Polymer Complexes in Biological Applications

  • Jana Hedrich
  • Yuzhou Wu
  • Seah Ling Kuan
  • Frauke Kuehn
  • Eweline Pietrowski
  • Mike Sahl
  • Sandra Muth
  • Klaus Müllen
  • Heiko J. Luhmann
  • Tanja Weil
  • Manfred SchmidtEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 260)


This chapter summarizes the influence of polyelectrolyte topology on biological functions and biomedical applications such as cell uptake, drug delivery, and gene transfection. Polyelectrolytes utilized are spherical structures derived from dendrimers and albumin or cylindrical brushes, all of which are decorated with various polypeptide chains.

First, experiments are described that address the role of polyelectrolyte interactions on endosomal uptake and release, followed by a discussion of the novel design of albumin-based nanocarriers for anticancer drugs like doxorubicin. Finally, we describe how efficient gene transfection was accomplished with both albumin-based polycations and with cylindrical brushes having poly-l-lysine side chains.


Brain Cylindrical brush polymer Dendritic and protein polyelectrolytes Endothelial cell Flow cytometry Gene transfer Polycation Transfection 



Acute myeloid leukemia


Atom transfer radical polymerization


Cationized bovine serum albumin


Dendronized human serum albumin


Dimethyl formamide




Extracellular matrix


Enhanced retention and permeation


Green fluorescent protein


Human serum albumin


Lithium bromide


Magnetic resonance imaging


Weight-average molecular weight


Sodium chloride




Porcine microvascular endothelial cells




Poly(ethylene glycol)


Poly(ethylene imine)


Poly(ethylene oxide)




Number-average degree of polymerization


Weight-average degree of polymerization


Radius of gyration


Hydrodynamic radius


Transmission electron microscopy


Weight fraction of DNA


Molar charge ratio polycation/polyanion


  1. 1.
    Rejman J, Conese M, Hoekstra D (2006) Gene transfer by means of lipo- and polyplexes: role of clathrin and caveolae-mediated endocytosis. J Liposome Res 16:237–247. doi: 10.1080/08982100600848819 CrossRefGoogle Scholar
  2. 2.
    Kumari S, Mg S, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20:256–275. doi: 10.1038/cr.2010.19 CrossRefGoogle Scholar
  3. 3.
    McGhee JD, Felsenfeld G (1980) The number of charge-charge interactions stabilizing the ends of nucleosome DNA. Nucleic Acids Res 8:2751–2769CrossRefGoogle Scholar
  4. 4.
    Thomas M, Lu JJ, Zhang C et al (2007) Identification of novel superior polycationic vectors for gene delivery by high-throughput synthesis and screening of a combinatorial library. Pharm Res 24:1564–1571. doi: 10.1007/s11095-007-9279-3 CrossRefGoogle Scholar
  5. 5.
    Zhu J-L, Cheng H, Jin Y et al (2008) Novel polycationic micelles for drug delivery and gene transfer. J Mater Chem 18:4433. doi: 10.1039/b801249k CrossRefGoogle Scholar
  6. 6.
    Eisele K, Gropeanu RA, Zehendner CM et al (2010) Fine-tuning DNA/albumin polyelectrolyte interactions to produce the efficient transfection agent cBSA-147. Biomaterials 31:8789–8801. doi: 10.1016/j.biomaterials.2010.07.088 CrossRefGoogle Scholar
  7. 7.
    Gillies ER, Fréchet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43. doi: 10.1016/S1359-6446(04)03276-3 CrossRefGoogle Scholar
  8. 8.
    Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169. doi: 10.1042/BJ20031253 CrossRefGoogle Scholar
  9. 9.
    Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195. doi: 10.1016/j.jconrel.2010.01.036 CrossRefGoogle Scholar
  10. 10.
    Panyam J, Labhasetwar V (2003) Dynamics of endocytosis and exocytosis of poly(d, l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 20:212–220CrossRefGoogle Scholar
  11. 11.
    Nan A, Bai X, Son SJ et al (2008) Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett 8:2150–2154. doi: 10.1021/nl0802741 CrossRefGoogle Scholar
  12. 12.
    Huang M, Ma Z, Khor E, Lim L-Y (2002) Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 19:1488–1494CrossRefGoogle Scholar
  13. 13.
    Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194. doi: 10.1038/nrm2122 CrossRefGoogle Scholar
  14. 14.
    Sahay G, Kim JO, Kabanov AV, Bronich TK (2010) The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. Biomaterials 31:923–933. doi: 10.1016/j.biomaterials.2009.09.101 CrossRefGoogle Scholar
  15. 15.
    Nishikawa T, Iwakiri N, Kaneko Y et al (2009) Nitric oxide release in human aortic endothelial cells mediated by delivery of amphiphilic polysiloxane nanoparticles to caveolae. Biomacromolecules 10:2074–2085. doi: 10.1021/bm900128x CrossRefGoogle Scholar
  16. 16.
    Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110:138–155. doi: 10.1093/toxsci/kfp087 CrossRefGoogle Scholar
  17. 17.
    Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7:1041–1053. doi: 10.1517/14656566.7.8.1041 CrossRefGoogle Scholar
  18. 18.
    Yin M, Kuhlmann CRW, Sorokina K et al (2008) Novel fluorescent core–shell nanocontainers for cell membrane transport. Biomacromolecules 9:1381–1389. doi: 10.1021/bm701138g CrossRefGoogle Scholar
  19. 19.
    Parimi S, Barnes TJ, Callen DF, Prestidge CA (2010) Mechanistic insight into cell growth, internalization, and cytotoxicity of PAMAM dendrimers. Biomacromolecules 11:382–389. doi: 10.1021/bm9010134 CrossRefGoogle Scholar
  20. 20.
    Yin M, Shen J, Gropeanu R et al (2008) Fluorescent core/shell nanoparticles for specific cell-nucleus staining. Small 4:894–898. doi: 10.1002/smll.200701107 CrossRefGoogle Scholar
  21. 21.
    Hedlund H, Hedbom E, Heine grd D et al (1999) Association of the aggrecan keratan sulfate-rich region with collagen in bovine articular cartilage. J Biol Chem 274:5777–5781CrossRefGoogle Scholar
  22. 22.
    Hardingham TE, Fosang AJ, Dudhia J (1994) The structure, function and turnover of aggrecan, the large aggregating proteoglycan from cartilage. Eur J Clin Chem Clin Biochem 32:249–257Google Scholar
  23. 23.
    Yin M, Ding K, Gropeanu RA et al (2008) Dendritic star polymers for efficient DNA binding and stimulus-dependent DNA release. Biomacromolecules 9:3231–3238. doi: 10.1021/bm800797j CrossRefGoogle Scholar
  24. 24.
    Ng JF, Jaenicke S, Eisele K et al (2010) cBSA-147 for the preparation of bacterial biofilms in a microchannel reactor. Biointerphases 5:FA41–FA47. doi: 10.1116/1.3474475 CrossRefGoogle Scholar
  25. 25.
    Ritz S, Eisele K, Dorn J et al (2010) Cationized albumin-biocoatings for the immobilization of lipid vesicles. Biointerphases 5:FA78–FA87. doi: 10.1116/1.3494039 CrossRefGoogle Scholar
  26. 26.
    Ng JF, Weil T, Jaenicke S (2011) Cationized bovine serum albumin with pendant RGD groups forms efficient biocoatings for cell adhesion. J Biomed Mater Res B Appl Biomater 99:282–290. doi: 10.1002/jbm.b.31897 CrossRefGoogle Scholar
  27. 27.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392Google Scholar
  28. 28.
    Kratz F (2002) Drug conjugates with albumin and transferrin. Expert Opin Ther Pat 12:433–439. doi: 10.1517/13543776.12.3.433 CrossRefGoogle Scholar
  29. 29.
    Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefGoogle Scholar
  30. 30.
    Elsadek B, Kratz F (2012) Impact of albumin on drug delivery – new applications on the horizon. J Control Release 157:4–28. doi: 10.1016/j.jconrel.2011.09.069 CrossRefGoogle Scholar
  31. 31.
    Neumann E, Frei E, Funk D et al (2010) Native albumin for targeted drug delivery. Expert Opin Drug Deliv 7:915–925. doi: 10.1517/17425247.2010.498474 CrossRefGoogle Scholar
  32. 32.
    Varshney A, Sen P, Ahmad E et al (2010) Ligand binding strategies of human serum albumin: how can the cargo be utilized? Chirality 22:77–87. doi: 10.1002/chir.20709 CrossRefGoogle Scholar
  33. 33.
    Paál K, Müller J, Hegedûs L (2001) High affinity binding of paclitaxel to human serum albumin. Eur J Biochem 268:2187–2191CrossRefGoogle Scholar
  34. 34.
    Xu R, Fisher M, Juliano RL (2011) Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem 22:870–878. doi: 10.1021/bc1002295 CrossRefGoogle Scholar
  35. 35.
    Sun H-H, Zhang J, Zhang Y-Z et al (2012) Interaction of human serum albumin with 10-hydroxycamptothecin: spectroscopic and molecular modeling studies. Mol Biol Rep 39:5115–5123. doi: 10.1007/s11033-011-1307-z CrossRefGoogle Scholar
  36. 36.
    Vis AN, Van der Gaast A, Van Rhijn BWG et al (2002) A phase II trial of methotrexate-human serum albumin (MTX-HSA) in patients with metastatic renal cell carcinoma who progressed under immunotherapy. Cancer Chemother Pharmacol 49:342–345. doi: 10.1007/s00280-001-0417-z CrossRefGoogle Scholar
  37. 37.
    Akdogan Y, Wu Y, Eisele K et al (2012) Host–guest interactions in polycationic human serum albumin bioconjugates. Soft Matter 8:11106. doi: 10.1039/c2sm26511g CrossRefGoogle Scholar
  38. 38.
    Kitchens KM, Kolhatkar RB, Swaan PW, Ghandehari H (2008) Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol Pharm 5:364–369. doi: 10.1021/mp700089s CrossRefGoogle Scholar
  39. 39.
    Kitchens KM, Foraker AB, Kolhatkar RB et al (2007) Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm Res 24:2138–2145. doi: 10.1007/s11095-007-9415-0 CrossRefGoogle Scholar
  40. 40.
    Kuan SL, Stöckle B, Reichenwallner J et al (2013) Dendronized albumin core-shell transporters with high drug loading capacity. Biomacromolecules 14:367–376. doi: 10.1021/bm301531c CrossRefGoogle Scholar
  41. 41.
    Wu Y, Pramanik G, Eisele K, Weil T (2012) Convenient approach to polypeptide copolymers derived from native proteins. Biomacromolecules 13:1890–1898. doi: 10.1021/bm300418r CrossRefGoogle Scholar
  42. 42.
    Wu Y, Weil T (2012) An efficient approach for preparing giant polypeptide triblock copolymers by protein dimerization. Macromol Rapid Comm 33:1304–1309. doi: 10.1002/marc.201200111 CrossRefGoogle Scholar
  43. 43.
    Wu Y, Wang T, Ng DYW, Weil T (2012) Multifunctional polypeptide-PEO nanoreactors via the hydrophobic switch. Macromol Rapid Comm 33:1474–1481. doi: 10.1002/marc.201200227 CrossRefGoogle Scholar
  44. 44.
    Wu Y, Ihme S, Feuring-Buske M et al (2012) A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv Healthc Mater 2:884–894. doi: 10.1002/adhm.201200296 CrossRefGoogle Scholar
  45. 45.
    Wu Y, Shih EK, Ramanathan A et al (2012) Nano-sized albumin-copolymer micelles for efficient doxorubicin delivery. Biointerphases 7:5. doi: 10.1007/s13758-011-0005-7 CrossRefGoogle Scholar
  46. 46.
    Eisele K, Gropeanu R, Musante A et al (2010) Tailored albumin-based copolymers for receptor-mediated delivery of perylenediimide guest molecules. Macromol Rapid Commun 31:1501–1508. doi: 10.1002/marc.201000176 CrossRefGoogle Scholar
  47. 47.
    Zhang H, Vinogradov SV (2010) Short biodegradable polyamines for gene delivery and transfection of brain capillary endothelial cells. J Control Release 143:359–366. doi: 10.1016/j.jconrel.2010.01.020 CrossRefGoogle Scholar
  48. 48.
    Zhang H, Mitin A, Vinogradov SV (2009) Efficient transfection of blood–brain barrier endothelial cells by lipoplexes and polyplexes in the presence of nuclear targeting NLS-PEG-acridine conjugates. Bioconjug Chem 20:120–128. doi: 10.1021/bc8003414 CrossRefGoogle Scholar
  49. 49.
    Slanina H, Schmutzler M, Christodoulides M et al (2012) Effective plasmid DNA and small interfering RNA delivery to diseased human brain microvascular endothelial cells. J Mol Microbiol Biotechnol 22:245–257. doi: 10.1159/000342909 CrossRefGoogle Scholar
  50. 50.
    Chen C, Mei H, Shi W et al (2013) EGFP-EGF1-conjugated PLGA nanoparticles for targeted delivery of siRNA into injured brain microvascular endothelial cells for efficient RNA interference. PLoS One 8:e60860. doi: 10.1371/journal.pone.0060860 CrossRefGoogle Scholar
  51. 51.
    McTaggart S, Al-Rubeai M (2002) Retroviral vectors for human gene delivery. Biotechnol Adv 20:1–31CrossRefGoogle Scholar
  52. 52.
    Verma IM, Weitzman MD (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738. doi: 10.1146/annurev.biochem.74.050304.091637 CrossRefGoogle Scholar
  53. 53.
    Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40. doi: 10.1038/83324 CrossRefGoogle Scholar
  54. 54.
    Wong HH, Lemoine NR, Wang Y (2010) Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses 2:78–106. doi: 10.3390/v2010078 CrossRefGoogle Scholar
  55. 55.
    Nayak S, Herzog RW (2010) Progress and prospects: immune responses to viral vectors. Gene Ther 17:295–304. doi: 10.1038/gt.2009.148 CrossRefGoogle Scholar
  56. 56.
    Van den Pol AN, Ozduman K, Wollmann G et al (2009) Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J Comp Neurol 516:456–481. doi: 10.1002/cne.22131 CrossRefGoogle Scholar
  57. 57.
    Lim ST, Airavaara M, Harvey BK (2010) Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 61:14–26. doi: 10.1016/j.phrs.2009.10.002 CrossRefGoogle Scholar
  58. 58.
    Kabanov AV (1999) Taking polycation gene delivery systems from in vitro to in vivo. Pharm Sci Technolo Today 2:365–372CrossRefGoogle Scholar
  59. 59.
    El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14CrossRefGoogle Scholar
  60. 60.
    Thomas M, Klibanov AM (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62:27–34. doi: 10.1007/s00253-003-1321-8 CrossRefGoogle Scholar
  61. 61.
    Ditto AJ, Shah PN, Yun YH (2009) Non-viral gene delivery using nanoparticles. Expert Opin Drug Deliv 6:1149–1160. doi: 10.1517/17425240903241796 CrossRefGoogle Scholar
  62. 62.
    Conwell CC, Huang L (2005) Recent advances in non-viral gene delivery. Adv Genet 53PA:1–18. doi: 10.1016/S0065-2660(05)53001-3 CrossRefGoogle Scholar
  63. 63.
    Salcher EE, Wagner E (2010) Chemically programmed polymers for targeted DNA and siRNA transfection. Top Curr Chem 296:227–249CrossRefGoogle Scholar
  64. 64.
    Ogris M (2010) Cancer gene therapies come of age. Ther Deliv 1:211–214CrossRefGoogle Scholar
  65. 65.
    Yu H, Wagner E (2009) Bioresponsive polymers for nonviral gene delivery. Curr Opin Mol Ther 11:165–178Google Scholar
  66. 66.
    Oba M, Miyata K, Osada K et al (2011) Polyplex micelles prepared from ω-cholesteryl PEG-polycation block copolymers for systemic gene delivery. Biomaterials 32:652–663. doi: 10.1016/j.biomaterials.2010.09.022 CrossRefGoogle Scholar
  67. 67.
    Benns JM, Choi JS, Mahato RI et al (2000) pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(l-histidine)-graft-poly(l-lysine) comb shaped polymer. Bioconjug Chem 11:637–645CrossRefGoogle Scholar
  68. 68.
    Liu X-Q, Du J-Z, Zhang C-P et al (2010) Brush-shaped polycation with poly(ethylenimine)-b-poly(ethylene glycol) side chains as highly efficient gene delivery vector. Int J Pharm 392:118–126. doi: 10.1016/j.ijpharm.2010.03.043 CrossRefGoogle Scholar
  69. 69.
    Männistö M, Vanderkerken S, Toncheva V et al (2002) Structure-activity relationships of poly(l-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release 83:169–182CrossRefGoogle Scholar
  70. 70.
    Geng Y, Dalhaimer P, Cai S et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255. doi: 10.1038/nnano.2007.70 CrossRefGoogle Scholar
  71. 71.
    Liu Z, Davis C, Cai W et al (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 105:1410–1415. doi: 10.1073/pnas.0707654105 CrossRefGoogle Scholar
  72. 72.
    Fox ME, Szoka FC, Fréchet JMJ (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42:1141–1151. doi: 10.1021/ar900035f CrossRefGoogle Scholar
  73. 73.
    Lee CC, Yoshida M, Fréchet JMJ et al (2005) In vitro and in vivo evaluation of hydrophilic dendronized linear polymers. Bioconjug Chem 16:535–541. doi: 10.1021/bc0497665 CrossRefGoogle Scholar
  74. 74.
    Johnson JA, Lu YY, Burts AO et al (2010) Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP. Macromolecules 43:10326–10335. doi: 10.1021/ma1021506 CrossRefGoogle Scholar
  75. 75.
    Jo J, Okazaki A, Nagane K et al (2010) Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells. J Biomater Sci Polym Ed 21:185–204. doi: 10.1163/156856209X415495 CrossRefGoogle Scholar
  76. 76.
    Thakor DK, Teng YD, Tabata Y (2009) Neuronal gene delivery by negatively charged pullulan-spermine/DNA anioplexes. Biomaterials 30:1815–1826. doi: 10.1016/j.biomaterials.2008.12.032 CrossRefGoogle Scholar
  77. 77.
    Kanatani I, Ikai T, Okazaki A et al (2006) Efficient gene transfer by pullulan-spermine occurs through both clathrin- and raft/caveolae-dependent mechanisms. J Control Release 116:75–82. doi: 10.1016/j.jconrel.2006.09.001 CrossRefGoogle Scholar
  78. 78.
    Jo J, Ikai T, Okazaki A et al (2007) Expression profile of plasmid DNA by spermine derivatives of pullulan with different extents of spermine introduced. J Control Release 118:389–398. doi: 10.1016/j.jconrel.2007.01.005 CrossRefGoogle Scholar
  79. 79.
    Jo J-I, Ikai T, Okazaki A et al (2007) Expression profile of plasmid DNA obtained using spermine derivatives of pullulan with different molecular weights. J Biomater Sci Polym Ed 18:883–899. doi: 10.1163/156856207781367756 CrossRefGoogle Scholar
  80. 80.
    Thomsen LB, Lichota J, Kim KS, Moos T (2011) Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J Control Release 151:45–50. doi: 10.1016/j.jconrel.2011.01.002 CrossRefGoogle Scholar
  81. 81.
    Wintermantel M, Schmidt M, Tsukahara Y et al (1994) Rodlike combs. Macromol Rapid Comm 15:279–284. doi: 10.1002/marc.1994.030150315 CrossRefGoogle Scholar
  82. 82.
    Wintermantel M, Gerle M, Fischer K et al (1996) Molecular bottlebrushes. Macromolecules 29:978–983. doi: 10.1021/ma950227s CrossRefGoogle Scholar
  83. 83.
    Dziezok P, Fischer K, Schmidt M et al (1997) Cylindrical molecular brushes. Angew Chem Int Ed 36:2812–2815. doi: 10.1002/anie.199728121 CrossRefGoogle Scholar
  84. 84.
    Sheiko SS, Gerle M, Fischer K et al (1997) Wormlike polystyrene brushes in thin films. Langmuir 13:5368–5372. doi: 10.1021/la970132e CrossRefGoogle Scholar
  85. 85.
    Gerle M, Fischer K, Roos S et al (1999) Main chain conformation and anomalous elution behavior of cylindrical brushes as revealed by GPC/MALLS, light scattering, and SFM. Macromolecules 32:2629–2637. doi: 10.1021/ma9816463 CrossRefGoogle Scholar
  86. 86.
    Zhang B, Gröhn F, Pedersen JS et al (2006) Conformation of cylindrical brushes in solution: effect of side chain length. Macromolecules 39:8440–8450. doi: 10.1021/ma0613178 CrossRefGoogle Scholar
  87. 87.
    Sahl M, Muth S, Branscheid R et al (2012) Helix–coil transition in cylindrical brush polymers with poly-l-lysine side chains. Macromolecules 45:5167–5175. doi: 10.1021/ma300377v CrossRefGoogle Scholar
  88. 88.
    Zhang B, Fischer K, Schmidt M (2005) Cylindrical polypeptide brushes. Macromol Chem Phys 206:157–162. doi: 10.1002/macp.200400266 CrossRefGoogle Scholar
  89. 89.
    Störkle D, Duschner S, Heimann N et al (2007) Complex formation of DNA with oppositely charged polyelectrolytes of different chain topology: cylindrical brushes and dendrimers. Macromolecules 40:7998–8006. doi: 10.1021/ma0711689 CrossRefGoogle Scholar
  90. 90.
    Boeckle S, Von Gersdorff K, Van der Piepen S et al (2004) Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med 6:1102–1111. doi: 10.1002/jgm.598 CrossRefGoogle Scholar
  91. 91.
    Yue Y, Jin F, Deng R et al (2011) Revisit complexation between DNA and polyethylenimine – effect of uncomplexed chains free in the solution mixture on gene transfection. J Control Release 155:67–76. doi: 10.1016/j.jconrel.2010.10.028 CrossRefGoogle Scholar
  92. 92.
    Bertschinger M, Backliwal G, Schertenleib A et al (2006) Disassembly of polyethylenimine-DNA particles in vitro: implications for polyethylenimine-mediated DNA delivery. J Control Release 116:96–104. doi: 10.1016/j.jconrel.2006.09.006 CrossRefGoogle Scholar
  93. 93.
    Moret I, Esteban Peris J, Guillem VM et al (2001) Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline pH, heparin and serum. J Control Release 76:169–181CrossRefGoogle Scholar
  94. 94.
    Kühn F (2010) Polykation-DNA-komplexe: eigenschaften und anwendungen in der gentransfektion. Dissertation, Johannes Gutenberg-Universität MainzGoogle Scholar
  95. 95.
    Li P, Liu D, Sun X et al (2011) A novel cationic liposome formulation for efficient gene delivery via a pulmonary route. Nanotechnology 22:245104. doi: 10.1088/0957-4484/22/24/245104 CrossRefGoogle Scholar
  96. 96.
    Buzder T, Yin X, Wang X et al (2009) Uptake of foreign nucleic acids in kidney tubular epithelial cells deficient in proapoptotic endonucleases. DNA Cell Biol 28:435–442. doi: 10.1089/dna.2008.0850 CrossRefGoogle Scholar
  97. 97.
    Gadi J, Ruthala K, Kong K-A et al (2009) The third helix of the Hoxc8 homeodomain peptide enhances the efficiency of gene transfer in combination with lipofectamine. Mol Biotechnol 42:41–48. doi: 10.1007/s12033-008-9119-7 CrossRefGoogle Scholar
  98. 98.
    Howell DP-G, Krieser RJ, Eastman A, Barry MA (2003) Deoxyribonuclease II is a lysosomal barrier to transfection. Mol Ther 8:957–963CrossRefGoogle Scholar
  99. 99.
    Fischer D, Li Y, Ahlemeyer B et al (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131CrossRefGoogle Scholar
  100. 100.
    Mahringer A, Ott M, Reimold I et al (2011) The ABC of the blood–brain barrier – regulation of drug efflux pumps. Curr Pharm Des 17:2762–2770CrossRefGoogle Scholar
  101. 101.
    Uchida E, Mizuguchi H, Ishii-Watabe A, Hayakawa T (2002) Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol Pharm Bull 25:891–897CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jana Hedrich
    • 1
  • Yuzhou Wu
    • 2
  • Seah Ling Kuan
    • 2
  • Frauke Kuehn
    • 3
  • Eweline Pietrowski
    • 1
  • Mike Sahl
    • 3
  • Sandra Muth
    • 3
  • Klaus Müllen
    • 4
  • Heiko J. Luhmann
    • 1
  • Tanja Weil
    • 2
  • Manfred Schmidt
    • 3
    Email author
  1. 1.Institute of Physiology and PathophysiologyUniversity Medical CenterMainzGermany
  2. 2.Institute of Organic Chemistry IIIUniversity of UlmUlmGermany
  3. 3.Institute of Physical ChemistryJohannes Gutenberg UniversityMainzGermany
  4. 4.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations