Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures

  • Kurt Binder
  • Hans-Jürgen ButtEmail author
  • George Floudas
  • Holger Frey
  • Hsiao-Ping Hsu
  • Katharina Landfester
  • Ute Kolb
  • Angelika Kühnle
  • Michael Maskos
  • Klaus Müllen
  • Wolfgang Paul
  • Manfred Schmidt
  • Hans Wolfgang Spiess
  • Peter Virnau
Part of the Advances in Polymer Science book series (POLYMER, volume 260)


This chapter describes macromolecules with a complex structure, their defined aggregation in solution, their adsorption to surfaces, and their possible aggregation on surfaces. The term “complex structure” implies that the macromolecules show different, distinct structural elements or building blocks on a supra-atomic length scale. Key to understanding the complex structure of macromolecules, their aggregation, and adsorption to surfaces are intra- and intermolecular interactions such as van der Waals, electrostatic, π–π interactions, and hydrogen bonds.


Biopolymers Conformation Copolymers Cylindrical brush Dendrimer Liquid crystal NMR spectroscopy Organic electronics Polyelectrolyte Polymer Self-assembly 



Degree of dissociation


Shell thickness of nanocapsule


Energy of interaction between monomers


Wave length




Exponent characterizing end-to-end distance


Density of polymers or particles in solution


Grafting density of side chains to backbone


Flory–Huggins interaction parameter


Bjerrum length


Calculated conductivity


DC-conductivity of an ion-containing medium


Measured DC-conductivity

D+, D

Calculated diffusion coefficient of the free cation/anion

D+exp, Dexp

Diffusion coefficient as measured by NMR


Average distance of a backbone monomer of an adsorbed bottle brush from the surface


Atomic force microscopy

\( {\overrightarrow{l}}_{\mathrm{s}} \)

Bond vectors are grafted to the backbone


2-(4-Bromophenyl)-6-(4-chlorophenyl)pyridine-4-carboxylic acid


Biphenyl-4,4′-dicarboxylic acid




Exponent describing kinetics of aggregation


Diameter of drop


Diffusion coefficient of the neutral complex


2,5-Dichloro benzoic acid


Double electron–electron resonance


Experimental diffusion coefficient


2,5-Diiodo benzoic acid


3,5-Diiodo salicylic acid


Dynamic light scattering




Double-quantum nuclear magnetic resonance spectroscopy


Dielectric spectroscopy


Differential scanning calorimetry


Elementary charge

\( {\overrightarrow{R}}_{\mathrm{e},\mathrm{b}} \)

End-to-end vector of the backbone

\( {\overrightarrow{R}}_{\mathrm{e}} \)

End-to-end vector of side chain

\( {\overrightarrow{l}}_{\mathrm{b}} \)

Effective bond vectors of main chain


Coulomb attractive energy


Electron paramagnetic resonance


Activation energy for ion transport


Fluorescence correlation spectroscopy




Scattering intensity


4-Iodo benzoic acid


Boltzmann constant


Contour length


Thickness of block copolymer lamellar


Liquid crystalline


Domain size


Light emitting diode


Kuhn length


Length per repeat unit of the main chain


Persistence length


Molar mass of one repeat unit in the main chain




Magic angle spinning


Methyl formamide


Molar mass per length of main chain


Number-average side chain molar mass


Side chain molar mass


Degree of polymerization


Number of effective monomers in main chain


Nucleus independent chemical shift


Nuclear magnetic resonance


Nuclear Overhauser effect


Number of effective monomers in side chain




Main chain degree of polymerization


Polycyclic aromatic hydrocarbons


Poly(amido amine)


Perylene bisdiimide




Perylene diimide


Poly(ethylene glycol)


Poly(ethylene imine)


Poly(ethylene oxide)


Number density of the ith type of charge carrier








Poly(methyl methacrylate)


Polyphenylene dendrimer


Total ion concentration




Side chain degree of polymerization


Poly(styrene sulfonate)




Weight average degree of polymerization


Scattering vector


Quantum dot


Charge of the ith type of charge carrier


Distance separating a point-like cation from a point-like anion


Core radius of a spherical brush


Cross-sectional radius


Radius of gyration


Cross-sectional radius of gyration of brush polymer


Hydrodynamic radius


Dynamic order parameter


Number of bonds along the backbone


Small angle neutron scattering


Small-angle X-ray scattering


Number of monomers per blob


Sodium dodecyl sulfate


Static light scattering






Tetrabutylammonium cation


Transmission electron microscopy


Glass transition temperature




Theta temperature


Potential of mean force for two particles at distance r


Wide-angle X-ray scattering


Mole fraction of anionic charges


X-ray photoelectron spectroscopy


Charge ratio


Permittivity of free space


Dielectric permittivity


Mobility of the ith type of charge carrier


Limiting conductivity


  1. 1.
    Vögtle F (2001) Dendrimers III – design, dimension, function. In: Houk KN, de Meijere A, Kessler H, Lehn I-M, Ley SV, Schreiber SL, Thiem I, Trost BM (eds) Topics in current chemistry, vol 212. Springer, BerlinGoogle Scholar
  2. 2.
    Frechet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. In: Scheirs J (ed) Wiley series in polymer science. Wiley, New York, p 688Google Scholar
  3. 3.
    Hawker CJ, Frechet JMJ (1990) J Am Chem Soc 112:7638Google Scholar
  4. 4.
    Fischer M, Vogtle F (1999) Angew Chem Int Ed 38:885Google Scholar
  5. 5.
    Tomalia DA, Naylor AM, Goddard WA (1990) Angew Chem Int Ed 29:138Google Scholar
  6. 6.
    Bosman AW, Janssen HM, Meijer EW (1999) Chem Rev 99:1665Google Scholar
  7. 7.
    Türp D, Nguyen T-T-T, Baumgarten M, Müllen K (2012) New J Chem 36:282Google Scholar
  8. 8.
    Miller TM, Neenan TX (1990) Chem Mater 2:346Google Scholar
  9. 9.
    Miller TM, Neenan TX, Zayas R, Bair HE (1992) J Am Chem Soc 114:1018Google Scholar
  10. 10.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J 17:117Google Scholar
  11. 11.
    Petekidis G, Vlassopoulos D, Galda P, Rehahn M, Ballauff M (1996) Macromolecules 29:8948Google Scholar
  12. 12.
    Buhleier E, Wehner W, Vogtle F (1978) Synthesis-Stuttgart 1978(2):155-158Google Scholar
  13. 13.
    Andreitchenko EV, Clark CG, Bauer RE, Lieser G, Müllen K (2005) Angew Chem Int Ed 44:6348Google Scholar
  14. 14.
    Clark CG Jr, Wenzel RJ, Andreitchenko EV, Steffen W, Zenobi R, Müllen K (2007) J Am Chem Soc 129:3292Google Scholar
  15. 15.
    Morgenroth F, Reuther E, Müllen K (1997) Angew Chem Int Ed 36:631Google Scholar
  16. 16.
    Yin M, Ding K, Gropeanu RA, Shen J, Berger R, Weil T, Müllen K (2008) Biomacromolecules 9:3231Google Scholar
  17. 17.
    Herrmann A, Mihov G, Vandermeulen GWM, Klok HA, Müllen K (2003) Tetrahedron 59:3925Google Scholar
  18. 18.
    Mondeshki M, Mihov G, Graf R, Spiess HW, Müllen K, Papadopoulos P, Gitsas A, Floudas G (2006) Macromolecules 39:9605Google Scholar
  19. 19.
    Mihov G, Grebel-Koehler D, Lubbert A, Vandermeulen GWM, Herrmann A, Klok HA, Müllen K (2005) Bioconjug Chem 16:283Google Scholar
  20. 20.
    Türp D, Wagner M, Enkelmann V, Müllen K (2011) Angew Chem Int Ed 50:4962Google Scholar
  21. 21.
    Mpoukouvalas K, Türp D, Wagner M, Müllen K, Butt H-J, Floudas G (2011) J Phys Chem B 115:5801Google Scholar
  22. 22.
    Vanderhoeven PHC, Lyklema J (1992) Adv Colloid Interface Sci 42:205Google Scholar
  23. 23.
    Krossing I, Raabe I (2004) Angew Chem Int Ed 43:2066Google Scholar
  24. 24.
    Every HA, Bishop AG, MacFarlane DR, Oradd G, Forsyth M (2004) Phys Chem Chem Phys 6:1758Google Scholar
  25. 25.
    Strauss SH (1993) Chem Rev 93:927Google Scholar
  26. 26.
    Qu JQ, Pschirer NG, Liu DJ, Stefan A, De Schryver FC, Müllen K (2004) Chem Euro J 10:528Google Scholar
  27. 27.
    Qu JQ, Zhang JY, Grimsdale AC, Müllen K, Jaiser F, Yang XH, Neher D (2004) Macromolecules 37:8297Google Scholar
  28. 28.
    Herrmann A, Weil T, Sinigersky V, Wiesler UM, Vosch T, Hofkens J, De Schryver FC, Müllen K (2001) Chem Euro J 7:4844Google Scholar
  29. 29.
    Weil T, Reuther E, Beer C, Müllen K (2004) Chem Euro J 10:1398Google Scholar
  30. 30.
    Weil T, Reuther E, Müllen K (2002) Angew Chem Int Ed 41:1900Google Scholar
  31. 31.
    Weil T, Vosch T, Hofkens J, Peneva K, Müllen K (2010) Angew Chem Int Ed 49:9068Google Scholar
  32. 32.
    Österling I, Müllen K (2007) J Am Chem Soc 129:4595Google Scholar
  33. 33.
    Gronheid R, Hofkens J, Kohn F, Weil T, Reuther E, Müllen K, De Schryver FC (2002) J Am Chem Soc 124:2418Google Scholar
  34. 34.
    Cotlet M, Gronheid R, Habuchi S, Stefan A, Barbafina A, Müllen K, Hofkens J, De Schryver FC (2003) J Am Chem Soc 125:13609Google Scholar
  35. 35.
    Masuo S, Vosch T, Cotlet M, Tinnefeld P, Habuchi S, Bell TDM, Oesterling I, Beljonne D, Champagne B, Müllen K, Sauer M, Hofkens J, De Schryver FC (2004) J Phys Chem B 108:16686Google Scholar
  36. 36.
    Qin T, Zhou G, Scheiber H, Bauer RE, Baunigarten M, Anson CE, List EJW, Müllen K (2008) Angew Chem Int Ed 47:8292Google Scholar
  37. 37.
    Qin T, Wiedemair W, Nau S, Trattnig R, Sax S, Winkler S, Vollmer A, Koch N, Baumgarten M, List EJW, Müllen K (2011) J Am Chem Soc 133:1301Google Scholar
  38. 38.
    Nguyen T-T-T, Türp D, Wagner M, Müllen K (2013) Angew Chem Int Ed 52:669Google Scholar
  39. 39.
    Nguyen T-T-T, Türp D, Wang D, Noelscher B, Laquai F, Müllen K (2011) J Am Chem Soc 133:11194Google Scholar
  40. 40.
    Shifrina ZB, Rajadurai MS, Firsova NV, Bronstein LM, Huang XL, Rusanov AL, Müllen K (2005) Macromolecules 38:9920Google Scholar
  41. 41.
    Lubczyk D, Siering C, Loergen J, Shifrina ZB, Müllen M, Waldvogel SR (2010) Sensor Actuator B 143:561Google Scholar
  42. 42.
    Lubczyk D, Grill M, Baumgarten M, Waldvogel SR, Müllen K (2012) Chemphyschem 77:102Google Scholar
  43. 43.
    Gardner J, Yinon J (2003) Electronic noses & sensors for the detection of explosives. II mathematics, physics and chemistry. Kluwer Academic, New YorkGoogle Scholar
  44. 44.
    Newkome GR, Moorefield CN, Baker GR, Johnson AL, Behera RK (1991) Angew Chem Int Ed 30:1176Google Scholar
  45. 45.
    Hawker CJ, Wooley KL, Frechet JMJ (1993) J Chem Soc Perkin Trans 1:1287Google Scholar
  46. 46.
    Hecht S, Frechet JMJ (2001) Angew Chem Int Ed 40:74Google Scholar
  47. 47.
    Loi S, Butt HJ, Hampel C, Bauer R, Wiesler UM, Müllen K (2002) Langmuir 18:2398Google Scholar
  48. 48.
    Loi S, Wiesler UM, Butt HJ, Müllen K (2000) Chem Commun 1169Google Scholar
  49. 49.
    Loi S, Wiesler UM, Butt HJ, Müllen K (2001) Macromolecules 34:3661Google Scholar
  50. 50.
    Frechet JMJ (1994) Science 263:1710Google Scholar
  51. 51.
    Yin M, Feng C, Shen J, Yu Y, Xu Z, Yang W, Knoll W, Müllen K (2011) Small 7:1629Google Scholar
  52. 52.
    Feng CL, Yin M, Zhang D, Zhu S, Caminade AM, Majoral JP, Müllen K (2011) Macromol Rapid Commun 32:679Google Scholar
  53. 53.
    Yu Y, Yin M, Müllen K, Knoll W (2012) J Mater Chem 22:7880Google Scholar
  54. 54.
    Yin M, Shen J, Pflugfelder GO, Müllen K (2008) J Am Chem Soc 130:7806Google Scholar
  55. 55.
    Yin M, Shen J, Gropeanu R, Pflugfelder GO, Weil T, Müllen K (2008) Small 4:894Google Scholar
  56. 56.
    Dufes C, Uchegbu IF, Schatzlein AG (2005) Adv Drug Deliv Rev 57:2177Google Scholar
  57. 57.
    Kuan SL, Stöckle B, Reichenwallner J, Ng DYW, Wu Y, Doroshenko M, Koynov K, Hinderberger D, Müllen K, Weil T (2013) Biomacromolecules 14:367Google Scholar
  58. 58.
    Boas U, Heegaard PMH (2004) Chem Soc Rev 33:43Google Scholar
  59. 59.
    Zhang MF, Müller AHE (2005) J Polym Sci A 43:3461Google Scholar
  60. 60.
    Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Progr Polym Sci 33:759Google Scholar
  61. 61.
    Hsu H-P, Paul W, Binder K (2011) Macromol Theor Sim 20:510Google Scholar
  62. 62.
    Fredrickson GH (1993) Macromolecules 26:2825Google Scholar
  63. 63.
    Zhang B, Gröhn F, Pedersen JS, Fischer K, Schmidt M (2006) Macromolecules 39:8440Google Scholar
  64. 64.
    Hsu H-P, Paul W, Binder K (2008) J Chem Phys 129:204904Google Scholar
  65. 65.
    Hsu H-P, Paul W, Rathgeber S, Binder K (2010) Macromolecules 43:1592Google Scholar
  66. 66.
    Hsu H-P, Paul W, Binder K (2010) Macromolecules 43:3094Google Scholar
  67. 67.
    Kratky O, Porod G (1949) J Colloid Sci 4:35Google Scholar
  68. 68.
    Grosberg AY, Khoklov AR (1994) Statistical physics of macromolecules. In: Larson R, Pincus PA (eds) AIP series in polymer and complex materials. AIP, New York, p 382Google Scholar
  69. 69.
    Hsu H-P, Paul W, Binder K (2011) Europhys Lett 95:68004Google Scholar
  70. 70.
    Hsu H-P, Paul W, Binder K (2010) Europhys Lett 92:28003Google Scholar
  71. 71.
    Theodorakis PE, Hsu H-P, Paul W, Binder K (2011) J Chem Phys 135:164903Google Scholar
  72. 72.
    Gerle M, Fischer K, Roos S, Muller AHE, Schmidt M, Sheiko SS, Prokhorova S, Moller M (1999) Macromolecules 32:2629Google Scholar
  73. 73.
    Sun F, Sheiko SS, Möller M, Beers K, Matyjaszewski K (2004) J Phys Chem A 108:9682Google Scholar
  74. 74.
    Sheiko SS, Borisov OV, Prokhorova SA, Möller M (2004) Eur Phys J E 13:125Google Scholar
  75. 75.
    Saariaho M, Ikkala O, Szleifer I, Erukhimovich I, ten Brinke G (1997) J Chem Phys 107:3267Google Scholar
  76. 76.
    Elli S, Ganazzoli F, Timoshenko EG, Kuznetsov YA, Connolly R (2004) J Chem Phys 120:6257Google Scholar
  77. 77.
    Connolly R, Bellesia G, Timoshenko EG, Kuznetsov YA, Elli S, Ganazzoli F (2005) Macromolecules 38:5288Google Scholar
  78. 78.
    Subbotin A, Saariaho M, Ikkala O, ten Brinke G (2000) Macromolecules 33:3447Google Scholar
  79. 79.
    Nakamura Y, Norisuye T (2001) Polym J 33:874Google Scholar
  80. 80.
    Gerle M (1998) Dissertation, Universität MainzGoogle Scholar
  81. 81.
    Wintermantel M, Gerle M, Fischer K, Schmidt M, Wataoka I, Urakawa H, Kajiwara K, Tsukahara Y (1996) Macromolecules 29:978Google Scholar
  82. 82.
    Terao K, Takeo Y, Tazaki M, Nakamura Y, Norisuye T (1999) Polym J 31:193Google Scholar
  83. 83.
    Terao K, Nakamura Y, Norisuye T (1999) Macromolecules 32:711Google Scholar
  84. 84.
    Terao K, Hokajo T, Nakamura Y, Norisuye T (1999) Macromolecules 32:3690Google Scholar
  85. 85.
    Terao K, Hayashi S, Nakamura Y, Norisuye T (2000) Polym Bull 44:309Google Scholar
  86. 86.
    Hokajo T, Terao K, Nakamura Y, Norisuye T (2001) Polym J 33:481Google Scholar
  87. 87.
    Hsu HP, Paul W, Binder K (2013) Polym Sci Ser C 55:39Google Scholar
  88. 88.
    Sahl M, Muth S, Branscheid R, Fischer K, Schmidt M (2012) Macromolecules 45:5167Google Scholar
  89. 89.
    Cassim JY, Yang JT (1970) Biopolymers 9:1475Google Scholar
  90. 90.
    Gunari N, Cong Y, Zhang B, Fischer K, Janshoff A, Schmidt M (2008) Macromol Rapid Commun 29:821Google Scholar
  91. 91.
    Halperin A, Zhulina EB (1991) Europhys Lett 15:417Google Scholar
  92. 92.
    Theodorakis PE, Paul W, Binder K (2009) Europhys Lett 88:63002Google Scholar
  93. 93.
    Stephan T, Muth S, Schmidt M (2002) Macromolecules 35:9857Google Scholar
  94. 94.
    Heimann N (2004) Konformationsänderungen von zylindrischen Makromolekülen. Diploma thesis, University of MainzGoogle Scholar
  95. 95.
    Zhang B, Zhang SJ, Okrasa L, Pakula T, Stephan T, Schmidt M (2004) Polymer 45:4009Google Scholar
  96. 96.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  97. 97.
    Binder K (1994) Theories and mechanism of phase transitions, heterophase polymerizations, homopolymerization. Addition Polym 112:181Google Scholar
  98. 98.
    Enders S, Wolf BA (2011) Polymer thermodynamics: liquid polymer-containing mixtures. Springer, BerlinGoogle Scholar
  99. 99.
    Erukhimovich I, Theodorakis PE, Paul W, Binder K (2011) J Chem Phys 134:085101Google Scholar
  100. 100.
    Sevink GJA, Zvelindovsky AV, Fraaije J, Huinink HP (2001) J Chem Phys 115:8226Google Scholar
  101. 101.
    Erukhimovich I, Johner A (2007) Europhys Lett 79:56004Google Scholar
  102. 102.
    Stepanyan R, Subbotin A, ten Brinke G (2002) Macromolecules 35:5640Google Scholar
  103. 103.
    de Jong J, ten Brinke G (2004) Macromol Theor Sim 13:318Google Scholar
  104. 104.
    Liu YF, Abetz V, Muller AHE (2003) Macromolecules 36:7894Google Scholar
  105. 105.
    Hsu H-P, Paul W, Binder K (2007) Macromol Theor Sim 16:660Google Scholar
  106. 106.
    Hamley IW (1998) The physics of block polymers. Oxford University Press, New YorkGoogle Scholar
  107. 107.
    Leibler L (1980) Macromolecules 13:1602Google Scholar
  108. 108.
    Landau LD, Lifshitz EM (1958) Statistical physics. Pergamon, LondonGoogle Scholar
  109. 109.
    Hsu H-P, Paul W, Binder K (2006) Europhys Lett 76:526Google Scholar
  110. 110.
    Hsu H-P, Paul W, Binder K (2007) Macromol Symp 252:58Google Scholar
  111. 111.
    Grassberger P (1997) Phys Rev E 56:3682Google Scholar
  112. 112.
    Hsu H-P, Grassberger P (2011) J Stat Phys 144:597Google Scholar
  113. 113.
    Li CM, Gunari N, Fischer K, Janshoff A, Schmidt M (2004) Angew Chem Int Ed 43:1101Google Scholar
  114. 114.
    Ballauff M, Lu Y (2007) Polymer 48:1815Google Scholar
  115. 115.
    Akcora P, Liu H, Kumar SK, Moll J, Li Y, Benicewicz BC, Schadler LS, Acehan D, Panagiotopoulos AZ, Pryamitsyn V, Ganesan V, Ilavsky J, Thiyagarajan P, Colby RH, Douglas JF (2009) Nat Mater 8:354Google Scholar
  116. 116.
    Binder K, Milchev A (2012) J Polym Sci B 50:1515Google Scholar
  117. 117.
    Lo Verso F, Yelash L, Egorov SA, Binder K (2012) Soft Matter 8:4185Google Scholar
  118. 118.
    Lo Verso F, Yelash L, Egorov SA, Binder K (2011) J Chem Phys 135:214902Google Scholar
  119. 119.
    Lo Verso F, Egorov SA, Milchev A, Binder K (2010) J Chem Phys 133:184901Google Scholar
  120. 120.
    Lo Verso F, Egorov SA, Binder K (2012) Macromolecules 45:8892Google Scholar
  121. 121.
    Kremer K, Grest GS (1995) Entanglement effects in polymer melts and networks. In: Binder K (ed) Monte Carlo and molecular dynamics methods in polymer science. Oxford University Press, New York, p. 194Google Scholar
  122. 122.
    Egorov SA (2008) J Chem Phys 129:064901Google Scholar
  123. 123.
    Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman & Hall, London, p 496Google Scholar
  124. 124.
    Reith D, Milchev A, Virnau P, Binder K (2011) Europhys Lett 95:28003Google Scholar
  125. 125.
    Reith D, Milchev A, Virnau P, Binder K (2012) Macromolecules 45:4381Google Scholar
  126. 126.
    Reith D, Mirny L, Virnau P (2011) Progr Theor Phys Suppl 191:135Google Scholar
  127. 127.
    Halverson JD, Lee WB, Grest GS, Grosberg AY, Kremer K (2011) J Chem Phys 134:204904Google Scholar
  128. 128.
    Wieland T, Goldmann H, Kern W (1953) Macromol Chem Phys 10:136Google Scholar
  129. 129.
    Michaels AS, Miekka RG (1961) J Phys Chem 65:1765Google Scholar
  130. 130.
    Kabanov VA, Zezin AB, Izumrudov VA, Bronich TK, Bakeev KN (1985) Macromol Chem Phys 13:137-155 doi: 10.1002/macp.1985.020131985111Google Scholar
  131. 131.
    Dautzenberg H (2000) Macromol Symp 162:1Google Scholar
  132. 132.
    Thünemann A, Müller M, Dautzenberg H, Joanny J-F, Löwen H (2004) Polyelectrolyte Complexes. In: Schimidt M (ed) Polyelectrolytes with defined molecular architecture II. Springer, Berlin, p 113Google Scholar
  133. 133.
    Karibyants N, Dautzenberg H, Colfen H (1997) Macromolecules 30:7803Google Scholar
  134. 134.
    Bloomfield VA (1997) Biopolymers 44:269Google Scholar
  135. 135.
    Park TG, Jeong JH, Kim SW (2006) Adv Drug Deliv Rev 58:467Google Scholar
  136. 136.
    Haag R, Kratz F (2006) Angew Chem Int Ed 45:1198Google Scholar
  137. 137.
    Kabanov AV, Kabanov VA (1995) Bioconjug Chem 6:7Google Scholar
  138. 138.
    Bronich TK, Nguyen HK, Eisenberg A, Kabanov AV (2000) J Am Chem Soc 122:8339Google Scholar
  139. 139.
    Fischer D, Dautzenberg H, Kunath K, Kissel T (2004) Intern J Pharm 280:253Google Scholar
  140. 140.
    Katakura H, Harada A, Kataoka K, Furusho M, Tanaka F, Wada H, Ikenaka K (2004) J Gene Med 6:471Google Scholar
  141. 141.
    Oupicky D, Reschel T, Konak C, Oupicka L (2003) Macromolecules 36:6863Google Scholar
  142. 142.
    Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) Gene Ther 5:1425Google Scholar
  143. 143.
    Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M (2004) J Gene Med 6:1102Google Scholar
  144. 144.
    Chen W, Turro NJ, Tomalia DA (2000) Langmuir 16:15Google Scholar
  145. 145.
    Ottaviani MF, Sacchi B, Turro NJ, Chen W, Jockusch S, Tomalia DA (1999) Macromolecules 32:2275Google Scholar
  146. 146.
    Zinchenko AA, Yoshikawa K, Baigl D (2005) Phys Rev Lett 95:228101Google Scholar
  147. 147.
    Keren K, Soen Y, Ben Yoseph G, Gilad R, Braun E, Sivan U, Talmon Y (2002) Phys Rev Lett 89:088103Google Scholar
  148. 148.
    Gössl I, Shu L, Schlüter AD, Rabe JP (2002) J Am Chem Soc 124:6860Google Scholar
  149. 149.
    Gössl I, Shu L, Schlüter D, Rabe JP (2002) Single Molecules 3:315Google Scholar
  150. 150.
    Störkle D, Duschner S, Heimann N, Maskos M, Schmidt M (2007) Macromolecules 40:7998Google Scholar
  151. 151.
    Kuehn F, Fischer K, Schmidt M (2009) Macromol Rapid Commun 30:1470Google Scholar
  152. 152.
    Duschner S, Störkle D, Schmidt M, Maskos M (2008) Macromolecules 41:9067Google Scholar
  153. 153.
    Krohne K, Duschner S, Störkle D, Schmidt M, Maskos M (2010) Macromolecules 43:8645Google Scholar
  154. 154.
    Medina-Oliva A (2012) Ph.D. thesis, Dept. of Chemistry, University of Mainz, MainzGoogle Scholar
  155. 155.
    Eisenriegler E (1991) Polymers near surfaces. World Scientific, SingaporeGoogle Scholar
  156. 156.
    Gunari N, Schmidt M, Janshoff A (2006) Macromolecules 39:2219Google Scholar
  157. 157.
    Hsu H-P, Paul W, Binder K (2011) J Phys Chem B 115:14116Google Scholar
  158. 158.
    Winter D, Virnau P, Binder K (2009) Phys Rev Lett 103:225703Google Scholar
  159. 159.
    Hsu H-P, Paul W, Binder K (2010) J Chem Phys 133:104901Google Scholar
  160. 160.
    Brown SP, Spiess HW (2001) Chem Rev 101:4125Google Scholar
  161. 161.
    Brown SP (2009) Macromol Rapid Commun 30:688Google Scholar
  162. 162.
    Sebastiani D (2006) Chemphyschem 7:164Google Scholar
  163. 163.
    Tonelli AE, Schilling FC (1981) Acc Chem Res 14:233Google Scholar
  164. 164.
    Hansen MR, Graf R, Spiess HW (2013) Acc Chem Res 46:1996Google Scholar
  165. 165.
    Ober CK, Cheng SZD, Hammond PT, Muthukumar M, Reichmanis E, Wooley KL, Lodge TP (2009) Macromolecules 42:465Google Scholar
  166. 166.
    Spiess HW (2010) Macromolecules 43:5479Google Scholar
  167. 167.
    Vila JA, Scheraga HA (2009) Acc Chem Res 42:1545Google Scholar
  168. 168.
    Ochsenfeld C, Brown SP, Schnell I, Gauss J, Spiess HW (2001) J Am Chem Soc 123:2597Google Scholar
  169. 169.
    Spiess HW (2004) J Polym Sci A 42:5031Google Scholar
  170. 170.
    Dudenko D, Kiersnowski A, Shu J, Pisula W, Sebastiani D, Spiess HW, Hansen MR (2012) Angew Chem Int Ed 51:11068Google Scholar
  171. 171.
    Wüthrich K (2003) Angew Chem Int Ed 42:3340Google Scholar
  172. 172.
    Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) J Magn Reson 142:331Google Scholar
  173. 173.
    Spiess HW (2011) J Magn Reson 213:326Google Scholar
  174. 174.
    Jeschke G (2012) Annu Rev Phys Chem 62:419Google Scholar
  175. 175.
    Hubbell WL, Cafiso DS, Altenbach C (2000) Nat Struct Biol 7:735Google Scholar
  176. 176.
    Dockter C, Volkov A, Bauer C, Polyhach Y, Joly-Lopez Z, Jeschke G, Paulsen H (2009) Proc Natl Acad Sci USA 106:18485Google Scholar
  177. 177.
    Walton AG, Blackwell JB (1973) Biopolymers. Academic, New YorkGoogle Scholar
  178. 178.
    Klok H-A, Lecommandoux S (2006) Solid-state structure, organization and properties of peptide – synthetic hybrid block copolymers. In: Klok HA, Schlaad H (eds) Peptide hybrid polymers, Advances in polymer science, vol 202. Springer, Berlin, pp 75-111Google Scholar
  179. 179.
    Tycko R (2001) Ann Rev Phys Chem 52:575Google Scholar
  180. 180.
    Strobl G (2007) The physics of polymers: concepts for understanding their structures and behavior, 3rd edn. Springer, New York, 518Google Scholar
  181. 181.
    Floudas G, Spiess HW (2009) Macromol Rapid Commun 30:278Google Scholar
  182. 182.
    Floudas G (2004) Progr Polym Sci 29:1143Google Scholar
  183. 183.
    Wang J, Lu H, Ren Y, Zhang YF, Morton M, Cheng JJ, Lin Y (2011) Macromolecules 44:8699Google Scholar
  184. 184.
    Aliferis T, Iatrou H, Hadjichristidis N (2004) Biomacromolecules 5:1653Google Scholar
  185. 185.
    Floudas G, Papadopoulos P, Klok HA, Vandermeulen GWM, Rodriguez-Hernandez J (2003) Macromolecules 36:3673Google Scholar
  186. 186.
    Gibson MI, Cameron NR (2008) Angew Chem Int Ed 47:5160Google Scholar
  187. 187.
    Gitsas A, Floudas G, Mondeshki M, Lieberwirth I, Spiess HW, Iatrou H, Hadjichristidis N, Hirao A (2010) Macromolecules 43:1874Google Scholar
  188. 188.
    Graf R, Spiess HW, Floudas G, Butt HJ, Gkikas M, Iatrou H (2012) Macromolecules 45:9326Google Scholar
  189. 189.
    Bates FS, Fredrickson GH (1990) Ann Rev Phys Chem 41:525Google Scholar
  190. 190.
    Clark CG, Floudas GA, Lee YJ, Graf R, Spiess HW, Müllen K (2009) J Am Chem Soc 131:8537Google Scholar
  191. 191.
    Young Joo L, Clark CG Jr, Graf R, Wagner M, Müllen K, Spiess HW (2009) J Phys Chem B 113:1360Google Scholar
  192. 192.
    Gorelik T, Matveeva G, Kolb U, Schleuss T, Kilbinger AFM, van de Streek J, Bohle A, Brunklaus G (2010) CrystEngComm 12:1824Google Scholar
  193. 193.
    Gorelik TE, van de Streek J, Kilbinger AFM, Brunklaus G, Kolb U (2012) Acta Crystallogr B 68:171Google Scholar
  194. 194.
    Bohle A, Brunklaus G, Hansen MR, Schleuss TW, Kilbinger AFM, Seltmann J, Spiess HW (2010) Macromolecules 43:4978Google Scholar
  195. 195.
    Palmans ARA, Meijer EW (2007) Angew Chem Int Ed 46:8948Google Scholar
  196. 196.
    Metzroth T, Hoffmann A, Martin-Rapun R, Smulders MMJ, Pieterse K, Palmans ARA, Vekemans JAJM, Meijer EW, Spiess HW, Gauss J (2011) Chem Sci 2:69Google Scholar
  197. 197.
    Wegner M, Dudenko D, Sebastiani D, Palmans ARA, de Greef TFA, Graf R, Spiess HW (2011) Chem Sci 2:2040Google Scholar
  198. 198.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548Google Scholar
  199. 199.
    Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) Science 309:2040Google Scholar
  200. 200.
    Vollmeyer J, Jester SS, Eberhagen F, Prangenberg T, Mader W, Höger S (2012) Chem Commun 48:6547Google Scholar
  201. 201.
    Fritzsche M, Bohle A, Dudenko D, Baumeister U, Sebastiani D, Richardt G, Spiess HW, Hansen MR, Hoeger S (2011) Angew Chem Int Ed 50:3030Google Scholar
  202. 202.
    Ajami D, Rebek J (2008) Angew Chem Int Ed 47:6059Google Scholar
  203. 203.
    Moon C, Brunklaus G, Sebastiani D, Rudzevich Y, Böhmer V, Spiess HW (2009) Phys Chem Chem Phys 11:9241Google Scholar
  204. 204.
    Wu JS, Pisula W, Müllen K (2007) Chem Rev 107:718Google Scholar
  205. 205.
    Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K (2009) Nat Mater 8:421Google Scholar
  206. 206.
    Elmahdy MM, Mondeshki M, Dou X, Butt H-J, Spiess HW, Müllen K, Floudas G (2009) J Chem Phys 131: 114704Google Scholar
  207. 207.
    Herbst W, Hunger K (2004) Industrial Organic pigments: production, properties, applications, 3rd edn. Wiley-VCH, Weinheim, p 678Google Scholar
  208. 208.
    Schmidt-Mende L, Fechtenkotter A, Müllen K, Moons E, Friend RH, MacKenzie JD (2001) Science 293:1119Google Scholar
  209. 209.
    Tasios N, Grigoriadis C, Hansen MR, Wonneberger H, Li C, Spiess HW, Müllen K, Floudas G (2010) J Am Chem Soc 132:7478Google Scholar
  210. 210.
    Percec V, Hudson SD, Peterca M, Leowanawat P, Aqad E, Graf R, Spiess HW, Zeng X, Ungar G, Heiney PA (2011) J Am Chem Soc 133:18479Google Scholar
  211. 211.
    Förster S, Konrad M (2003) J Mater Chem 13:2671Google Scholar
  212. 212.
    Yoon J, Lee W, Thomas EL (2006) Nano Lett 6:2211Google Scholar
  213. 213.
    Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Science 276:1401Google Scholar
  214. 214.
    Kikuchi M, Binder K (1994) J Chem Phys 101:3367Google Scholar
  215. 215.
    Shin K, Xiang HQ, Moon SI, Kim T, McCarthy TJ, Russell TP (2004) Science 306:76Google Scholar
  216. 216.
    Ma M, Krikorian V, Yu JH, Thomas EL, Rutledge GC (2006) Nano Lett 6:2969Google Scholar
  217. 217.
    Thomas EL, Reffner JR, Bellare J (1990) J de Physique 51:C7363Google Scholar
  218. 218.
    Higuchi T, Motoyoshi K, Sugimori H, Jinnai H, Yabu H, Shimomura M (2010) Macromol Rapid Commun 31:1773Google Scholar
  219. 219.
    Hales K, Chen Z, Wooley KL, Pochan DJ (2008) Nano Lett 8:2023Google Scholar
  220. 220.
    Crespy D, Landfester K (2007) Macromol Chem Phys 208:457Google Scholar
  221. 221.
    Staff RH, Rupper P, Lieberwirth I, Landfester K, Crespy D (2011) Soft Matter 7:10219Google Scholar
  222. 222.
    Winkler A, Statt A, Virnau P, Binder K (2013) Phys Rev E 87:032307Google Scholar
  223. 223.
    Statt A, Winkler A, Virnau P, Binder K (2012) J Phys Condens Matter 24:464122Google Scholar
  224. 224.
    Reith D, Virnau P (2010) Comput Phys Commun 181:800Google Scholar
  225. 225.
    Reith D, Virnau P (2011) Comput Phys Commun 182:1945Google Scholar
  226. 226.
    Reith D, Cifra P, Stasiak A, Virnau P (2012) Nucleic Acids Res 40:5129Google Scholar
  227. 227.
    Virnau P, Rieger FC, Reith D (2013) Biochem Soc Trans 41:528Google Scholar
  228. 228.
    Howarter JA, Youngblood JP (2007) Adv Mater 19:3838Google Scholar
  229. 229.
    Ghosh B, Urban MW (2009) Science 323:1458Google Scholar
  230. 230.
    Uhlmann P, Ionov L, Houbenov N, Nitschke M, Grundke K, Motornov M, Minko S, Stamm M (2006) Prog Org Coat 55:168Google Scholar
  231. 231.
    Sui ZJ, Schlenoff JB (2003) Langmuir 19:7829Google Scholar
  232. 232.
    Zhao B, Haasch RT, MacLaren S (2004) J Am Chem Soc 126:6124Google Scholar
  233. 233.
    Julthongpiput D, Lin YH, Teng J, Zubarev ER, Tsukruk VV (2003) J Am Chem Soc 125:15912Google Scholar
  234. 234.
    Zhulina E, Balazs AC (1996) Macromolecules 29:2667Google Scholar
  235. 235.
    Lin YH, Teng J, Zubarev ER, Shulha H, Tsukruk VV (2005) Nano Lett 5:491Google Scholar
  236. 236.
    Wang Y, Zheng JX, Brittain WJ, Cheng SZD (2006) J Polym Sci A 44:5608Google Scholar
  237. 237.
    Tonhauser C, Wilms D, Wurm F, Berger-Nicoletti E, Maskos M, Löwe H, Frey H (2010) Macromolecules 43:5582Google Scholar
  238. 238.
    Tonhauser C, Obermeier B, Mangold C, Löwe H, Frey H (2011) Chem Commun 47:8964Google Scholar
  239. 239.
    Tonhauser C, Golriz AA, Moers C, Klein R, Butt HJ, Frey H (2012) Adv Mater 24:5559Google Scholar
  240. 240.
    Neto C, James M, Telford AM (2009) Macromolecules 42:4801Google Scholar
  241. 241.
    Discher DE, Eisenberg A (2002) Science 297:967Google Scholar
  242. 242.
    Lee JCM, Bermudez H, Discher BM, Sheehan MA, Won YY, Bates FS, Discher DE (2001) Biotechnol Bioeng 73:135Google Scholar
  243. 243.
    Förster S, Berton B, Hentze HP, Kramer E, Antonietti M, Lindner P (2001) Macromolecules 34:4610Google Scholar
  244. 244.
    Antonietti M, Förster S (2003) Adv Mater 15:1323Google Scholar
  245. 245.
    Jain S, Bates FS (2003) Science 300:460Google Scholar
  246. 246.
    Maskos M (2006) Polymer 47:1172Google Scholar
  247. 247.
    Caliceti P, Veronese FM (2003) Adv Drug Deliv Rev 55:1261Google Scholar
  248. 248.
    Haag R (2004) Angew Chem Int Ed 116:280Google Scholar
  249. 249.
    Bermudez H, Brannan AK, Hammer DA, Bates FS, Discher DE (2002) Macromolecules 35:8203Google Scholar
  250. 250.
    Maskos M, Harris JR (2001) Macromol Rapid Commun 22:271Google Scholar
  251. 251.
    Jofre A, Hutchison JB, Kishore R, Locascio LE, Helmerson K (2007) J Phys Chem B 111:5162Google Scholar
  252. 252.
    Checot F, Lecommandoux S, Klok HA, Gnanou Y (2003) Eur Phys J E 10:25Google Scholar
  253. 253.
    Allen C, Maysinger D, Eisenberg A (1999) Colloids Surf B 16:3Google Scholar
  254. 254.
    Kataoka K, Harada A, Nagasaki Y (2001) Adv Drug Deliv Rev 47:113Google Scholar
  255. 255.
    Choucair A, Soo PL, Eisenberg A (2005) Langmuir 21:9308Google Scholar
  256. 256.
    Borchert U, Lipprandt U, Bilang M, Kimpfler A, Rank A, Peschka-Suess R, Schubert R, Lindner P, Förster S (2006) Langmuir 22:5843Google Scholar
  257. 257.
    Lecommandoux SB, Sandre O, Checot F, Rodriguez-Hernandez J, Perzynski R (2005) Adv Mater 17:712Google Scholar
  258. 258.
    Krack M, Hohenberg H, Kornowski A, Lindner P, Weller H, Förster S (2008) J Am Chem Soc 130:7315Google Scholar
  259. 259.
    Ghoroghchian PP, Lin JJ, Brannan AK, Frail PR, Bates FS, Therien MJ, Hammer DA (2006) Soft Matter 2:973Google Scholar
  260. 260.
    Nardin C, Thoeni S, Widmer J, Winterhalter M, Meier W (2000) Chem Commun 2000:1433Google Scholar
  261. 261.
    Binder WH, Sachsenhofer R, Farnik D, Blaas D (2007) Phys Chem Chem Phys 9:6435Google Scholar
  262. 262.
    Binder WH, Sachsenhofer R (2008) Macromol Rapid Commun 29:1097Google Scholar
  263. 263.
    Lecommandoux S, Sandre O, Checot F, Perzynski R (2006) Progr Solid State Chem 34:171Google Scholar
  264. 264.
    Ghoroghchian PP, Frail PR, Susumu K, Park TH, Wu SP, Uyeda HT, Hammer DA, Therien MJ (2005) J Am Chem Soc 127:15388Google Scholar
  265. 265.
    Bockstaller MR, Lapetnikov Y, Margel S, Thomas EL (2003) J Am Chem Soc 125:5276Google Scholar
  266. 266.
    Chiu JJ, Kim BJ, Kramer EJ, Pine DJ (2005) J Am Chem Soc 127:5036Google Scholar
  267. 267.
    Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) J Control Release 116:150Google Scholar
  268. 268.
    Krishna MMG (1999) J Phys Chem A 103:3589Google Scholar
  269. 269.
    Hines MA, Guyot-Sionnest P (1996) J Phys Chem 100:468Google Scholar
  270. 270.
    Xie RG, Kolb U, Li JX, Basché T, Mews A (2005) J Am Chem Soc 127:7480Google Scholar
  271. 271.
    Müller W, Koynov K, Fischer K, Hartmann S, Pierrat S, Basché T, Maskos M (2009) Macromolecules 42:357Google Scholar
  272. 272.
    Goodwin AP, Mynar JL, Ma YZ, Fleming GR, Frechet JMJ (2005) J Am Chem Soc 127:9952Google Scholar
  273. 273.
    Chiu JJ, Kim BJ, Yi G-R, Bang J, Kramer EJ, Pine DJ (2007) Macromolecules 40:3361Google Scholar
  274. 274.
    Matsen MW, Thompson RB (2008) Macromolecules 41:1853Google Scholar
  275. 275.
    Kang H, Detcheverry FA, Mangham AN, Stoykovich MP, Daoulas KC, Hamers RJ, Mueller M, de Pablo JJ, Nealey PF (2008) Phys Rev Lett 100:148303Google Scholar
  276. 276.
    Rigler R, Elson E (2001) Fluorescence correlation spectroscopy: theory and applications. Springer series in chemical physics, vol 65. Springer, HeidelbergGoogle Scholar
  277. 277.
    Haustein E, Schwille P (2004) Curr Opin Struct Biol 14:531Google Scholar
  278. 278.
    Koynov K, Butt HJ (2012) Curr Opin Colloid Interface Sci 17:377Google Scholar
  279. 279.
    Koynov K, Mihov G, Mondeshki M, Moon C, Spiess HW, Müllen K, Butt HJ, Floudas G (2007) Biomacromolecules 8:1745Google Scholar
  280. 280.
    Schmidt M (1993) Dynamic light scattering. In: Brown W (ed) Dynamic light scattering: the method and some applications. Clarendon, Oxford, p 752Google Scholar
  281. 281.
    Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312Google Scholar
  282. 282.
    Franc G, Gourdon A (2011) Phys Chem Chem Phys 13:14283Google Scholar
  283. 283.
    Gourdon A (2008) Angew Chem Int Ed 47:6950Google Scholar
  284. 284.
    Hla SW, Bartels L, Meyer G, Rieder KH (2000) Phys Rev Lett 85:2777Google Scholar
  285. 285.
    Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S (2007) Nat Nanotechnol 2:687Google Scholar
  286. 286.
    Lipton-Duffin JA, Ivasenko O, Perepichka DF, Rosei F (2009) Small 5:592Google Scholar
  287. 287.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Nature 466:470Google Scholar
  288. 288.
    Weigelt S, Busse C, Bombis C, Knudsen MM, Gothelf KV, Laegsgaard E, Besenbacher F, Linderoth TR (2008) Angew Chem Int Ed 47:4406Google Scholar
  289. 289.
    Rahe P, Kittelmann M, Neff JL, Nimmrich M, Reichling M, Maass P, Kühnle A (2013) Adv Mater 25:3948Google Scholar
  290. 290.
    Kittelmann M, Rahe P, Nimmrich M, Hauke CM, Gourdon A, Kühnle A (2011) ACS Nano 5:8420Google Scholar
  291. 291.
    Kittelmann M, Nimmrich M, Lindner R, Gourdon A, Kühnle A (2013) ACS Nano 7:5614-5620 ACS Nano 7:5614Google Scholar
  292. 292.
    Kunstmann T, Schlarb A, Fendrich M, Wagner T, Moller R, Hoffmann R (2005) Phys Rev B 71:121403Google Scholar
  293. 293.
    Schütte J, Bechstein R, Rohlfing M, Reichling M, Kühnle A (2009) Phys Rev B 80:205421Google Scholar
  294. 294.
    Kittelmann M, Rahe P, Kühnle A (2012) J Phys Condens Matter 24:354007Google Scholar
  295. 295.
    Rahe P, Lindner R, Kittelmann M, Nimmrich M, Kühnle A (2012) Phys Chem Chem Phys 14:6544Google Scholar
  296. 296.
    Duffy DM, Harding JH (2002) J Mater Chem 12:3419Google Scholar
  297. 297.
    Kittelmann M, Rahe P, Gourdon A, Kühnle A (2012) ACS Nano 6:7406Google Scholar
  298. 298.
    Kittelmann M, Nimmrich M, Neff JL, Rahe P, Gren W, Bouju AG, Gourdon A, Kühnle A (2013) J Phys Chem C, submittedGoogle Scholar
  299. 299.
    Luo Y-R (2007) Comprehensive handbook of chemical bond energies. CRC, Boca RatonGoogle Scholar
  300. 300.
    Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S, Grill L (2012) Nat Chem 4:215Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kurt Binder
    • 1
  • Hans-Jürgen Butt
    • 2
    Email author
  • George Floudas
    • 3
  • Holger Frey
    • 4
  • Hsiao-Ping Hsu
    • 1
  • Katharina Landfester
    • 2
  • Ute Kolb
    • 5
  • Angelika Kühnle
    • 5
  • Michael Maskos
    • 5
    • 6
  • Klaus Müllen
    • 2
  • Wolfgang Paul
    • 7
  • Manfred Schmidt
    • 5
  • Hans Wolfgang Spiess
    • 2
  • Peter Virnau
    • 1
  1. 1.Institute of PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Max Planck Institute for Polymer ResearchMainzGermany
  3. 3.Department of PhysicsUniversity of IoanninaIoanninaGreece
  4. 4.Institute of Organic ChemistryJohannes Gutenberg UniversityMainzGermany
  5. 5.Institute for Physical ChemistryJohannes Gutenberg UniversityMainzGermany
  6. 6.Institut für Mikrotechnik Mainz IMMMainzGermany
  7. 7.Institute for PhysicsMartin Luther UniversitätHalleGermany

Personalised recommendations