Advertisement

Aggregation of Charged Colloidal Particles

  • Nikolai I. Lebovka
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 255)

Abstract

This chapter reviews the recent progress in aggregation of colloidal particles with long-range interactions, including simple colloids and polyelectrolytes. The relevant interactions between colloidal particles, including Born repulsion, van der Waals, electrostatic, structural solvation, hydrophobic hydrodynamic interactions and attraction between like-charge colloids, charge nonuniformity, and adsorbed polymer, are analyzed. The main types of computer models used for simulation of cluster morphology and aggregation kinetics of the different interacting species (similarly and oppositely charged particles and polyelectrolytes) are reviewed. The main scaling laws for different aggregating kernels that describe diffusion-limited, reaction-limited, gelling, and retarded aggregations are also presented and analyzed.

Graphical Abstract

Keywords

Aggregation Charged particles Colloids Kinetics Morphology Polyelectrolyte complex (PEC) 

Notes

Acknowledgements

The author appreciates the financial support from the National Academy of Sciences of Ukraine and Dr. N. S. Pivovarova for her help with the preparation of the manuscript.

References

  1. 1.
    Mohanraj VYC (2006) Nanoparticles a review. Trop J Pharm Res 5(1):561–573Google Scholar
  2. 2.
    Hartig S, Greene R, Dikov M, Prokop A, Davidson J (2007) Multifunctional nanoparticulate polyelectrolyte complexes. Pharmaceut Res 24:2353–2369. doi: 10.1007/s11095-007-9459-1 Google Scholar
  3. 3.
    Lankalapalli S, Kolapalli VRM (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71(5):481–487. doi: 10.4103/0250-474X.58165 Google Scholar
  4. 4.
    Muller M, Kesler B, Frohlich J, Poeschla S, Torger B (2011) Polyelectrolyte complex nanoparticles of poly(ethyleneimine) and poly(acrylic acid): preparation and applications. Polymer 3(2):762–778. doi: 10.3390/polym3020762 Google Scholar
  5. 5.
    Müller M, Reihs T, Ouyang W (2005) Preparation of monomodal polyelectrolyte complex nanoparticles of pdadmac/poly(maleic acid-alt-alpha-methylstyrene) by consecutive centrifugation. Langmuir 21(1):465–469Google Scholar
  6. 6.
    Dautzenberg H (2000) Light scattering studies on polyelectrolyte complexes. Macromol Symp 162:1–21Google Scholar
  7. 7.
    Panyam P, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347Google Scholar
  8. 8.
    Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim USSR 14:633–662Google Scholar
  9. 9.
    Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Quemada D, Berli C (2002) Energy of interaction in colloids and its implications in rheological modeling. Adv Colloid Interface Sci 98(1):51–85. doi: 10.1016/S0001-8686(01)00093-8 Google Scholar
  11. 11.
    Eastman J (2010) Stability of charge-stabilised colloids. In: Colloid science: principles, methods and applications, 2nd edn. Wiley-BlackwellGoogle Scholar
  12. 12.
    Derjaguin BV (1934) Untersuchungen ueber die reibung und adhaesion IV. Theorie des anhaften kleiner teilchen. Kolloid Z 69:155–164Google Scholar
  13. 13.
    Israelachvili J (1991) Intermolecular and surface forces. Academic, New YorkGoogle Scholar
  14. 14.
    Shaw DJ (1992) Introduction to colloid and surface chemistry. Butterworth-Heinemann, OxfordGoogle Scholar
  15. 15.
    Mahanty J, Ninham B (1976) Dispersion forces. Academic, New YorkGoogle Scholar
  16. 16.
    Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, New YorkGoogle Scholar
  17. 17.
    Malins A, Williams SR, Eggers J, Tanaka H, Royall CP (2011) The effect of inter-cluster interactions on the structure of colloidal clusters. J Non-Cryst Solids 357(2):760–766. doi: 10.1016/j.jnoncrysol.2010.08.021 Google Scholar
  18. 18.
    dos Santos AP, Diehl A, Levin Y (2009) Electrostatic correlations in colloidal suspensions: density profiles and effective charges beyond the Poisson-Boltzmann theory. J Chem Phys 130:124110Google Scholar
  19. 19.
    Hogg R, Healy TW, Fuerstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62:1638–1651. doi: 10.1039/TF9666201638 Google Scholar
  20. 20.
    Ohshima H, Healy TW, White LR (1982) Improvement on the Hogg-Healy-Fuerstenau formulas for the interaction of dissimilar double layers: I. Second and third approximations for moderate potentials. J Colloid Interface Sci 89(2):484–493. doi: 10.1016/0021-9797(82)90199-0 Google Scholar
  21. 21.
    Elimelech M, Gregory J, Jia XWR (1995) Particle deposition and aggregation – measurement, modelling and simulation. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Boroudjerdi H, Kim YW, Naji A, Netz R, Schlagberger X, Serr A (2005) Statics and dynamics of strongly charged soft matter. Phys Rep 416(3–4):129–199. doi: 10.1016/j.physrep. 2005.06.006Google Scholar
  23. 23.
    Kékicheff P, Spalla O (1995) Long-range electrostatic attraction between similar, charge-neutral walls. Phys Rev Lett 75:1851–1854. doi: 10.1103/PhysRevLett.75.1851 Google Scholar
  24. 24.
    Kjellander R (1996) Ion-ion correlations and effective charges in electrolyte and macroion systems. Ber Bunsen Phys Chem 100(6):894–904. doi: 10.1002/bbpc.19961000635 Google Scholar
  25. 25.
    Larsen AE, Grier DG (1997) Like-charge attractions in metastable colloidal crystallites. Nature 385:230–233Google Scholar
  26. 26.
    Levin Y (2002) Electrostatic correlations: from plasma to biology. Rep Prog Phys 65:1577–1632Google Scholar
  27. 27.
    Bohinc K, Zelko J, Sunil Kumar PB, Iglic A, Kralj-Iglic V (2009) Attraction of like-charged surfaces mediated by spheroidal nanoparticles with spatially distributed electric charge: theory and simulation. In: Advances in planar lipid bilayers and liposomes, vol 9. Academic, BurlingtonGoogle Scholar
  28. 28.
    Vlachy V (1999) Ionic effects beyond Poisson-Boltzmann theory. Annu Rev Phys Chem 50:145–165Google Scholar
  29. 29.
    Shklovskii BI (1999) Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys Rev E 60:5802–5811. doi: 10.1103/PhysRevE.60.5802 Google Scholar
  30. 30.
    Patra M, Patriarca M, Karttunen M (2003) Stability of charge inversion, thomson problem, and application to electrophoresis. Phys Rev E 67:031402. doi: 10.1103/PhysRevE.67.031402 Google Scholar
  31. 31.
    Levin Y (1999) When do like charges attract? Physica A 432:432–439Google Scholar
  32. 32.
    Levin Y (2005) Strange electrostatics in physics, chemistry, and biology. Physica A 352(1):43–52. doi: 10.1016/j.physa.2004.12.033 Google Scholar
  33. 33.
    Trizac E, Raimbault JL (1999) Long-range electrostatic interactions between like-charged colloids: steric and confinement effects. Phys Rev 60:6530–6533Google Scholar
  34. 34.
    Kirkwood JG, Shumaker JB (1952) Forces between protein molecules in solution arising from fluctuations in proton charge and configuration. Proc Natl Acad Sci USA 38:863–871Google Scholar
  35. 35.
    Grønbech-Jensen N, Mashl RJ, Bruinsma RF, Gelbart WM (1997) Counterion-induced attraction between rigid polyelectrolytes. Phys Rev Lett 78:2477–2480. doi: 10.1103/PhysRevLett.78.2477 Google Scholar
  36. 36.
    Belloni L, Spalla O (1997) Attraction of electrostatic origin between colloids. J Chem Phys 107(2):465–480. doi: 10.1063/1.474408 Google Scholar
  37. 37.
    Podgornik R, Parsegian VA (1998) Charge-fluctuation forces between rodlike polyelectrolytes: pairwise summability reexamined. Phys Rev Lett 80:1560–1563. doi: 10.1103/PhysRevLett.80.1560 Google Scholar
  38. 38.
    Squires TM, Brenner MP (2000) Like-charge attraction and hydrodynamic interaction. Phys Rev Lett 85:4976–4979. doi: 10.1103/PhysRevLett.85.4976 Google Scholar
  39. 39.
    Allahyarov E, D’Amico I, Löwen H (1998) Attraction between like-charged macroions by coulomb depletion. Phys Rev Lett 81:1334–1337. doi: 10.1103/PhysRevLett.81.1334 Google Scholar
  40. 40.
    Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51(3):924–933. doi: 10.1063/1.1672157 Google Scholar
  41. 41.
    Arenzon J, Stilck J, Levin Y (1999) Simple model for attraction between like-charged polyions. Eur Phys J B 12:79–82Google Scholar
  42. 42.
    Tokuyama M (1998) Theory of slow dynamics in highly charged colloidal suspensions. Phys Rev E 58:R2729–R2732. doi: 10.1103/PhysRevE.58.R2729 Google Scholar
  43. 43.
    Tokuyama M (1999) Effective forces between macroions in highly charged colloidal suspensions. Phys Rev E 59:R2550–R2553. doi: 10.1103/PhysRevE.59.R2550 Google Scholar
  44. 44.
    Terada Y, Tokuyama M (2004) Novel liquid- and crystal-droplet phases on highly charged colloidal suspensions. Physica A 334(3–4):327–334. doi: 10.1016/j.physa.2003.10.078 Google Scholar
  45. 45.
    Fitch RM (1997) Polymer colloids. Academic, New YorkGoogle Scholar
  46. 46.
    Velegol D, Thwar PK (2001) Analytical model for the effect of surface charge nonuniformity on colloidal interactions. Langmuir 17:7687–7693. doi: 10.1021/la010634z Google Scholar
  47. 47.
    Czarnecki J (1985) The effects of surface inhomogeneities on the interactions in colloidal systems and colloid stability. Adv Colloid Interface Sci 24:283–319. doi: 10.1016/0001-8686(85)80035-X Google Scholar
  48. 48.
    Grant M, Saville D (1995) Electrostatic interactions between a nonuniformly charged sphere and a charged surface. J Colloid Interface Sci 171(1):35–45. doi: 10.1006/jcis.1995.1148 Google Scholar
  49. 49.
    Stankovich J, Carnie SL (1999) Interactions between two spherical particles with nonuniform surface potentials: the linearized poissonboltzmann theory. J Colloid Interface Sci 216(2):329–347. doi: 10.1006/jcis.1999.6326 Google Scholar
  50. 50.
    Schowalter WR, Eidsath AB (2001) Brownian flocculation of polymer colloids in the presence of a secondary minimum. Proc Natl Acad Sci USA 98:3644–3651. doi: 10.1073/pnas.061028498 Google Scholar
  51. 51.
    Podgornik R, Harries D, DeRouchey J, Strey HH, Parsegian VA (2008) Interactions in macromolecular complexes used as nonviral vectors for gene delivery. In: Gene and cell therapy: therapeutic mechanisms and strategies. CRC, BurlingtonGoogle Scholar
  52. 52.
    Morales V, Anta JA, Lago S (2003) Integral equation prediction of reversible coagulation in charged colloidal suspensions. Langmuir 19:475–482Google Scholar
  53. 53.
    de Gennes P (1981) Polymer solutions near an interface. 1. Adsorption and depletion layers. Macromolecules 14:1637–1644Google Scholar
  54. 54.
    de Gennes P (1982) Polymer solutions near an interface. 2. Interaction between two plates carrying adsorbed polymer layers. Macromolecules 15:492–500Google Scholar
  55. 55.
    Runkana V, Somasundaran P (2007) Mathematical modeling of coagulation and flocculation of colloidal suspensions incorporating the influence of surface forces. In: Colloid stability and application in pharmacy. Colloid and interface science series, vol 3. Wiley-VCH, WeinheimGoogle Scholar
  56. 56.
    Runkana V, Somasundaran P, Kapur P (2006) A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem Eng Sci 61:182–191Google Scholar
  57. 57.
    Somasundaran P, Runkana V (2009) Aggregation of colloids: recent developments in population balance modeling. In: Highlights in colloid science. Wiley-VCH, WeinheimGoogle Scholar
  58. 58.
    Grier DG, Behrens SH (2001) Interactions in colloidal suspensions: electrostatics, hydrodynamics and their interplay. In: Electrostatic effects in biophysics and soft matter. Kluwer, DordrechtGoogle Scholar
  59. 59.
    Derjaguin B, Muller V (1967) Slow coagulation of hydrophobic colloids. Dokl Akad Nauk SSSR 176:738–741Google Scholar
  60. 60.
    Spielman LA (1970) Viscous interactions in brownian coagulation. J Colloid Interface Sci 33(4):562–571. doi: 10.1016/0021-9797(70)90008-1 Google Scholar
  61. 61.
    Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16(34):242–251. doi: 10.1016/0009-2509(61)80035-3 Google Scholar
  62. 62.
    Honig E, Roebersen G, Wiersema P (1971) Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids. J Colloid Interface Sci 36(1):97–109. doi: 10.1016/0021-9797(71)90245-1 Google Scholar
  63. 63.
    Kovalchuk N, Starov V (2011) Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions. Adv Colloid Interface Sci. doi:10.1016/j.cis.2011.05.009Google Scholar
  64. 64.
    Cao X, Cummins H, Morris J (2012) Hydrodynamic and interparticle potential effects on aggregation of colloidal particles. J Colloid Interface Sci 368(1):86–96. doi: 10.1016/j.jcis.2011.11.050 Google Scholar
  65. 65.
    Furukawa A, Tanaka H (2010) Key role of hydrodynamic interactions in colloidal gelation. Phys Rev Lett 104:245702. doi: 10.1103/PhysRevLett. 104.245702Google Scholar
  66. 66.
    Riese DO, Wegdam GH, Vos WL, Sprik R, Fenistein D, Bongaerts JH, Grübel G (2000) Effective screening of hydrodynamic interactions in charged colloidal suspensions. Phys Rev Lett 85(25):5460–5464Google Scholar
  67. 67.
    Muthukumar M (1997) Dynamics of polyelectrolyte solutions. J Chem Phys 107(7):2619–2635. doi: 10.1063/1.474573 Google Scholar
  68. 68.
    Muthukumar M (2005) Polyelectrolyte dynamics. In: Rice SA (ed) Advances in chemical physics, vol 131. Wiley, HobokenGoogle Scholar
  69. 69.
    Arunachalam V, Marlow WH, Lu JX (1998) Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles. Phys Rev E 58:3451–3457Google Scholar
  70. 70.
    Babick F, Schiel K, Stintz M (2011) Van-der-Waals interaction between two fractal aggregates. Adv Powder Technol 22(2):220–225. doi: 10.1016/j.apt.2010.11.014 Google Scholar
  71. 71.
    Schiesl K, Babick F, Stintz M (2012) Calculation of double layer interaction between colloidal aggregates. Adv Powder Technol 23(2):139–147. doi: 10.1016/j.apt.2011.01.005 Google Scholar
  72. 72.
    Vicsek T (1992) Fractal growth phenomena. Word Scientific, SingaporeGoogle Scholar
  73. 73.
    Smoluchowski M (1917) Uber brownsche molekularbewegung unter einwirkung auserer kruafte und deren zusammenhang mit der verallgemeinerten diffusions- gleichung. Ann Phys-Leipzig 48:1103–1112Google Scholar
  74. 74.
    Meakin P (1999) A historical introduction to computer models for fractal aggregates. J Sol–gel Sci Technol 15:97–117Google Scholar
  75. 75.
    Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403Google Scholar
  76. 76.
    Sutherland D (1966) Comment on Vold’s simulation of floc formation. J Colloid Interface Sci 22:300Google Scholar
  77. 77.
    Sutherland DN (1967) A theoretical model of floc structure. J Colloid Interface Sci 25:373–380Google Scholar
  78. 78.
    Vold M (1963) Computer simulation of floe formation in a colloidal suspension. J Colloid Sci 18:684–695Google Scholar
  79. 79.
    Eden M (1961) A two-dimensional growth process. In: Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, vol 4: Biology and Problems of Health. University of California Press, BerkeleyGoogle Scholar
  80. 80.
    Jullien R, Botet R (1987) Aggregation and fractal aggregation. World Scientific, SingaporeGoogle Scholar
  81. 81.
    Aubert C, Cannell DS (1986) Restructuring of colloidal silica aggregates. Phys Rev Lett 56:738–741. doi: 10.1103/PhysRevLett.56.738 Google Scholar
  82. 82.
    Liu J, Shih WY, Sarikaya M, Aksay IA (1990) Fractal colloidal aggregates with finite interparticle interactions: energy dependence of the fractal dimension. Phys Rev A 41:3206–3213. doi: 10.1103/PhysRevA.41.3206 Google Scholar
  83. 83.
    Jia Z, Wu H, Morbidelli M (2007) Thermal restructuring of fractal clusters: the case of a strawberry-like core-shell polymer colloid. Langmuir 23:5713–5721. doi: 10.1021/la063254s Google Scholar
  84. 84.
    Jullien R, Meakin P (1989) Simple models for the restructuring of three-dimensional ballistic aggregates. J Colloid Interface Sci 127(1):265–272. doi: 10.1016/0021-9797(89)90027-1 Google Scholar
  85. 85.
    Shih WY, Aksay IA, Kikuchi R (1987) Reversible-growth model: cluster-cluster aggregation with finite binding energies. Phys Rev A 36:5015–5019. doi: 10.1103/PhysRevA.36.5015 Google Scholar
  86. 86.
    Rioux C, Slobodrian RJ (2012) Experimental discrimination of electrostatic and magnetic forces in particle-particle aggregation. Adv Space Res 49(10):1408–1414Google Scholar
  87. 87.
    Groenewold J, Kegel WK (2004) Colloidal cluster phases, gelation and nuclear matter. J Phys Condens Matter 16:S4877–S4886Google Scholar
  88. 88.
    Sciortino F, Mossa S, Zaccarelli E, Tartaglia P (2004) Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys Rev Lett 93:055701Google Scholar
  89. 89.
    Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Philos Mag 14:184–186Google Scholar
  90. 90.
    Smirnov BM (2006) Cluster processes in gases and plasmas. Distributions, structures, phenomena, kinetics of atomic systems. Wiley-VCH, WeinheimGoogle Scholar
  91. 91.
    Weizsacker CFV (1935) Zur theorie der kernmassen. Z Phys 96:431–458Google Scholar
  92. 92.
    Lu PJ, Conrad JC, Wyss HM, Schofield AB, Weitz DA (2006) Fluids of clusters in attractive colloids. Phys Rev Lett 96:028306. doi: 10.1103/PhysRevLett.96.028306 Google Scholar
  93. 93.
    Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA (2008) Gelation of particles with short-range attraction. Nature 453:499–503. doi: 10.1038/nature06931 Google Scholar
  94. 94.
    de Gennes P, Pincus P, Velasco R, Brochard F (1976) Remarks on polyelectrolyte conformation. J Phys-Paris 37(12):1461–1473Google Scholar
  95. 95.
    Brender C, Danino M, Shatz S (1999) Fractals in Monte Carlo simulations of a short polyelectrolyte. J Phys A Math Gen 32(2):235Google Scholar
  96. 96.
    Fernandez-Toledano JC, Moncho-Jorda A, Martinez-Lopez F, Gonzalez AE, Hidalgo-Alvarez R (2007) Two-dimensional colloidal aggregation mediated by the range of repulsive interactions. Phys Rev E 75:041408. doi: 10.1103/PhysRevE.75.041408 Google Scholar
  97. 97.
    Mossa S, Sciortino F, Tartaglia P, Zaccarelli E (2004) Ground-state clusters for short-range attractive and long-range repulsive potentials. Langmuir 20(24):10756–10763. doi: 10.1021/la048554t Google Scholar
  98. 98.
    Sciortino F, Tartaglia P, Zaccarelli E (2005) One-dimensional cluster growth and branching gels in colloidal systems with short-range depletion attraction and screened electrostatic repulsion. J Phys Chem B 109(46):21942–21953. doi: 10.1021/jp052683g Google Scholar
  99. 99.
    Chakrabarty RK, Moosmuller H, Garro MA, Arnott WP, Slowik JG, Cross ES, Jeong-Ho Han PD, Onasch TB, Worsnop DR (2008) Morphology based particle segregation by electrostatic charge. J Aerosol Sci 39(9):785–792Google Scholar
  100. 100.
    Block A, van Blah W, Schellnhuber HJ (1991) Aggregation by attractive particle-cluster interaction. J Phys A Math Gen 24:L1037–L1044Google Scholar
  101. 101.
    Indiveri G, Scalas E, Levi A, Gliozzi A (1999) Morphologies in two-dimensional growth with attractive long-range interactions. Physica A 273(3–4):217–230. doi: 10.1016/S0378-4371(99)00231-9 Google Scholar
  102. 102.
    Meakin P (1990) The effects of attractive and repulsive interactions on three-dimensional reaction-limited aggregation. J Colloid Interface Sci 134(1):235–244. doi: 10.1016/0021-9797(90)90271-O Google Scholar
  103. 103.
    Meakin P, Muthukumar M (1989) The effects of attractive and repulsive interaction on two-dimensional reaction-limited aggregation. J Chem Phys 91(5):3212–3221. doi: 10.1063/1.456942 Google Scholar
  104. 104.
    Indiveri G, Levi A, Gliozzi A, Scalas E (1996) Cluster growth with long-range interactions. Thin Solid Films 284–285:106–109Google Scholar
  105. 105.
    Ivanenko Y, Lebovka N, Vygornitskii N (1999) Eden growth model for aggregation of charged particles. Eur Phys J B 11:469–480Google Scholar
  106. 106.
    Lebovka NI, Ivanenko YV, Vygornitskii NV (1998) Deterministic eden model of charged-particles aggregation. Europhys Lett 41(1):19Google Scholar
  107. 107.
    Pinchuk AO, Kalsin AM, Kowalczyk B, Schatz GC, Grzybowski BA (2007) Modeling of electrodynamic interactions between metal nanoparticles aggregated by electrostatic interactions into closely-packed clusters. J Phys Chem C 111(32):11816–11822. doi: 10.1021/jp073403v Google Scholar
  108. 108.
    Zhang R, Shklovskii B (2005) Phase diagram of solution of oppositely charged polyelectrolytes. Physica A 352(1):216–238. doi: 10.1016/j.physa.2004.12.037 Google Scholar
  109. 109.
    Harnau L, Hansen JP (2002) Colloid aggregation induced by oppositely charged polyions. J Chem Phys 116(20):9051–9057. doi: 10.1063/1.1471550 Google Scholar
  110. 110.
    Puertas A, Fernandez-Barbero A, De las Nieves F (2000) Aggregation between oppositely charged colloidal particles. In: Buckin V (ed) Trends in colloid and interface science XIV. Progress in colloid and polymer science, vol 115. Springer, Berlin, pp 55–58Google Scholar
  111. 111.
    Puertas A, Fernandez-Barbero A, de las Nieves F (2002) Kinetics of colloidal heteroaggregation. Physica A 304(34):340–354. doi: 10.1016/S0378-4371(01)00564-7 Google Scholar
  112. 112.
    Kim AY, Hauch KD, Berg JC, Martin JE, Anderson RA (2003) Linear chains and chain-like fractals from electrostatic heteroaggregation. J Colloid Interface Sci 260(1):149–159. doi: 10.1016/S0021-9797(03)00033-X Google Scholar
  113. 113.
    Cerbelaud M, Videcoq A, Abelard P, Pagnoux C, Rossignol F, Ferrando R (2008) Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 24(7):3001–3008. doi: 10.1021/la702104u Google Scholar
  114. 114.
    Cerbelaud M, Videcoq A, Abelard P, Ferrando R (2009) Simulation of the heteroagglomeration between highly size-asymmetric ceramic particles. J Colloid Interface Sci 332(2):360–365. doi: 10.1016/j.jcis.2008.11.063 Google Scholar
  115. 115.
    Piechowiak MA, Videcoq A, Ferrando R, Bochicchio D, Pagnoux C, Rossignol F (2012) Aggregation kinetics and gel formation in modestly concentrated suspensions of oppositely charged model ceramic colloids: a numerical study. Phys Chem Chem Phys 14:1431–1439. doi: 10.1039/C1CP22980J Google Scholar
  116. 116.
    Castelnovo M, Sens P, Joanny JF (2000) Charge distribution on annealed polyelectrolytes. Eur Phys J E 1:115–125Google Scholar
  117. 117.
    Coslovich D, Hansen J, Kahl G (2011) Ultrasoft primitive model of polyionic solutions: structure, aggregation, and dynamics. J Chem Phys 134(24):244514 (15 pages), www.scopus.com Google Scholar
  118. 118.
    Coslovich D, Hansen JP, Kahl G (2011) Clustering, conductor-insulator transition and phase separation of an ultrasoft model of electrolytes. Soft Matter 7:1690–1693. doi: 10.1039/C0SM01090A Google Scholar
  119. 119.
    Lee J, Popov YO, Fredrickson GH (2008) Complex coacervation: a field theoretic simulation study of polyelectrolyte complexation. J Chem Phys 128(22):224908. doi: 10.1063/1.2936834 Google Scholar
  120. 120.
    Rydén J, Ullner M, Linse P (2005) Monte Carlo simulations of oppositely charged macroions in solution. J Chem Phys 123(3):034909. doi: 10.1063/1.1949191 Google Scholar
  121. 121.
    Zito T, Seidela C (2002) Equilibrium charge distribution on annealed polyelectrolytes. Eur Phys J E 8:339–346Google Scholar
  122. 122.
    Buchhammer HM, Mende M, Oelmann M (2003) Formation of mono-sized polyelectrolyte complex dispersions: effects of polymer structure, concentration and mixing conditions. Colloids Surf A 218(1):151–159. doi: 10.1016/S0927-7757(02)00582-4 Google Scholar
  123. 123.
    Buchhammer HM, Mende M, Oelmann M (2004) Preparation of monodisperse polyelectrolyte complex nanoparticles in dilute aqueous solution. In: Tauer K (ed) Aqueous polymer dispersions. Progress in colloid and polymer science, vol 124. Springer, Berlin, pp 98–102Google Scholar
  124. 124.
    Dobrynin AV (2008) Theory and simulations of charged polymers: from solution properties to polymeric nanomaterials. Curr Opin Colloid Interface Sci 13(6):376–388. doi: 10.1016/j.cocis.2008.03.006 Google Scholar
  125. 125.
    Oskolkov NN, Potemkin II (2007) Complexation in asymmetric solutions of oppositely charged polyelectrolytes:phase diagram. Macromolecules 40(23):8423–8429. doi: 10.1021/ma0709304 Google Scholar
  126. 126.
    Popov YO, Lee J, Fredrickson G (2007) Field-theoretic simulations of polyelectrolyte complexation. J Polym Sci Pol Phys 45:3223–3230Google Scholar
  127. 127.
    Dalakoglou G, Karatasos K, Lyulin S, Lyulin A (2008) Brownian dynamics simulations of complexes of hyperbranched polymers with linear polyelectrolytes: effects of the strength of electrostatic interactions on static properties. Mat Sci Eng B-Solid 152(1–3):114–118. doi: 10.1016/j.mseb.2008.06.012 Google Scholar
  128. 128.
    Skepo M, Linse P (2003) Complexation, phase separation, and redissolution in polyelectrolytemacroion solutions. Macromolecules 36:508–519Google Scholar
  129. 129.
    Feng J, Ruckenstein E (2003) Monte Carlo simulation of polyampholyte-nanoparticle complexation. Polymer 44(10):3141–3150. doi: 10.1016/S0032-3861(03)00208-8 Google Scholar
  130. 130.
    Ulrich S, Seijo M, Carnal F, Stoll S (2011) Formation of complexes between nanoparticles and weak polyampholyte chains. Monte Carlo simulations. Macromolecules 44:1661–1670Google Scholar
  131. 131.
    Sennato S, Truzzolillo D, Bordi F, Sciortino F, Cametti C (2009) Colloidal particle aggregates induced by particle surface charge heterogeneity. Colloids Surf A 343(1–3):34–42. doi: 10.1016/j.colsurfa.2009.01.026 Google Scholar
  132. 132.
    Jeon J, Dobrynin AV (2005) Molecular dynamics simulations of polyampholyte-polyelectrolyte complexes in solutions. Macromolecules 38:5300–5312Google Scholar
  133. 133.
    Xu Y, Feng J, Liu H, Hu Y, Jiang J (2007) Molecular dynamics simulation of polyelectrolyte with oppositely charged monomeric and dimeric surfactants. Mol Simul 33(3):261–268. doi: 10.1080/08927020601158679 Google Scholar
  134. 134.
    Jullien R, Botet R, Mors PM (1987) Computer simulations of cluster-cluster aggregation. Faraday Discuss Chem Soc 83:125–137. doi: 10.1039/DC9878300125 Google Scholar
  135. 135.
    Mors PM, Botet R, Jullien R (1987) Cluster-cluster aggregation with dipolar interactions. J Phys A Math Gen 20:L975Google Scholar
  136. 136.
    Pastor-Satorras R, Rubi JM (1995) Particle-cluster aggregation with dipolar interactions. Phys Rev E 51:5994–6003Google Scholar
  137. 137.
    Pastor-Satorras R, Rubi R (1998) Fractal properties of cluster of colloidal magnetic particles. Prog Colloid Polym Sci 110:29–33Google Scholar
  138. 138.
    Pastor-Satorras R, Rubi J (2000) Dipolar interactions induced order in assemblies of magnetic particles. J Magn Magn Mater 221:124–131Google Scholar
  139. 139.
    Family F (1985) Kinetics of aggregation and gelation. Elsevier, AmsterdamGoogle Scholar
  140. 140.
    Meakin P (1992) Aggregation kinetics. Phys Scripta 46(4):295Google Scholar
  141. 141.
    Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, CambridgeGoogle Scholar
  142. 142.
    Fuchs N (1934) Ueber die stabilitat und aufladung der aerosole. Z Phys 89:736–743Google Scholar
  143. 143.
    Reerink H, Overbeek JTG (1954) The rate of coagulation as a measure of the stability of silver iodide sols. Faraday Discuss Chem Soc 18:74–84Google Scholar
  144. 144.
    Leyvraz F (2003) Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys Rep 383:95–212Google Scholar
  145. 145.
    McLeod JB (1962) On an infinite set of non-linear differential equations. Q J Math 13:119–128Google Scholar
  146. 146.
    Melzak ZA (1953) The effects of coalescence in certain collision processes. Q J Mech Appl Math 11:231–234Google Scholar
  147. 147.
    Gmachowski L (2000) Estimation of the dynamic size of fractal aggregates. Colloids Surf A 170(23):209–216. doi: 10.1016/S0927-7757(99)00532-4 Google Scholar
  148. 148.
    Zift RM, McGrady ED, Meakin P (1985) On the validity of Smoluchowski’s equation for cluster-cluster aggregation kinetics. J Chem Phys 82:5269–5274Google Scholar
  149. 149.
    Fernandez-Barbero A, Cabrerizo-Vilchez M, Martinez-Garcia R, Hidalgo-Alvarez R (1996) Effect of the particle surface charge density on the colloidal aggregation mechanism. Phys Rev E 53:4981–4989. doi: 10.1103/PhysRevE.53.4981 Google Scholar
  150. 150.
    Asnaghi D, Carpineti M, Giglio M, Sozzi M (1992) Coagulation kinetics and aggregate morphology in the intermediate regimes between diffusion-limited and reaction-limited cluster aggregation. Phys Rev A 45:1018–1023. doi: 10.1103/PhysRevA.45.1018 Google Scholar
  151. 151.
    Lattuada M, Sandkuhler P, Wu H, Sefcik J, Morbidelli M (2003) Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations. Adv Colloid Interface Sci 103:33–56Google Scholar
  152. 152.
    Odriozola G, Moncho-Jorda A, Schmitt A, Callejas-Fernandez J, Martinez-Garcia R, Hidalgo-Alvarez R (2001) A probabilistic aggregation kernel for the computer-simulated transition from DLCA to RLCA. Europhys Lett 53:797803Google Scholar
  153. 153.
    Runkana V, Somasundaran P, Kapur PC (2005) Reaction-limited aggregation in presence of short-range structural forces. AICHE J 51:1233–1245Google Scholar
  154. 154.
    Starchenko V, Muller M, Lebovka N (2008) Growth of polyelectrolyte complex nanoparticles: computer simulations and experiments. J Phys Chem C 112:8863–8869Google Scholar
  155. 155.
    Bianchi E, Blaak R, Likos CN (2011) Patchy colloids: state of the art and perspectives. Phys Chem Chem Phys 13:6397–6410. doi: 10.1039/C0CP02296A Google Scholar
  156. 156.
    Gruy F (2011) Population balance for aggregation coupled with morphology changes. Colloids Surf A 374(13):69–76. doi: 10.1016/j.colsurfa.2010.11.010 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Biocolloidal Chemistry Named After F.D. OvcharenkoNAS of UkraineKievUkraine

Personalised recommendations