Mechanically Interlaced and Interlocked Donor–Acceptor Foldamers

Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 261)

Abstract

The emergence of a class of organic oligomers and polymers that lie at the intersection of the fields of mechanically interlocked molecules (MIMs) and synthetic foldamers is described in this review. These macromolecules are based on 4,4′-bipyridinium (BIPY2+) and 1,5-dioxynaphthalene (DNP) recognition units incorporated into linear oligo- or polymeric chains (threads) and macrocycles (rings), where the threads fold their way through a series of rings in a serpentine-like fashion. The well-defined geometries of these polyelectrolytes are rendered by the [C–H ⋯ O] hydrogen bonding interactions that transpire between the polyether chains appended to DNP and the acidic protons of BIPY2+, as well as the π–π and donor–acceptor (D–A) charge transfer interactions that cause DNP and BIPY2+ units to pack into extended mixed stacks. The unique folding motif of these pseudorotaxanes and rotaxanes makes them attractive candidates for novel multiferroic and mechanically tunable materials.

Keywords

[C–H ⋯ O]·interactions Donor–acceptor Foldamers Mechanostereochemistry Polyelectrolytes Rotaxanes π–π interactions 

References

  1. 1.
    Gan Q, Ferrand Y, Bao C, Kauffmann B, Grélard A, Jiang H, Huc I (2011) Science 331:1172Google Scholar
  2. 2.
    Zhang K-D, Zhao X, Wang G-T, Liu Y, Zhang Y, Lu H-J, Jiang X-K, Li Z-T (2011) Angew Chem Int Ed 50:9866Google Scholar
  3. 3.
    Zhang K-D, Zhao X, Wang G-T, Liu Y, Zhang Y, Lu H-J, Jiang X-K, Li Z-T (2012) Tetrahedron 68:4517Google Scholar
  4. 4.
    Gellman SH (1998) Acc Chem Res 31:173Google Scholar
  5. 5.
    Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) Chem Rev 101:3893Google Scholar
  6. 6.
    Licini G, Prins LJ, Scrimin P (2005) Eur J Org Chem 2005:969Google Scholar
  7. 7.
    Li X, Yang D (2006) Chem Commun 2006 (32): 3367Google Scholar
  8. 8.
    Seebach D, Gardiner J (2008) Acc Chem Res 41:1366Google Scholar
  9. 9.
    Horne WS, Gellman SH (2008) Acc Chem Res 41:1399Google Scholar
  10. 10.
    Li Z-T, Hou J-L, Li C (2008) Acc Chem Res 41:1343Google Scholar
  11. 11.
    Pilsl LKA, Reiser O (2011) Amino Acids 41:709Google Scholar
  12. 12.
    Martinek TA, Fülöp F (2012) Chem Soc Rev 41:687Google Scholar
  13. 13.
    Huc I (2004) Eur J Org Chem 2004:17Google Scholar
  14. 14.
    Smaldone RA, Moore JS (2008) Chem Eur J 14:2650Google Scholar
  15. 15.
    Saraogi I, Hamilton AD (2009) Chem Soc Rev 38:1726Google Scholar
  16. 16.
    Haldar D, Schmuck C (2009) Chem Soc Rev 38:363Google Scholar
  17. 17.
    Zhang D-W, Zhao X, Hou J-L, Li Z-T (2012) Chem Rev 112:5271Google Scholar
  18. 18.
    Cheng RP (2004) Curr Opin Struct Biol 14:512Google Scholar
  19. 19.
    Goodman CM, Choi S, Shandler S, DeGrado WF (2007) Nat Chem Biol 3:252Google Scholar
  20. 20.
    Guichard G, Huc I (2011) Chem Commun 47:5933Google Scholar
  21. 21.
    Roy A, Prabhakaran P, Baruah PK, Sanjayan GJ (2011) Chem Commun 47:11593Google Scholar
  22. 22.
    Hecht S, Huc I (eds) (2007) Foldamers: structure, properties, and applications. Wiley-VCH, WeinheimGoogle Scholar
  23. 23.
    Sharma GVM, Kunwar AC (2012) Recent research developments in foldamer chemistry. Nova Science, HauppaugeGoogle Scholar
  24. 24.
    Stoddart JF (2009) Chem Soc Rev 38:1802Google Scholar
  25. 25.
    Olson MA, Botros YY, Stoddart JF (2010) Pure App Chem 82:1569Google Scholar
  26. 26.
    Bruns CJ, Stoddart JF (2012) Top Curr Chem 323:19Google Scholar
  27. 27.
    Balzani V, Credi A, Raymo F, Stoddart JF (2000) Angew Chem Int Ed 39:3348Google Scholar
  28. 28.
    Balzani V, Credi A, Ferrer B, Sgilvi S, Venturi M (2005) Top Curr Chem 262:1Google Scholar
  29. 29.
    Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed 46:72Google Scholar
  30. 30.
    Bgalzani V, Credi A, Venturi M (2008) Molecular devices and machines. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Chem Soc Rev 41:19Google Scholar
  32. 32.
    Thordarson P, Bijsterveld EJA, Rowan AE, Nolte RJM (2003) Nature 424:915Google Scholar
  33. 33.
    Tachibana Y, Kihara N, Tgakata T (2004) J Am Chem Soc 126:3438Google Scholar
  34. 34.
    Suzaki Y, Shimada K, Chihara E, Saito T, Tsuchido Y, Osakada K (2011) [3]Rotaxane-based dinuclear palladium catalysts for ring-closure Mizoroki–Heck reaction. Org Lett 13:3774Google Scholar
  35. 35.
    Blanco V, Carlone A, Hänni KD, Leigh DA, Lewandowski B (2012) Angew Chem Int Ed 51:5166Google Scholar
  36. 36.
    Cotí KK, Belowich ME, Liong M, Ambrogio MW, Lau YA, Khatib HA, Zink JI, Khashab NM, Stoddart JF (2009) Nanoscale 1:16Google Scholar
  37. 37.
    Yui N, Katoono R, Yamashita A (2009) Adv Polym Sci 222:55Google Scholar
  38. 38.
    Ambrogio MW, Thomas CR, Zhao Y-L, Zink JI, Stoddart JF (2011) Acc Chem Res 44:903Google Scholar
  39. 39.
    Flood AH, Stoddart JF, Steuerman DW, Heath JR (2004) Science 306:2055Google Scholar
  40. 40.
    Taniguchi M, Nojima Y, Yokota K, Terao J, Sato K, Kambe N, Kawai T (2006) J Am Chem Soc 128:15062Google Scholar
  41. 41.
    Coskun A, Spruell JM, Barin G, Dichtel WR, Flood AH, Botros YY, Stoddart JF (2012) Chem Soc Rev 41:4827Google Scholar
  42. 42.
    Gibson HW, Bheda MC, Engen PT (1994) Prog Polym Sci 19:843Google Scholar
  43. 43.
    Clarkson GJ, Leigh DA, Smith RA (1998) Curr Opin Solid St M 3:579Google Scholar
  44. 44.
    Raymo FM, Stoddart JF (1999) Chem Rev 99:1643Google Scholar
  45. 45.
    Takata T, Kihara N, Furusho Y (2004) Adv Polym Sci 171:1Google Scholar
  46. 46.
    Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Chem Rev 109:5974Google Scholar
  47. 47.
    Fang L, Olson MA, Benítez D, Tkatchouk E, Goddard WA III, Stoddart JF (2010) Chem Soc Rev 39:17Google Scholar
  48. 48.
    Du G, Moulin E, Jouault N, Buhler E, Giuseppone N (2012) Angew Chem Int Ed 51:12504Google Scholar
  49. 49.
    Piguet C, Bernardinelli G, Hopfgartner G (1997) Chem Rev 97:2005Google Scholar
  50. 50.
    Sauvage J (1990) Acc Chem Res 23:319Google Scholar
  51. 51.
    Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT (2011) Angew Chem Int Ed 50:9260Google Scholar
  52. 52.
    Tanaka Y, Katagiri H, Furusho Y, Yashima E (2005) Angew Chem Int Ed 44:3867Google Scholar
  53. 53.
    Hoffart DJ, Tiburcio J, De La Torre A, Knight LK, Loeb SJ (2008) Angew Chem Int Ed 47:97Google Scholar
  54. 54.
    Lestini E, Nikitin K, Müller-Bunz H, Fitzmaurice D (2008) Chem Eur J 14:1095Google Scholar
  55. 55.
    Barrell MJ, Leigh DA, Lusby PJ, Slawin AMZ (2008) Angew Chem Int Ed 47:8036Google Scholar
  56. 56.
    Nakatani Y, Furusho Y, Yashima E (2010) Angew Chem Int Ed 49:5463Google Scholar
  57. 57.
    Fyfe MCT, Stoddart JF (1999) Adv Supramol Chem 5:1Google Scholar
  58. 58.
    Schalley CA, Weilandt T, Brüggemann J, Vögtle F (2004) Top Curr Chem 248:141Google Scholar
  59. 59.
    Kay E, Leigh D (2005) Top Curr Chem 262:133Google Scholar
  60. 60.
    Zhao Y (2007) Curr Ospin Colloid Interface Sci 12:92Google Scholar
  61. 61.
    Nepogodiev S, Stoddart JF (1998) Chem Rev 98:1959Google Scholar
  62. 62.
    Kim K (2002) Chem Soc Rev 31:96Google Scholar
  63. 63.
    Lankshear MD, Beer PD (2007) Acc Chem Res 40:657Google Scholar
  64. 64.
    Vickers MS, Beer PD (2007) Chem Soc Rev 36:211Google Scholar
  65. 65.
    Juwarker H, Jeong K-S (2010) Chem Soc Rev 39:3664Google Scholar
  66. 66.
    Rambo BM, Gong H-Y, Oh M, Sessler JL (2012) Acc Chem Res 45:1390Google Scholar
  67. 67.
    Hunter CA (1993) Angew Chem Int Ed Engl 32:1584Google Scholar
  68. 68.
    Grimme S (2008) Angew Chem Int Ed 47:3430Google Scholar
  69. 69.
    Stoddart JF, Colquhoun HM (2008) Tetrahedron 64:8231Google Scholar
  70. 70.
    Griffiths KE, Stoddart JF (2008) Pure App Chem 80:485Google Scholar
  71. 71.
    Lokey RS, Iverson BL (1995) Nature 375:303Google Scholar
  72. 72.
    Nguyen JQ, Iverson BL (1999) J Am Chem Soc 121:2639Google Scholar
  73. 73.
    Zych AJ, Iverson BL (2000) J Am Chem Soc 122:8898Google Scholar
  74. 74.
    Gabriel GJ, Iverson BL (2002) J Am Chem Soc 124:15174Google Scholar
  75. 75.
    Ghosh S, Ramakrishnan S (2004) Angew Chem Int Ed 43:3264Google Scholar
  76. 76.
    Zhao X, Jia M-X, Jiang X-K, Wu L-Z, Li Z-T, Chen G-J (2004) J Org Chem 69:270Google Scholar
  77. 77.
    Ghosh S, Ramakrishnan S (2005) Angew Chem Int Ed 44:5441Google Scholar
  78. 78.
    Ghosh S, Ramakrishnan S (2005) Macromolecules 38:676Google Scholar
  79. 79.
    Gabriel GJ, Sorey S, Iverson BL (2005) J Am Chem Soc 127:2637Google Scholar
  80. 80.
    Petitjean A, Cuccia LA, Schmutz M, Lehn J-M (2008) J Org Chem 73:2481Google Scholar
  81. 81.
    De S, Ramakrishnan S (2009) Macromolecules 42:8599Google Scholar
  82. 82.
    Ramkumar SG, Ramakrishnan S (2010) Macromolecules 43:2307Google Scholar
  83. 83.
    Colquhoun HM, Zhu Z (2004) Angew Chem Int Ed 43:5040Google Scholar
  84. 84.
    Colquhoun HM, Zhu Z, Cardin CJ, Gan Y (2004) Chem Commun 2004(23):2650Google Scholar
  85. 85.
    Colquhoun HM, Zhu Z, Cardin CJ, Gan Y, Drew MGB (2007) J Am Chem Soc 129:16163Google Scholar
  86. 86.
    Colquhoun HM, Zhu Z, Cardin CJ, Drew MGB, Gan Y (2009) Faraday Discuss 143:205Google Scholar
  87. 87.
    Zhu Z, Cardin CJ, Gan Y, Colquhoun HM (2010) Nature Chem 2:653Google Scholar
  88. 88.
    Zhu Z, Cardin CJ, Gan Y, Murray CA, White AJP, Williams DJ, Colquhoun HM (2011) J Am Chem Soc 133:19442Google Scholar
  89. 89.
    Ferraris J, Cowan DO, Walatka V, Perlstein JH (1973) J Am Chem Soc 95:948Google Scholar
  90. 90.
    Torrance JB (1979) Acc Chem Res 12:79Google Scholar
  91. 91.
    Alves H, Molinari AS, Xie H, Morpurgo AF (2008) Nature Mater 7:574Google Scholar
  92. 92.
    Peumans P, Yakggimov A, Forrest SR (2003) J Appl Phys 93:3693Google Scholar
  93. 93.
    Torrance JB, Vazquez JE, Mayerle JJ, Lee VY (1981) Phys Rev Lett 46:253Google Scholar
  94. 94.
    Horiuchi S, Tokura Y (2008) Nat Mater 7:357Google Scholar
  95. 95.
    Kobayashi K, Horiuchi S, Kumai R, Kagawa F, Murakami Y, Tokura Y (2012) Phys Rev Lett 108:237601Google Scholar
  96. 96.
    Tayi AS, Shveyd AK, Sue ACH, Szarko JM, Rolczynski BS, Cao D, Kennedy TJ, Sarjeant AA, Stern CL, Paxton WF, Wu W, Dey SK, Fahrenbach AC, Guest JR, Mohseni H, Chen LX, Wang KL, Stoddart JF, Stupp SI (2012) Nature 488:485Google Scholar
  97. 97.
    Ortholand J-Y, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1989) Angew Chem Int Ed Engl 28:1394Google Scholar
  98. 98.
    Asakawa M, Dehaen W, L'abbé G, Menzer S, Nouwen J, Raymo FM, Stoddart JF, Williams DJ (1996) J Org Chem 61:9591Google Scholar
  99. 99.
    Ashton PR, Chrystal EJT, Mathias JP, Parry KP, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1987) Tetrahedron Lett 28:6367Google Scholar
  100. 100.
    Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ (1991) J Chem Soc Chem Commun 1991(9):630Google Scholar
  101. 101.
    Ashton PR, Brown CL, Chrystal EJT, Goodnow TT, Kaifer AE, Parry KP, Philp D, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1991) J Chem Soc Chem Commun 1991(9):634Google Scholar
  102. 102.
    Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411Google Scholar
  103. 103.
    Raymo F, Bartberger MD, Houk KN, Stoddart JF (2001) J Am Chem Soc 123:9264Google Scholar
  104. 104.
    Houk KN, Menzer S, Newton SP, Raymo FM, Stoddart JF, Williams DJ (1999) J Am Chem Soc 121:1479Google Scholar
  105. 105.
    Castro R, Nixon KR, Evanseck JD, Kaifer AE (1996) J Org Chem 61:7298Google Scholar
  106. 106.
    Ashton PR, Philp D, Spencer N, Stoddart JF, Williams DJ (1994) J Chem Soc Chem Commun 1994(2):181Google Scholar
  107. 107.
    Basu S, Coskun A, Friedman DC, Olson MA, Benítez D, Tkatchouk E, Barin G, Yang J, Fahrenbach AC, Goddard I, William A, Stoddart JF (2011) Chem Eur J 17:2107Google Scholar
  108. 108.
    Colquhoun HM, Williams DJ (2000) Acc Chem Res 33:189Google Scholar
  109. 109.
    Zhu Z, Li H, Liu Z, Lei J, Zhang H, Botros YY, Stern CL, Sarjeant AA, Stoddart JF, Colquhoun HM (2012) Angew Chem Int Ed 51:7231Google Scholar
  110. 110.
    Hägnni K, Leigh D (2010) Chem Soc Rev 39:1240Google Scholar
  111. 111.
    Fahrenbach AC, Stoddart JF (2011) Chem Asian J 6:2660Google Scholar
  112. 112.
    Owen GJ, Hodge P (1997) Chem Commun 1997(1):11Google Scholar
  113. 113.
    Hodge P, Monvisade P, Owen GJ, Heatley F, Pang Y (2000) New J Chem 24:703Google Scholar
  114. 114.
    Zhu Z, Bruns CJ, Li H, Lei J, Ke C, Liu Z, Shafaie S, Colquhoun HM, Stoddart JF (2013) Chem Sci 4:1470Google Scholar
  115. 115.
    Schill G, Rissler K, Fritz H, Vetter W (1981) Angew Chem Int Ed Engl 20:187Google Scholar
  116. 116.
    Klosterman JK, Yamauchi Y, Fujita M (2009) Chem Soc Rev 38:1714Google Scholar
  117. 117.
    Belowich ME, Valente C, Stoddart JF (2010) Angew Chem Int Ed 49:7208Google Scholar
  118. 118.
    Benítez D, Tkatchouk E, Yoon I, Stoddart JF, Goddard WA III (2008) J Am Chem Soc 130:14928Google Scholar
  119. 119.
    Franco I, Ratner MA, Schatz GC (2011) J Phys Chem B 115:247Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations