F (2012) Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 528:76–84. doi: 10.1016/j.tca.2011.11.015 CrossRefGoogle Scholar
  117. 117.
    Dorn S, Wendler F, Meister F, Heinze T (2008) Interactions of ionic liquids with polysaccharides – 7: thermal stability of cellulose in ionic liquids and N-methylmorpholine-N-oxide. Macromol Mater Eng 293:907–913. doi: 10.1002/mame.200800153 CrossRefGoogle Scholar
  118. 118.
    Gazit OM, Katz A (2012) Dialkylimidazolium ionic liquids hydrolyze cellulose under mild conditions. ChemSusChem 5(8):1542–1548. doi: 10.1002/cssc.201100803 CrossRefGoogle Scholar
  119. 119.
    Parviainen A, King AWT, Mutikainen I, Hummel M, Selg C, Hauru LKJ, Sixta H, Kilpelaeinen I (2013) Predicting cellulose solvating capabilities of acid–base conjugate ionic liquids. ChemSusChem 6:2161–2169. doi: 10.1002/cssc.201300143 CrossRefGoogle Scholar
  120. 120.
    Wahlstroem R, King A, Parviainen A, Kruus K, Suurnaekki A (2013) Cellulose hydrolysis with thermo- and alkali-tolerant cellulases in cellulose-dissolving superbase ionic liquids. RSC Adv 3:20001–20009. doi: 10.1039/c3ra42987c CrossRefGoogle Scholar
  121. 121.
    Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14:1741–1750. doi: 10.1021/bm400106h CrossRefGoogle Scholar
  122. 122.
    Berggren R, Berthold F, Sjöholm E, Lindström M (2003) Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J Appl Polym Sci 88(5):1170–1179. doi: 10.1002/app.11767 CrossRefGoogle Scholar
  123. 123.
    Hauru LKJ, Hummel M, King AWT, Kilpelainen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905. doi: 10.1021/bm300912y CrossRefGoogle Scholar
  124. 124.
    Röder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006) Crystallinity determination of native cellulose-comparison of analytical methods. Lenzinger Ber 86:85–89Google Scholar
  125. 125.
    Fink HP, Fanter D, Philipp B (1985) Röntgen-Weitwinkeluntersuchungen zur übermolekularen Struktur beim Cellulose-I-II-Phasenübergang. Acta Polym 36(1):1–8. doi: 10.1002/actp.1985.010360101 CrossRefGoogle Scholar
  126. 126.
    Fink H-P, Weigel P, Ganster J, Rihm R, Puls J, Sixta H, Parajo JC (2004) Evaluation of new organosolv dissolving pulps. Part II: structure and NMMO processability of the pulps. Cellulose 11:85–98. doi: 10.1023/B:CELL.0000014779.93590.a0 CrossRefGoogle Scholar
  127. 127.
    Maenner J, Ivanoff D, Morley RJ, Jary S (2011) TENCEL - new cellulose fibers for carpets. Lenzinger Ber 89:60–71Google Scholar
  128. 128.
    Adusumalli R-B, Keckes J, Martinschitz K, Boesecke P, Weber H, Roeder T, Sixta H, Gindl W (2009) Comparison of molecular orientation and mechanical properties of lyocell fibre tow and staple fibres. Cellulose 16(5):765–772. doi: 10.1007/s10570-009-9292-2 CrossRefGoogle Scholar
  129. 129.
    Lenz J, Schurz J, Wrentschur E (1994) On the elongation mechanism of regenerated cellulose fibers. Holzforschung 48:72–76. doi: 10.1515/hfsg.1994.48.s1.72 CrossRefGoogle Scholar
  130. 130.
    Fink HP, Walenta E (1994) X-ray diffraction investigations of cellulose supramolecular structure at processing. Papier 48(12):739–748Google Scholar
  131. 131.
    Gindl W, Reifferscheid M, Martinschitz KJ, Boesecke P, Keckes J (2008) Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension. J Polym Sci B Polym Phys 46:297–304. doi: 10.1002/polb.21367 CrossRefGoogle Scholar
  132. 132.
    Hermans PH, Weidinger A (1949) X-ray studies on the crystallinity of cellulose. J Polym Sci 4(2):135–144. doi: 10.1002/pol.1949.120040203 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael Hummel
    • 1
    Email author
  • Anne Michud
    • 1
  • Marjaana Tanttu
    • 2
  • Shirin Asaadi
    • 1
  • Yibo Ma
    • 1
  • Lauri K. J. Hauru
    • 1
  • Arno Parviainen
    • 3
  • Alistair W. T. King
    • 3
  • Ilkka Kilpeläinen
    • 3
  • Herbert Sixta
    • 1
    Email author
  1. 1.Department of Forest Products TechnologyAalto UniversityAaltoFinland
  2. 2.Department of Design, School of Arts, Design and ArchitectureAalto UniversityAaltoFinland
  3. 3.Department of ChemistryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations