Nanomechanical Function Arising from the Complex Architecture of Dendronized Helical Polymers

  • Jonathan G. RudickEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 262)


Dendronized polymers that have a cylindrical shape and a helical polymer backbone at the core of the cylinder are able to undergo reversible stretching and contraction of the helix. As the helix expands, the cylindrical macromolecule elongates like a molecular mechanical actuator. When the polymers are self-organized in a columnar lattice, the cylinders can be aligned and the extension of the individual molecules is amplified to macroscopic dimensions and can be employed to perform work. Relationships between the complex architecture of these polymers, their organization in bulk, and emergent function are discussed as an example of the remarkable opportunities that remain to be explored as we commemorate the 60th anniversary of Hermann Staudinger receiving the Nobel Prize for Chemistry.


Dendronized polymer Liquid crystal Self-assembly Supramolecular chemistry 



All of the author’s contributions to the work described herein were made as a graduate student at the University of Pennsylvania under the supervision of Prof. Virgil Percec. Financial support from the National Science Foundation to Virgil Percec is gratefully acknowledged.


  1. 1. (1953) The Nobel Prize in Chemistry 1953: Hermann Staudinger. Award ceremony speech.
  2. 2. (1964) Hermann Staudinger – Nobel lecture: macromolecular chemistry. In: Nobel lectures, chemistry 1942–1962. Elsevier, Amsterdam,
  3. 3.
    Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37(4):205–211. doi: 10.1073/pnas.37.4.205 Google Scholar
  4. 4.
    Pauling L, Corey RB (1951) The structure of synthetic polypeptides. Proc Natl Acad Sci USA 37(5):241–250. doi: 10.1073/pnas.37.5.241 Google Scholar
  5. 5.
    Pauling L, Corey RB (1953) Compound helical configurations of polypeptide chains: structure of proteins of the α-keratic type. Nature 171(4341):59–61. doi: 10.1038/171059a0 Google Scholar
  6. 6.
    Rich A, Crick FHC (1955) The structure of collagen. Nature 176(4489):915–916. doi: 10.1038/176915a0 Google Scholar
  7. 7.
    Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356):737–738. doi: 10.1038/171737a0 Google Scholar
  8. 8.
    Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G (1955) Crystalline high polymers of α-olfeins. J Am Chem Soc 77(6):1708–1710. doi: 10.1021/ja01611a109 Google Scholar
  9. 9.
    Nakano T, Okamoto Y (2001) Synthetic helical polymers: conformation and function. Chem Rev 101(12):4013–4038. doi: 10.1021/cr0000978 Google Scholar
  10. 10.
    Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) A field guide to foldamers. Chem Rev 101(12):3893–4012. doi: 10.1021/cr990120t Google Scholar
  11. 11.
    Jain V, Cheon K-S, Tang K, Jha S, Green MM (2011) Chiral cooperativity in helical polymers. Isr J Chem 51(10):1067–1074. doi: 10.1002/ijch.201100050 Google Scholar
  12. 12.
    Kennemur JG, Novak BM (2011) Hierarchical chirality in polycarbodiimides. Isr J Chem 51(10):1041–1051. doi: 10.1002/ijch.201100030 Google Scholar
  13. 13.
    Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335(6070):813–817. doi: 10.1126/science.1205962 Google Scholar
  14. 14.
    Schwartz E, Le Gac S, Cornelissen JJLM, Notle RJM, Rowan AE (2010) Macromolecular multi-chromophoric scaffolding. Chem Soc Rev 39(5):1576–1599. doi: 10.1039/B922160C Google Scholar
  15. 15.
    Yashima E, Maeda K, Iida H, Furusho Y, Nagai K (2009) Helical polymers: synthesis, structures, and functions. Chem Rev 109(11):6102–6211. doi: 10.1021/cr900162q Google Scholar
  16. 16.
    Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev 109(11):6275–6540. doi: 10.1021/cr900157q Google Scholar
  17. 17.
    Schlüter AD (2005) A covalent chemistry approach to giant macromolecules with cylindrical shape and an engineerable interior and surface. Top Curr Chem 245:151–191. doi: 10.1007/b98168 Google Scholar
  18. 18.
    Frauenrath H (2005) Dendronized polymers–buiding a new bridge from molecules to nanoscopic objects. Prog Polym Sci 30(3–4):325–384. doi: 10.1016/j.progpolymsci.2005.01.011 Google Scholar
  19. 19.
    Chen Y, Xiong X (2010) Tailoring dendronized polymers. Chem Commun 46(28):5049–5060. doi: 10.1039/B922777F Google Scholar
  20. 20.
    Kirchhoff PM, Tomalia DA (1987) Rod-shaped dendrimer. US Patent 4,694,064Google Scholar
  21. 21.
    Percec V, Ahn C-H, Ungar G, Yeardley DJP, Möller M, Sheiko SS (1998) Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391(6663):161–164. doi: 10.1038/34384 Google Scholar
  22. 22.
    Percec V, Ahn C-H, Cho W-D, Jamieson AM, Kim J, Leman T, Schmidt M, Gerle M, Möller M, Prokhorova SA, Sheiko SS, Cheng SZD, Zhang A, Ungar G, Yeardley DJP (1998) Visualizable cylindrical macromolecules with controlled stiffness from backbones containing libraries of self-assembling dendritic side groups. J Am Chem Soc 120(34):8619–8631. doi: 10.1021/ja981211v Google Scholar
  23. 23.
    Stocker W, Schürmann BL, Rabe JP, Förster S, Lindner P, Neubert I, Schlüter A-D (1998) A dendritic nanocylinder: shape control through implementation of steric strain. Adv Mater 10(10):793–797. doi: 10.1002/(SICI)1521-4095(199807)10:10<793::AID-ADMA793>3.0.CO;2-F Google Scholar
  24. 24.
    Stocker W, Karakaya B, Schürmann BL, Rabe JP, Schlüter AD (1998) Ordered dendritic nanorods with a poly(p-phenylene) backbone. J Am Chem Soc 120(37):7691–7695. doi: 10.1021/ja980151q Google Scholar
  25. 25.
    Zhuang W, Kasëmi E, Ding Y, Kröger M, Schlüter AD, Rabe JP (2008) Self-folding of charged single dendronized polymers. Adv Mater 20(17):3204–3210. doi: 10.1002/adma.200800168 Google Scholar
  26. 26.
    Das J, Fréchet JMJ, Chakraborty AK (2009) Self-assembly of dendronized polymers. J Phys Chem B 113(42):13768–13775. doi: 10.1021/jp902927p Google Scholar
  27. 27.
    Prokhorova SA, Sheiko SS, Möller M, Ahn C-H, Percec V (1998) Molecular imaging of monodendron jacketed linear polymers by scanning force microscopy. Macromol Rapid Commun 19(7):359–366. doi: 10.1002/(SICI)1521-3927(19980701)19:7<359::AID-MARC359>3.0.CO;2-T Google Scholar
  28. 28.
    Percec V, Schlueter D, Ronda JC, Johansson G, Ungar G, Zhou JP (1996) Tubular architectures from polymers with tapered side groups. Assembly of side groups via a rigid helical chain conformation induced via self-assembly of side groups. Macromolecules 29(5):1464–1472. doi: 10.1021/ma951244k Google Scholar
  29. 29.
    Ding Y, Öttinger HC, Schlüter AD, Kröger M (2007) From atomistic simulation to the dynamics, structure and helical network formation of dendronized polymers: The Janus chain model. J Chem Phys 127(9):094904. doi: 10.1063/1.2772601 Google Scholar
  30. 30.
    Rodríguez-Ropero F, Canales M, Zanuy D, Zhang A, Schlüter D, Alemán C (2009) Helical dendronized polymers with chiral second-generation dendrons: Atomistic view and driving forces for structure formation. J Phys Chem B 113(45):14868–14876. doi: 10.1021/jp903782f Google Scholar
  31. 31.
    Ding Y, Kröger M (2010) Rubik cylinder model for dendronized polymers. J Comput Theor Nanosci 7(4):661–674. doi: 10.1166/jctn.2010.1410 Google Scholar
  32. 32.
    Bertran O, Zhang B, Schlüter AD, Halperin A, Kröger M, Alemán C (2012) Computer simulation of dendronized polymers: Organization and characterization at the atomistic level. RSC Adv 3(1):126–140. doi: 10.1039/C2RA22034B Google Scholar
  33. 33.
    Bertran O, Zhang B, Schlüter AD, Kröger M, Alemán C (2013) Computer simulation of fifth generation dendronized polymers: impact of charge on internal organization. J Phys Chem B 117(19):6007–6017. doi: 10.1021/jp402695g Google Scholar
  34. 34.
    Browne W, Geissler PL (2010) The susceptibility of α-helical secondary structure to steric strain: coarse-grained simulation of dendronized polypeptides. J Chem Phys 133(14):145102. doi: 10.1063/1.3498780 Google Scholar
  35. 35.
    Rudick JG, Percec V (2007) Helical chirality in dendronized polyarylacetylenes. New J Chem 31(7):1083–1096. doi: 10.1039/B616449H Google Scholar
  36. 36.
    Rudick JG, Percec V (2008) Induced helical backbone conformations of self-organizable dendronized polymers. Acc Chem Res 41(12):1641–1652. doi: 10.1021/ar800086w Google Scholar
  37. 37.
    Tian Y, Kamata K, Yoshida H, Iyoda T (2006) Synthesis, liquid-crystalline properties, and supramolecular nanostructures of dendronized poly(isocyanide)s and their precursors. Chem Eur J 12(2):584–591. doi: 10.1002/chem.200500868 Google Scholar
  38. 38.
    Zhao H, Sanda F, Masuda T (2006) Novel optically acitve polyacetylenes: synthesis and helical conformation of L-lysine-dendronized poly(phenylacetylene). Macromol Chem Phys 207(21):1921–1926. doi: 10.1002/macp.200600259 Google Scholar
  39. 39.
    Zhang A, Rodríguez-Ropero F, Zanuy D, Alemán C, Meijer EW, Schlüter AD (2008) A rigid, chiral, dendronized polymer with a thermally stable, right-handed helical conformation. Chem Eur J 14(23):6924–6934. doi: 10.1002/chem.200800325 Google Scholar
  40. 40.
    Zhang A (2008) High-molar-mass, first and second generation L-lysine dendronized polymethacrylates. Macromol Rapid Commun 29(10):839–845. doi: 10.1002/marc.200800145 Google Scholar
  41. 41.
    Liu K, Zhang X, Tao X, Yan J, Kuang G, Li W, Zhang A (2012) Lysine-based dendronized polymers with preferred chirality. Polym Chem 3(10):2708–2711. doi: 10.1039/C2PY20510F Google Scholar
  42. 42.
    Kajitani T, Lin H, Nagai K, Okoshi K, Onouchi H, Yashima E (2009) Helical polyisocyanides with fan-shaped pendants. Macromolecules 42(2):560–567. doi: 10.1021/ma802345g Google Scholar
  43. 43.
    Percec V, Leowanawat P (2011) Why are biological systems homochiral. Isr J Chem 51(10):1107–1117. doi: 10.1002/ijch.201100152 Google Scholar
  44. 44.
    Roche C, Percec V (2013) Complex adaptable systems based on self-assembling dendrimers and dendrons: Toward dynamic materials. Isr J Chem 53(1–2):30–44. doi: 10.1002/ijch.201200099 Google Scholar
  45. 45.
    Rosen BM, Roche C, Percec V (2013) Self-assembly of dendritic dipeptides as a model of chiral selection in primitive biological systems. Top Curr Chem 333:213–254. doi: 10.1007/128_2012_398 Google Scholar
  46. 46.
    Gao M, Jia X, Kuang G, Li D, Wei Y (2009) Thermo- and pH-resonsive dendronized copolymers of styrene and maleic anhydride pendant with poly(amidoamine)dendrons as side groups. Macromolecules 42(12):4273–4281. doi: 10.1021/ma900085j Google Scholar
  47. 47.
    Laurino P, Kikkeri R, Azzouz N, Seeberger PH (2011) Detection of bacteria using glyco-dendronized polylysine prepared by continuous flow photopolymerization. Nano Lett 11(1):73–78. doi: 10.1021/nl102821f Google Scholar
  48. 48.
    Grotzky A, Nauser T, Erdogan H, Schlüter AD, Walde P (2012) A fluorescently labeled dendronized polymer-enzyme conjugate carrying copies of two different types of active enzymes. J Am Chem Soc 134(28):11392–11395. doi: 10.1021/ja304837f Google Scholar
  49. 49.
    Fuhrmann G, Grotzky A, Lukić R, Matoori S, Luciani P, Yu H, Zhang B, Walde P, Schlüter AD, Gauthier MA, Leroux J-C (2013) Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates. Nat Chem 5(7):582–589. doi: 10.1038/nchem.1675 Google Scholar
  50. 50.
    Percec V, Rudick JG, Peterca M, Heiney PA (2008) Nanomechanical function from self-organizable dendronized helical polyphenylacetylenes. J Am Chem Soc 130(23):7503–7508. doi: 10.1021/ja801863e Google Scholar
  51. 51.
    Rudick JG, Percec V (2008) Nanomechanical function made possible by suppressing structural transformations of polyarylacetylenes. Macromol Chem Phys 209(17):1759–1768. doi: 10.1002/macp.200800271 Google Scholar
  52. 52.
    Feringa BL, Browne WR (2008) Nanomechanics: macromolecules flex their muscles. Nat Nanotechnol 3(7):383–384. doi: 10.1038/nnano.2008.194 Google Scholar
  53. 53.
    Donnio B, Buathong S, Bury I, Guillon D (2007) Liquid crystalline dendrimers. Chem Soc Rev 36(9):1495–1513. doi: 10.1039/b605531c Google Scholar
  54. 54.
    Ponomarenko SA, Boiko NI, Shibaev VP (2001) Liquid-crystalline dendrimers. Polym Sci Ser C 43(1):1–45Google Scholar
  55. 55.
    Percec V, Heck J (1991) Liquid crystalline polymers containing mesogenic units based on half-disc and rod-like moieties. I. Synthesis and characterization of 4-(11-undecan-1-yloxy)-4-[3,4,5-tri(p-n-dodecan-1-yloxybenzyloxy)benzoate]biphenyl side groups. J Polym Sci A Polym Chem 29(4):591–597. doi: 10.1002/pola.1991.080290416 Google Scholar
  56. 56.
    Malthête J, Collet A, Levelut A-M (1989) Mesogens containing the DOBOB group. Liq Cryst 5(1):123–131. doi: 10.1080/02678298908026355 Google Scholar
  57. 57.
    Lattermann G (1989) A liquid-crystalline cyclam derivative. Liq Cryst 6(5):619–625. doi: 10.1080/02678298908034181 Google Scholar
  58. 58.
    Malthête J, Levelut A-M (1991) Mesophase formed by diabolo-like molecules. Adv Mater 3(2):94–96. doi: 10.1002/adma.19910030204 Google Scholar
  59. 59.
    Lin C, Rigsdorf H, Ebert M, Kleppinger R, Wendorff JH (1989) Structural variations of liquid crystalline polymers with phasmidic-type mesogens. Liq Cryst 5(6):1841–1847. doi: 10.1080/02678298908045692 Google Scholar
  60. 60.
    Percec V, Heck J (1990) Liquid crystalline polymers containing mesogenic units based on half-disc and rod-like moieties. 2. Synthesis and characterization of poly{2-[3,4,5-tri[p-(n-dodecan-1-yloxy)benzyloxy]benzoate]-7-[p-11-undecan-1-yloxy)benzoate]naphthalene]methyl siloxane}. Polym Bull 24(3):255–262. doi: 10.1007/BF00306572 Google Scholar
  61. 61.
    Hudson SD, Jung H-T, Percec V, Cho W-D, Johansson G, Ungar G, Balagurusamy VSK (1997) Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science 278(5337):449–452. doi: 10.1126/science.278.5337.449 Google Scholar
  62. 62.
    Balagurusamy VSK, Ungar G, Percec V, Johansson G (1997) Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis. J Am Chem Soc 119(7):1539–1555. doi: 10.1021/ja963295i Google Scholar
  63. 63.
    Percec V, Cho W-D, Mosier PE, Ungar G, Yeardley DJP (1998) Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation number. J Am Chem Soc 120(43):11061–11070. doi: 10.1021/ja9819007 Google Scholar
  64. 64.
    Percec V, Cho W-D, Ungar G (2000) Increasing the diameter of cylindrical and spherical supramolecular dendrimers by decreasing the solid angle of their monodendrons via periphery functionalization. J Am Chem Soc 122(42):10273–10281. doi: 10.1021/ja0024643 Google Scholar
  65. 65.
    Percec V, Cho W-D, Möller M, Prokhorova SA, Ungar G, Yeardley DJP (2000) Design and structural analysis of the first spherical monodendron self-organizable in a cubic lattice. J Am Chem Soc 122(17):4249–4250. doi: 10.1021/ja9943400 Google Scholar
  66. 66.
    Percec V, Cho W-D, Ungar G, Yeardley DJP (2000) From molecular flat tapers, discs, and cones to supramolecular cylinders and spheres using Fréchet-type monodendrons modified on their periphery. Angew Chem Int Ed 39(9):1597–1602. doi: 10.1002/(SICI)1521-3773(20000502)39:9<1597::AID-ANIE1597>3.0.CO;2-I Google Scholar
  67. 67.
    Percec V, Cho W-D, Ungar G, Yeardley DJP (2001) Synthesis and structural analysis of two constitutional isomeric libraries of AB2-based monodendrons and supramolecular dendrimers. J Am Chem Soc 123(7):1302–1315. doi: 10.1021/ja0037771 Google Scholar
  68. 68.
    Ungar G, Liu Y, Zeng X, Percec V, Cho W-D (2003) Giant supramolecular liquid crystal lattice. Science 299(5610):1208–1211. doi: 10.1126/science.1078849 Google Scholar
  69. 69.
    Percec V, Mitchell CM, Cho W-D, Uchida S, Glodde M, Ungar G, Zeng X, Liu Y, Balagurusamy VSK, Heiney PA (2004) Designing libraries of first generation AB3 and AB2 self-assembling dendrons via the primary structure generated from combinations of (AB)y-AB3 and (AB)y-AB2 building blocks. J Am Chem Soc 126(19):6078–6094. doi: 10.1021/ja049846j Google Scholar
  70. 70.
    Rosen BM, Wilson DA, Wilson CJ, Peterca M, Won BC, Huang C, Lipski LR, Zeng X, Ungar G, Heiney PA, Percec V (2009) Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendrons. J Am Chem Soc 131(47):17500–17521. doi: 10.1021/ja907882n Google Scholar
  71. 71.
    Zeng X, Ungar G, Liu Y, Percec V, Dulcey AE, Hobbs JK (2004) Supramolecular dendritic liquid quasicrystals. Nature 428(6979):157–160. doi: 10.1038/nature02368 Google Scholar
  72. 72.
    Percec V, Dulcey AE, Balagurusamy VSK, Miura Y, Smidrkal J, Peterca M, Nummelin S, Edlund U, Hudson SD, Heiney PA, Duan H, Magonov SN, Vinogradov SA (2004) Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430(7001):764–768. doi: 10.1038/nature02770 Google Scholar
  73. 73.
    Percec V, Dulcey AE, Peterca M, Ilies M, Ladislaw J, Rosen BM, Edlund U, Heiney PA (2005) The internal structure of helical pores self-assembled from dendritic dipeptides is stereochemically programmed and allosterically regulated. Angew Chem Int Ed 44(40):6516–6521. doi: 10.1002/anie.200501331 Google Scholar
  74. 74.
    Percec V, Dulcey AE, Peterca M, Ilies M, Sienkowska MJ, Heiney PA (2005) Programming the internal structure and stability of helical pores self-assembled from dendritic dipeptides via the protective groups of the peptide. J Am Chem Soc 127(50):17902–17909. doi: 10.1021/ja056313h Google Scholar
  75. 75.
    Percec V, Dulcey AE, Peterca M, Ilies M, Nummelin S, Sienkowska MJ, Heiney PA (2006) Principles of self-assembly of helical pores from dendritic dipeptides. Proc Natl Acad Sci USA 103(8):2518–2523. doi: 10.1073/pnas.0509676103 Google Scholar
  76. 76.
    Peterca M, Percec V, Dulcey AE, Nummelin S, Korey S, Ilies M, Heiney PA (2006) Self-assembly, structural, and retrostructural analysis of dendritic dipeptide pores undergoing reversible circular to elliptical shape change. J Am Chem Soc 128(20):6713–6720. doi: 10.1021/ja0611902 Google Scholar
  77. 77.
    Percec V, Dulcey AE, Peterca M, Adelman P, Samant R, Balagurusamy VSK, Heiney PA (2007) Helical pores self-assembled from homochiral dendritic dipeptides based on L-Tyr and nonpolar alpha-amino acids. J Am Chem Soc 129(18):5992–6002. doi: 10.1021/ja071088k Google Scholar
  78. 78.
    Percec V, Peterca M, Dulcey AE, Imam MR, Hudson SD, Nummelin S, Adelman P, Heiney PA (2008) Hollow spherical supramolecular dendrimers. J Am Chem Soc 130(39):13079–13094. doi: 10.1021/ja8034703 Google Scholar
  79. 79.
    Rosen BM, Peterca M, Morimitsu K, Dulcey AE, Leowanawat P, Resmerita A-M, Imam MR, Percec V (2011) Programming the supramolecular helical polymerization of dendritic dipeptides via the stereochemical information of the dipeptide. J Am Chem Soc 133(13):5135–5151. doi: 10.1021/ja200280h Google Scholar
  80. 80.
    Percec V, Peterca M, Sienkowska MJ, Ilies MA, Aqad E, Smidrkal J, Heiney PA (2006) Synthesis and retrostructural analysis of libraries of AB3 and constitutional isomeric AB2 phenylpropyl ether-based supramolecular dendrimers. J Am Chem Soc 128(10):3324–3334. doi: 10.1021/ja060062a Google Scholar
  81. 81.
    Percec V, Won BC, Peterca M, Heiney PA (2007) Expanding the structural diversity of self-assembling dendrons and supramolecular dendrimers via complex building blocks. J Am Chem Soc 129(36):11265–11278. doi: 10.1021/ja073714j Google Scholar
  82. 82.
    Peterca M, Percec V, Imam MR, Leowanawat P, Morimitsu K, Heiney PA (2008) Molecular structure of helical supramolecular dendrimers. J Am Chem Soc 130(44):14840–14852. doi: 10.1021/ja806524m Google Scholar
  83. 83.
    Percec V, Glodde M, Bera TK, Miura Y, Shiyanovskaya I, Singer KD, Balagurusamy VSK, Heiney PA, Schnell I, Rapp A, Spiess H-W, Hudson SD, Duan H (2002) Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 419(6905):384–387. doi: 10.1038/nature01072 Google Scholar
  84. 84.
    Shiyanovskaya I, Singer KD, Percec V, Bera TK, Miura Y, Glodde M (2003) Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons. Phys Rev B Condens Matter Mater Phys 67(3):035204. doi: 10.1103/PhysRevB.67.035204 Google Scholar
  85. 85.
    Percec V, Glodde M, Peterca M, Rapp A, Schnell I, Spiess HW, Bera TK, Miura Y, Balagurusamy VSK, Aqad E, Heiney PA (2006) Self-assembly of semifluorinated dendrons attached to electron-donor groups mediates their π-stacking via a helical pyramidal column. Chem Eur J 12(24):6298–6314. doi: 10.1002/chem.200501195 Google Scholar
  86. 86.
    Percec V, Aqad E, Peterca M, Imam MR, Glodde M, Bera TK, Miura Y, Balagurusamy VSK, Ewbank PC, Würthner F, Heiney PA (2007) Self-assembly of semifluorinated minidendrons attached to electron-acceptor groups into pyramidal columns. Chem Eur J 13(12):3330–3345. doi: 10.1002/chem.200600901 Google Scholar
  87. 87.
    Percec V, Hudson SD, Peterca M, Leowanawat P, Aqad E, Graf R, Spiess HW, Zeng X, Ungar G, Heiney PA (2011) Self-repairing complex helical columns generated via kinetically controlled self-assembly of dendronized perylene bisimides. J Am Chem Soc 133(45):18479–18494. doi: 10.1021/ja208501d Google Scholar
  88. 88.
    Percec V, Peterca M, Tadjiev T, Zeng X, Ungar G, Leowanawat P, Aqad E, Imam MR, Rosen BM, Akbey U, Graf R, Sekharan S, Sebestiani D, Spiess HW, Heiney PA, Hudson SD (2011) Self-assembly of dendronized perylene bisimides into complex helical columns. J Am Chem Soc 133(31):12197–12219. doi: 10.1021/ja204366b Google Scholar
  89. 89.
    Percec V, Sun H-J, Leowanawat P, Peterca M, Graf R, Spiess HW, Zeng X, Ungar G, Heiney PA (2013) Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides. J Am Chem Soc 135(10):4129–4148. doi: 10.1021/ja400639q Google Scholar
  90. 90.
    Lai CK, Serrette AG, Swager TM (1992) Discotic bimetallomesogens: building blocks for the formation of new columnar arrangements of transition metals. J Am Chem Soc 114(5):1887–1889. doi: 10.1021/ja00031a057 Google Scholar
  91. 91.
    Serrette AG, Swager TM (1993) Controlling intermolecular associations with molecular superstructure: Polar discotic linear chain phases. J Am Chem Soc 115(19):8879–8880. doi: 10.1021/ja00072a067 Google Scholar
  92. 92.
    Barberá J, Iglesias R, Serrano JL, Sierra T, de la Fuente MR, Palacios B, Pérez-Jubindo MA, Vázquez JT (1998) Switchable columnar metallomesogens. New helical self-assembling systems. J Am Chem Soc 120(12):2908–2918. doi: 10.1021/ja9735012 Google Scholar
  93. 93.
    Sato K, Itoh Y, Aida T (2011) Columnarly assembled liquid-crystalline peptidic macrocycles unidirectionally orientable over a large area by an electric field. J Am Chem Soc 133(35):13767–13769. doi: 10.1021/ja203894r Google Scholar
  94. 94.
    Cameron JH, Facher A, Lattermann G, Diele S (1997) Poly(propyleneimine) dendromesogens with hexagonal columnar mesophase. Adv Mater 9(5):398–403. doi: 10.1002/adma.19970090507 Google Scholar
  95. 95.
    Percec V, Rudick JG, Peterca M, Yurchenko ME, Smidrkal J, Heiney PA (2008) Supramolecular structural diversity among first-generation hybrid dendrimers and twin dendrons. Chem Eur J 14(11):3355–3362. doi: 10.1002/chem.200701658 Google Scholar
  96. 96.
    Percec V, Imam MR, Peterca M, Cho W-D, Heiney PA (2009) Self-assembling dendronized dendrimers. Isr J Chem 49(1):55–70. doi: 10.1560/IJC.49.1.5 Google Scholar
  97. 97.
    Maringa N, Lenoble J, Donnio B, Guillon D, Deschenaux R (2008) Liquid-crystalline methanofullerodendrimers which display columnar mesomorphism. J Mater Chem 18(13):1524–1534. doi: 10.1039/B717105F Google Scholar
  98. 98.
    Deschenaux R, Donnio B, Guillon D (2007) Liquid-crystalline fullerodendrimers. New J Chem 31(7):1064–1073. doi: 10.1039/B617671M Google Scholar
  99. 99.
    Matsuo Y, Muramatsu A, Kamikawa Y, Kato T, Nakamura E (2006) Synthesis and structural, electrochemical, and stacking properties of conical molecules possessing buckyferrocene on the apex. J Am Chem Soc 128(30):9586–9587. doi: 10.1021/ja062757h Google Scholar
  100. 100.
    Kasdorf O, Kitzerow H-S, Lenoble-Zwahlen J, Deschenaux R (2010) Influence of a mesogenic dendrimer on the morphology of polymer-fullerene composites for photovoltaics. Jpn J Appl Phys 49:01AF01. doi: 10.1143/JJAP.49.01AF01
  101. 101.
    Lenoble J, Maringa N, Campidelli S, Donnio B, Guillon D, Deschenaux R (2006) Liquid-crystalline fullerodendrimers which display columnar phases. Org Lett 8(9):1851–1854. doi: 10.1021/ol0603920 Google Scholar
  102. 102.
    Lenoble J, Campidelli S, Maringa N, Donnio B, Guillon D, Yevlampieva N, Deschenaux R (2007) Liquid-crystalline Janus-type fullerodendrimers displaying tunable smectic-columnar mesomorphism. J Am Chem Soc 129(32):9941–9952. doi: 10.1021/ja071012o Google Scholar
  103. 103.
    Cordovilla C, Coco S, Espinet P, Donnio B (2010) Liquid-crystalline self-organization of isocyanide-containing dendrimers induced by coordination to gold(I) fragments. J Am Chem Soc 132(4):1424–1431. doi: 10.1021/ja909435e Google Scholar
  104. 104.
    Kanie K, Matsubara M, Zeng X, Liu F, Ungar G, Nakamura H, Muramatsu A (2011) Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona. J Am Chem Soc 134(2):808–811. doi: 10.1021/ja2095816 Google Scholar
  105. 105.
    Percec V, Lee M, Heck J, Blackwell HE, Ungar G, Alvarez-Castillo A (1992) Re-entrant isotropic phase in a supramolecular disc-like oligomer of 4-[3,4,5-tris(n-dodecanyloxy)benzoyloxy]-4-[(2-vinyloxy) ethoxy]biphenyl. J Mater Chem 2(9):931–938. doi: 10.1039/JM9920200931 Google Scholar
  106. 106.
    Yeardley DJP, Ungar G, Percec V, Holerca MN, Johansson G (2000) Spherical supramolecular minidendrimers self-organized in an inverse micellar-like thermotropic body-centered cubic liquid crystalline phase. J Am Chem Soc 122(8):1684–1689. doi: 10.1021/ja993915q Google Scholar
  107. 107.
    Percec V, Holerca MN, Uchida S, Yeardley DJP, Ungar G (2001) Poly(oxazoline)s with tapered minidendritic side groups as models for the design of synthetic macromolecules with tertiary structure. A demonstration of the limitations of living polymerization in the design of 3-D structures based on single polymer chains. Biomacromolecules 2(3):729–740. doi: 10.1021/bm015559l Google Scholar
  108. 108.
    Duan H, Hudson SD, Ungar G, Holerca MN, Percec V (2001) Definitive support by transmission electron microscopy, electron diffraction, and electron density maps for the formation of a BCC lattice from poly{N-[3,4,5-tris(n-dodecan-l-yloxy)benzoyl]ethyleneimine. Chem Eur J 7(19):4134–4141. doi: 10.1002/1521-3765(20011001)7:19<4134::AID-CHEM4134>3.0.CO;2-W Google Scholar
  109. 109.
    Percec V, Heck J, Lee M, Ungar G, Alvarez-Castillo A (1992) Poly{2-vinyloxyethyl 3,4,5-tris[4-(n-dodecanyloxy) benzyloxy]benzoate}: a self-assembled supramolecular polymer similar to tobacco mosaic virus. J Mater Chem 2(10):1033–1039. doi: 10.1039/JM9920201033 Google Scholar
  110. 110.
    Percec V, Heck J, Tomazos D, Falkenberg F, Blackwell H, Ungar G (1993) Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophase. J Chem Soc Perkin Trans 1(22):2799–2811. doi: 10.1039/P19930002799 Google Scholar
  111. 111.
    Percec V, Heck JA, Tomazos D, Ungar G (1993) The influence of the complexation of sodium and lithium triflate on the self-assembly of tubular-supramolecular architectures displaying a columnar mesophase based on taper-shaped monoesters of oligoethylene oxide with 3,4,5-tris[p-(n-dodecan-1-yloxy)benzyloxy]benzoic acid and of their polymethacrylates. J Chem Soc Perkin Trans 2(12):2381–2388. doi: 10.1039/P29930002381 Google Scholar
  112. 112.
    Percec V, Tomazos D, Heck J, Blackwell H, Ungar G (1994) Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(n-dodecan-1-yloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar hexagonal mesophase. J Chem Soc Perkin Trans 2(1):31–44. doi: 10.1039/P29940000031 Google Scholar
  113. 113.
    Kwon YK, Chvalun S, Schneider A-I, Blackwell J, Percec V, Heck JA (1994) Supramolecular tubular structures of a polymethacrylate with tapered side groups in aligned hexagonal phases. Macromolecules 27(21):6129–6132. doi: 10.1021/ma00099a029 Google Scholar
  114. 114.
    Kwon YK, Chvalun S, Blackwell J, Percec V, Heck JA (1995) Effect of temperature on the supramolecular tubular structure in oriented fibers of a poly(methacrylate) with tapered side groups. Macromolecules 28(5):1552–1558. doi: 10.1021/ma00109a029 Google Scholar
  115. 115.
    Kwon YK, Danko C, Chvalun S, Blackwell J, Heck JA, Percec V (1994) Comparison of the supramolecular structures formed by a polymethacrylate with a highly tapered side chain and its monomeric precursor. Macromol Symp 87(1):103–114. doi: 10.1002/masy.19940870113 Google Scholar
  116. 116.
    Chvalun SN, Blackwell J, Kwon YK, Percec V (1997) Small angle X-ray analysis of the effect of temperature on the self-assembling columnar structures formed by a polymethacrylate with highly tapered side groups and by one of its low molar mass precursors. Macromol Symp 118(1):663–675. doi: 10.1002/masy.19971180186 Google Scholar
  117. 117.
    Chvalun SN, Blackwell J, Cho JD, Kwon YK, Percec V, Heck JA (1998) X-ray analysis of the internal rearrangement of the self-assembling columnar structure formed by a highly tapered molecule. Polymer 39(19):4515–4522. doi: 10.1016/S0032-3861(97)10131-8 Google Scholar
  118. 118.
    Chvalun SN, Blackwell J, Cho JD, Bykova IV, Percec V (1999) A second columnar liquid crystalline phase formed by polymers with highly tapered side chains. Acta Polym 50(1):51–66. doi: 10.1002/(SICI)1521-4044(19990101)50:1<51::AID-APOL51>3.0.CO;2-0 Google Scholar
  119. 119.
    Feng S, Xiong X, Zhang G, Xia N, Chen Y, Wang W (2009) Hierarchical structure in oriented fibers of a dendronized polymer. Macromolecules 42(1):281–287. doi: 10.1021/ma8015932 Google Scholar
  120. 120.
    Schenning APHJ, Fransen M, Meijer EW (2002) Side-chain-functionalized polyacetylenes, 1 liquid crystalline and stereomutational properties. Macromol Rapid Commun 23(4):265–270. doi: 10.1002/1521-3927(20020301)23:4<265::AID-MARC265>3.0.CO;2-5 Google Scholar
  121. 121.
    Percec V, Obata M, Rudick JG, De BB, Glodde M, Bera TK, Magonov SN, Balagurusamy VSK, Heiney PA (2002) Synthesis, structural analysis, and visualization of poly(2-ethynyl-9-substituted carbazole)s and poly (3-ethynyl-9-substituted carbazole)s containing chiral and achiral minidendritic substituents. J Polym Sci A Polym Chem 40(20):3509–3533. doi: 10.1002/pola.10458 Google Scholar
  122. 122.
    Percec V, Rudick JG, Peterca M, Wagner M, Obata M, Mitchell CM, Cho W-D, Balagurusamy VSK, Heiney PA (2005) Thermoreversible cis–cisoidal to cis–transoidal isomerization of helical dendronized polyphenylacetylenes. J Am Chem Soc 127(43):15257–15264. doi: 10.1021/ja055406w Google Scholar
  123. 123.
    Percec V, Aqad E, Peterca M, Rudick JG, Lemon L, Ronda JC, De BB, Heiney PA, Meijer EW (2006) Steric communication of chiral information observed in dendronized polyacetylenes. J Am Chem Soc 128(50):16365–16372. doi: 10.1021/ja0665848 Google Scholar
  124. 124.
    Percec V, Rudick JG, Peterca M, Aqad E, Imam MR, Heiney PA (2007) Synthesis, structural, and retrostructural analysis of helical dendronized poly(1-naphthylacetylene)s. J Polym Sci A Polym Chem 45(21):4974–4987. doi: 10.1002/pola.22265 Google Scholar
  125. 125.
    Percec V, Peterca M, Rudick JG, Aqad E, Imam MR, Heiney PA (2007) Self-assembling phenylpropyl ether dendronized helical polyphenylacetylenes. Chem Eur J 13(34):9572–9581. doi: 10.1002/chem.200701008 Google Scholar
  126. 126.
    Simionescu CI, Percec V, Dumitrescu S (1977) Polymerization of acetylenic derivatives. XXX. Isomers of polyphenylacetylene. J Polym Sci Polym Chem Ed 15(10):2497–2509. doi: 10.1002/pol.1977.170151018 Google Scholar
  127. 127.
    Simionescu CI, Percec V (1979) Polypentadeuterophenylacetylene isomers. J Polym Sci Polym Lett Ed 17:421–429. doi: 10.1002/pol.1979.130170705 Google Scholar
  128. 128.
    Simionescu CI, Percec V (1980) Polyarylacetylenes: structure and properties. J Polym Sci C Polym Symp 67:43–71. doi: 10.1002/polc.5070670105 Google Scholar
  129. 129.
    Simionescu CI, Percec V (1980) Thermal cis–trans isomerization of cis-transoidal polyphenylacetylene. J Polym Sci Polym Chem Ed 18:147–155. doi: 10.1002/pol.1980.170180114 Google Scholar
  130. 130.
    Aoki T, Kokai M, K-i S, Oikawa E (1993) Cheiral helical conformation of polyphenylacetylene having optically-active bulky substituent. Chem Lett 22(12):2009–2012. doi: 10.1246/cl.1993.2009 Google Scholar
  131. 131.
    Yashima E, Maeda K, Okamoto Y (1999) Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature 399(6735):449–451. doi: 10.1038/20900 Google Scholar
  132. 132.
    Louzao I, Seco JM, Quiñoá E, Riguera R (2010) Control of the helicity of poly(phenylacetylene)s: from the conformation of the pendant to the chirality of the backbone. Angew Chem Int Ed 49(8):1430–1433. doi: 10.1002/anie.200905222 Google Scholar
  133. 133.
    Freire F, Seco JM, Quiñoá E, Riguera R (2011) Chiral amplification and helical-sense tuning by mono- and divalent metals on dynamic helical polymers. Angew Chem Int Ed 50(49):11692–11695. doi: 10.1002/anie.201105769 Google Scholar
  134. 134.
    Freire F, Seco JM, Quiñoá E, Riguera R (2012) Nanospheres with tunable size and chirality from helical polymer–metal complexes. J Am Chem Soc 134(47):19374–19383. doi: 10.1021/ja3061112 Google Scholar
  135. 135.
    Leiras S, Freire F, Seco JM, Quiñoá E, Riguera R (2013) Controlled modulation of the helical sense and the elongation of poly(phenylacetylene)s by polar and donor effects. Chem Sci 4(7):2735–2743. doi: 10.1039/C3SC50835H Google Scholar
  136. 136.
    Percec V, Rudick JG, Peterca M, Staley SR, Wagner M, Obata M, Mitchell CM, Cho W-D, Balagurusamy VSK, Lowe JN, Glodde M, Weichold O, Chung KJ, Ghionni N, Magonov SN, Heiney PA (2006) Synthesis, structural analysis, and visualization of a library of dendronized polyphenylacetylenes. Chem Eur J 12(22):5731–5746. doi: 10.1002/chem.200600009 Google Scholar
  137. 137.
    Percec V, Rinaldi PL (1983) A 13C-NMR study of the microstrucure of polyphenylacetylenes prepared with MoCl5 and WCl6. Polym Bull 9(10–11):548–555. doi: 10.1007/BF00265243 Google Scholar
  138. 138.
    Percec V, Rinaldi PL (1983) 13C-NMR studies of thermally isomerized polyphenylacetylenes prepared with MoCl5 and WCl6 catalysts. Polym Bull 9(12):582–587. doi: 10.1007/BF00307882 Google Scholar
  139. 139.
    Percec V (1983) Microstructure of polyphenylacetylene obtained by MoCl5 and WCl6 type catalysts. Polym Bull 10(1–2):1–7. doi: 10.1007/BF00263230 Google Scholar
  140. 140.
    Percec V, Rudick JG, Nombel P, Buchowicz W (2002) Dramatic decrease of the cis content and molecular weight of cis-transoidal polyphenylacetylene at 23°C in solutions prepared in air. J Polym Sci A Polym Chem 40(19):3212–3220. doi: 10.1002/pola.10421 Google Scholar
  141. 141.
    Percec V, Rudick JG (2005) Independent electrocyclization and oxidative chain cleavage along the backboine of cis-poly(phenylacetylene). Macromolecules 38(17):7241–7250. doi: 10.1021/ma051060y Google Scholar
  142. 142.
    Percec V, Rudick JG, Aqad E (2005) Diminished helical character in para-substituted cis-transoidal polyphenylacetylenes due to intramolecular cyclization. Macromolecules 38(17):7205–7206. doi: 10.1021/ma051536d Google Scholar
  143. 143.
    Karim SMA, Nomura R, Masuda T (2001) Degradation behavior of stereoregular cis-transoidal poly(phenylacetylene)s. J Polym Sci A Polym Chem 39(18):3130–3136. doi: 10.1002/pola.1294 Google Scholar
  144. 144.
    Eelkema R, Pollard MM, Vicario J, Katsonis N, Ramon BS, Bastiaansen CWM, Broer DJ, Feringa BL (2006) Molecular machines: nanomotor rotates microscale objects. Nature 440(7081):163. doi: 10.1038/440163a Google Scholar
  145. 145.
    Yang H, Buguin A, Taulemesse J-M, Kaneko K, Méry S, Bergeret A, Keller P (2009) Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J Am Chem Soc 131(41):15000–15004. doi: 10.1021/ja905363f Google Scholar
  146. 146.
    Percec V, Imam MR, Peterca M, Leowanawat P (2012) Self-organizable vesicular columns assembled from polymers dendronized with semifluorinated Janus dendrimers act as reverse thermal actuators. J Am Chem Soc 134(9):4408–4420. doi: 10.1021/ja2118267 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryStony Brook UniversityStony BrookUSA

Personalised recommendations