Biodegradability of Poly(vinyl acetate) and Related Polymers

  • Manfred AmannEmail author
  • Oliver Minge
Part of the Advances in Polymer Science book series (POLYMER, volume 245)


This chapter deals with the biodegradability of vinyl ester-based polymers with a special emphasis on poly(vinyl acetate) and poly(vinyl alcohol). A proper discussion of the importance of the biodegradability of a certain polymer class cannot be made without understanding the impact that polymer class has on the environment. Therefore, apart from discussing the actual biodegradation mechanisms, other issues will be addressed. These include, but are not limited to, how long the class of vinyl ester-based polymers has been known and produced on an industrial scale, what quantities are produced and released into the environment each year, and what applications are addressed with this polymer class. We will also look at the general physical and chemical properties of this polymer class and how these properties can influence biodegradability. After a discussion of what “biodegradability” actually means – and what not – the mechanisms for the biodegradation of poly(vinyl ester)s will be discussed in more detail and a summary given of the biological systems able to process poly(vinyl ester)s.


Biodegradation Poly(vinyl acetate) Poly(vinyl alcohol) 


  1. 1.
    Klatte F (1912) “Verfahren zur Herstellung technisch wertvoller Produkte aus organischen Vinylestern”, German Patent DP271381Google Scholar
  2. 2.
    Finch CA (1973) Polyvinyl alcohol. Wiley Interscience, New YorkGoogle Scholar
  3. 3.
    Staudinger H (1919) Über hochpolymere Verbindungen. Schweiz Chem Z 3:1–5, 28–33, 60–64Google Scholar
  4. 4.
    Staudinger H (1920) Über hochpolymere Verbindungen. Ber Dtsch Chem Ges 53:1073CrossRefGoogle Scholar
  5. 5.
    Herrmann WO (1963) Vom Ringen mit den Molekülen. Econ-Verlag, DusseldorfGoogle Scholar
  6. 6.
    Herrmann WO, Haehnel W (1925) “Polymerisation von Vinylestern”, German Patent DE490041Google Scholar
  7. 7.
    Hermann WO, Haehnel W (1924) “Verfahren zur Herstellung von polymerem Vinylalkohol”, German Patent DE450286Google Scholar
  8. 8.
    Hermann WO, Haehnel W (1926) “Alcohol Production”, Canadian Patent 265172Google Scholar
  9. 9.
    Staudinger H (1926) Über hochpolymere Verbindungen. Chem Ber 59:3019Google Scholar
  10. 10.
    Halle F, Hofmann W (1935) Faserdiagramme von Polyvinylalkohol. Naturwissens 23:770CrossRefGoogle Scholar
  11. 11.
    Kim N, Sudol ED, Friedel P, El-Aasser MS (2003) Poly(vinyl alcohol) stabilization of acrylic emulsion polymers using the miniemulsion approach. Macromolecules 36:5573–5579CrossRefGoogle Scholar
  12. 12.
    Nichols RT, Sowers RM (2009) Laminated materials, glass. Kirk-Othmer encyclopedia of chemical technology, Wiley, Weinheim, 1–17. doi: 10.1002/0471238961.1201130914090308Google Scholar
  13. 13.
    Tecnon OrbiChem (2007) S/Db-CHEM: acetic acid & vinyl acetate. Tecnon OrbiChem, LondonGoogle Scholar
  14. 14.
    Baerns M, Behr A, Brehm A, Gmehling J, Hofmann H, Onken U, Renken A (2006) Technische Chemie 1, Wiley-VCH, 573Google Scholar
  15. 15.
    Malveda M, Funada C (2010) Acetic acid. Chemical economics handbook report. SRI Consulting, EnglewoodGoogle Scholar
  16. 16.
    Weissermel K, Arpe HJ (1997) Industrial organic chemistry, 3rd edn. VCH, Weinheim, p 228CrossRefGoogle Scholar
  17. 17.
    Nuyken O, Kricheldorf HR, Swift G (eds) (2005) Handbook of polymer synthesis. Marcel Dekker, New YorkGoogle Scholar
  18. 18.
    Henderson AM (1993) Ethylene-vinyl acetate (EVA) copolymers: a general review. Electrical Insulation Magazine 9:30–38CrossRefGoogle Scholar
  19. 19.
    Chin H, Kälin T, Yokose K (2008) Polyvinyl acetate. Chemical economics handbook report. SRI Consulting, EnglewoodGoogle Scholar
  20. 20.
    Eubeler JP, Bernhard M, Zok S, Knepper TN (2009) Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. Trends Anal Chem 28:1057–1072Google Scholar
  21. 21.
    Eubeler JP, Bernhard M, Zok S, Knepper TN (2010) Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. Trends Anal Chem 29:84–99CrossRefGoogle Scholar
  22. 22.
    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442CrossRefGoogle Scholar
  23. 23.
    Giardina P, Faraco V, Pezzella V, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385CrossRefGoogle Scholar
  24. 24.
    Endres HJ, Siebert-Raths A (2009) Polyvinylalkohole. In: Technische Biopolymere. Hanser, München, pp 176–182Google Scholar
  25. 25.
    Aso J, Miyamoto Y, Harada KM et al (2006) Engineered membrane superchannel improves bioremediation potential of dioxin-degrading bacteria. Nature Biotechnology 24:188–189CrossRefGoogle Scholar
  26. 26.
    Vaclavkova J, Ruzicka J, Julinova M, Vicha R, Koutny M (2007) Novel aspects of symbiotic poly(vinyl alcohol) biodegradation. Appl Microbiol Biotechnol 76:911–917CrossRefGoogle Scholar
  27. 27.
    Chiellini E, Corti A, Politi B, Solaro R (2000) Adsorption/desorption of polyvinyl alcohol on solid substrates and relevant biodegradation. J Polym Environ 8:67–79CrossRefGoogle Scholar
  28. 28.
    Solaro R, Corti A, Chiellini E (2000) Biodegradation of poly(vinyl alcohol) with different molecular weights and degree of hydrolysis. Polym Adv Technol 11:873–878CrossRefGoogle Scholar
  29. 29.
    Kawai F, Hu X (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol 84:227–237CrossRefGoogle Scholar
  30. 30.
    Sakai K, Fukuba M et al (1998) Purification and characterization of an esterase involved in poly(vinyl alcohol) degradation by Pseudomonas vesicularis PD. Biosci Biotechnol Biochem 62:2000–2007CrossRefGoogle Scholar
  31. 31.
    Haschke H, Tomka I, Keilbach A (1998) Systematische Untersuchungen zur biologischen Abbaubarkeit von Verpackungsmaterial, 2.Mitt. Zur biologischen Abbaubarkeit von auf Polyvinylalkohol basierenden Verpackungsfolien. Monatsh Chem 129:365–386Google Scholar
  32. 32.
    Haschke H, Tomka I, Keilbach A (1998) Systematische Untersuchungen zur biologischen Abbaubarkeit von Verpackungsmaterial, 1.Mitt Zur tatsächlichen biologischen Abbaubarkeit von sogenannten bioabbaubaren Kunststofffolien. Monatsh Chem 129:253–279Google Scholar
  33. 33.
    Haschke H, Tomka I, Keilbach A (1998) Systematische Untersuchungen zur biologischen Abbaubarkeit von Verpackungsmaterial, 3.Mitt Neue Polyvinylalokohol-Stärke-Acetal-Folien. Monatsh Chem129:487–507Google Scholar
  34. 34.
    Matsumura S, Shimura Y, Terayama K, Kiyohara T (1994) Effects of molecular weight and stereo regularity on biodegradation of poly(vinyl alcohol) by Alcaligenes faecalis. Biotechnol Lett 16:1205–1210CrossRefGoogle Scholar
  35. 35.
    Chiellini E, Corti A, Del Sarto G, D’Antone S (2006) Oxo-biodegradable polymers – effect of hydrolysis degree o biodegradation behaviour of poly(vinyl alcohol). Polym Degrad Stab 91:3397–3406CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Du G, Fan X, Chen J (2008) Effects and statistical optimization of fermentation conditions on growth and poly(vinyl alcohol) – degrading enzyme production of Streptomyces venezuelae GY1. Biocatal Biotransform 26:430–436CrossRefGoogle Scholar
  37. 37.
    Corti A, Solaro R, Chiellini E (2002) Biodegradation of poly(vinyl alcohol) in selected mixed microbial culture and relevant culture filtrate. Polym Degrad Stab 75:447–458CrossRefGoogle Scholar
  38. 38.
    Chiellini E, Corti AD’Antone S, Solaro R (2003) Biodegradation of poly(vinyl alcohol) based materials. Prog Polym Sci 28:963–1014CrossRefGoogle Scholar
  39. 39.
    Cheng Q (2010) Green nanocomposites reinforced with cellulosic crystals isolated from juvenile poplar. In: Proceedings International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee October 11–14, Geneva, Switzerland, Paper NT-6 1Google Scholar
  40. 40.
    Julinova M, Kupec J et al (2010) Lignin and starch as potential inductors for biodegradation of films based on poly(vinyl alcohol) and protein hydrolysate. Polym Degrad Stab 95:225–233CrossRefGoogle Scholar
  41. 41.
    Das K, Ray D et al (2010) Preparation and characterization of cross-linked starch/poly(vinyl alcohol) green films with low moisture absorption. Ind Eng Chem Res 49:2176–2185CrossRefGoogle Scholar
  42. 42.
    Russo M, O’Sullivan C et al (2009) The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresour Technol 100:1705–1710CrossRefGoogle Scholar
  43. 43.
    Taghizadeh M, Abbasi Z (2010) Enzymatic degradation of starch/PVA composite film containing Montmorillonite nanoparticles. In: Proceedings 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5–8, TaipeiGoogle Scholar
  44. 44.
    Peesan M, Rujiravanit R, Supaphol P (2003) Characterisation of beta-chitin/poly(vinyl alcohol) blend films. Polym Test 22:381–387CrossRefGoogle Scholar
  45. 45.
    Kang YO, Yoon IS et al (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res Part B: Appl Biomater 92B:568–576Google Scholar
  46. 46.
    Sua J-F, Yuanb XY et al (2010) Properties stability and biodegradation behaviors of soy protein isolate/poly(vinyl alcohol) blend films. Polym Degrad Stab 95:1226–1237CrossRefGoogle Scholar
  47. 47.
    Matsumura S, Ii S, Shigeno H, Tanaka T, Okuda F, Shimura Y, Toshima K (1993) Molecular design of biodegradable functional polymers, 3. Biodegradability and functionality of poly[(sodium acrylate)-co-(vinyl alcohol)]. Die Makromolekulare Chemie 194:3237–3246CrossRefGoogle Scholar
  48. 48.
    Argade A, Peppas N (1998) Poly(acrylic acid)–poly(vinyl alcohol) copolymers with superabsorbent properties. J Appl Polym Sci 70:817–829CrossRefGoogle Scholar
  49. 49.
    Polinas (2003) EVOH-based barrier film, Polibarr (Tradename). Material safety data sheeet (91/155/EEC) MSDS No C2003/003. Available at Last accessed 16 Aug 2011
  50. 50.
    Arboleda C, Mejia AI, Lopez O (2004) Poly(vinylalcohol-co-ethylene) biodegradation on semi solid fermentation by Phanerochaete chrysosporium. Acta Farm Bonaerense 23(2):123–128Google Scholar
  51. 51.
    Simmons S, Thomas EL (1995) Structural characteristics of biodegradable thermoplastic starch/poly(ethylene–vinyl alcohol) blends. J Appl Polym Sci 58:2259–2285CrossRefGoogle Scholar
  52. 52.
    Bastioli C (1998) Properties and applications of Mater-Bi starch-based materials. Polym Degrad Stab 59:263–272CrossRefGoogle Scholar
  53. 53.
    Araújo MA, Cunha AM, Mota M (2010) Changes on surface morphology of corn starch blend films. J Biomed Mater Res A 94A:720–729Google Scholar
  54. 54.
    Matsumura S (2003) Biodegradation of poly(vinylalcohol) and its copolymers. In: Matsumura S, Steibüchel A (eds) Biopolymers, vol 9. Wiley VCH, Weinheim, pp 331–368Google Scholar
  55. 55.
    Kim MN, Yoona MG (2010) Isolation of strains degrading poly(vinyl alcohol) at high temperatures and their biodegradation ability. Polym Degrad Stab 95:89–93CrossRefGoogle Scholar
  56. 56.
    Yamatsu A, Matsumi R, Atomi H, Imanaka T (2006) Isolation and characterization of a novel poly(vinylalcohol)-degrading bacterium, Sphingopyxis sp. PVA3. Appl Microbiol Biotechnol 72:804–811CrossRefGoogle Scholar
  57. 57.
    Fukae R, Fujii T et al (1994) Biodegradation of poly(vinyl alcohol) with high isotacticity. Polym J 26:1381–1386CrossRefGoogle Scholar
  58. 58.
    Hatanaka T, Kawahara T, Asahi N, Tsuji M (1995) Effects of the structure of poly(vinyl alcohol) on the dehydrogenation reaction by poly(vinyl alcohol) dehydrogenase from Pseudomonas sp. 113P3 T. Biosci Biotechnol Biochem 59:1229–1231CrossRefGoogle Scholar
  59. 59.
    Lee J-A, Kim M-N (2003) Isolation of new and potent poly(vinyl alcohol)-degrading strains and their degradation activity. Polym Degrad Stab 81:303–308CrossRefGoogle Scholar
  60. 60.
    Qian D, Du G, Chen J (2004) Isolation and culture characterization of a new polyvinyl alcohol-degrading strain Penicillium sp. WSH02-21. World J Microbiol Biotechnol 20:587–591CrossRefGoogle Scholar
  61. 61.
    Lim JG, Park DH (2001) Degradation of polyvinyl alcohol by Brevibacillus laterosporus. J Microbiol Biotechnol 11:928–933Google Scholar
  62. 62.
    Zhang Y, Li Y (2006) A new strain, Streptomyces venezuelae GY1, producing a poly(vinyl alcohol)-degrading enzyme. World J Microbiol Biotechnol 22:625–628CrossRefGoogle Scholar
  63. 63.
    Shimao M, Fukuta I et al (1984) Mixed continuous cultures of polyvinyl alcohol-utilizing symbionts Pseudomonas putida VM15A and Pseudomonas sp. strain VM15C. Appl Environ Microbiol 48:751–754Google Scholar
  64. 64.
    Mori T, Sakimoto M et al (1996) Isolation and characterization of a strain of Bacillus megaterium that degrades poly(vinyl alcohol). Biosci Biotechnol Biochem 60:330–332CrossRefGoogle Scholar
  65. 65.
    Kim BC, Sohn CK, Lim SK et al (2003) Degradation of polyvinyl alcohol by Sphingomonas sp. SA3 and its symbiote. J Microbiol Biotechnol 30:70–74Google Scholar
  66. 66.
    Chen J, Zhang Y et al (2007) Biodegradation of polyvinyl alcohol by a mixed microbial culture. Enzyme Microb Technol 40:1686–1691CrossRefGoogle Scholar
  67. 67.
    Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33CrossRefGoogle Scholar
  68. 68.
    Huang MH, Shih YP, Liu SM (2002) Biodegradation of polyvinyl alcohol by Phanerochaete chrysosporium after pretreatment with Fenton's reagent. J Environ Sci Health A Tox Hazard Subst Environ Eng 37:29–41CrossRefGoogle Scholar
  69. 69.
    Chiellini E, Corti A, Solero R (1999) Biodegradation of poly(vinyl alcohol) based blown films under different environmental conditions. Polym Degrad Stab 64(2):305–312CrossRefGoogle Scholar
  70. 70.
    Schonberger H, Baumann A, Keller W, Pogopetris P (1997) Study of microbial degradation of polyvinyl alcohol (PVA) in wastewater treatment plants. American Dyestuff Reporter August 1997:9-18. Available at Last accessed 16 Aug 2011
  71. 71.
    Matsumura S, Kurita H, Shimokobe H (1993) Anaerobic biodegradability of polyvinyl alcohol. Biotechnol Lett 15:749–754CrossRefGoogle Scholar
  72. 72.
    Ilcim M et al (2010) FT-IR study of gamma-radiation induced degradation of polyvinylalcohol (PVA) and PVA/humic acids blends. J Radioanal Nucl Chem 283:9–13CrossRefGoogle Scholar
  73. 73.
    Mori T, Sakimoto M et al (1998) Secondary alcohol dehydrogenase from a vinyl alcohol oligomer-degrading Geotrichum fermentans; stabilization with Triton X-100 and activity toward polymers with polymerization degrees less than 20. World J Microbiol Biotechnol 14:349–356CrossRefGoogle Scholar
  74. 74.
    Matsumura S, Tomizawa N et al. (1999) Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism. Macromolecules 32:7753–7761Google Scholar
  75. 75.
    Hirota-Mamoto R, Nagai R, Tachibana S, Yasuda M, Tani A, Kimbara K, Kawai F (2006) Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152:1941–1949CrossRefGoogle Scholar
  76. 76.
    Kawai F (2010) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74:1743–1759CrossRefGoogle Scholar
  77. 77.
    Morozova OV, Shumakovich GP et al (2007) Laccase–mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535CrossRefGoogle Scholar
  78. 78.
    Oh S-Y, Kim H-W, Park J-M, Park H-S, Yoon C (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J Hazard Mater 168:346–351CrossRefGoogle Scholar
  79. 79.
    Lopez BL et al (1999) Biodegradability of poly(vinyl alcohol). Polym Eng Sci 39:1346–1352CrossRefGoogle Scholar
  80. 80.
    Sakai K, Hamada N, Watanabe Y (1984) Non-enzymatic degradation of secondary alcohol oxidase-oxidized poly(vinyl alcohol). Agric Biol Chem 48:1093–1095CrossRefGoogle Scholar
  81. 81.
    Kawagoshi Y, Fujita M (1998) Purification and properties of the polyvinyl alcohol-degrading enzyme 2,4-pentanedione hydrolase obtained from Pseudomonas vesicularis var. povalolyticus PH. World J Microbiol Biotechnol 14:95–100CrossRefGoogle Scholar
  82. 82.
    Sakai K, Hamada N, Watanabe Y (1986) Degradation mechanism of poly(vinyl alcohol) by successive reactions of secondary alcohol oxidase and β-diketone hydrolase from Pseudomonas sp. Agric Biol Chem 50:989–996CrossRefGoogle Scholar
  83. 83.
    Grogan G (2005) Emergent mechanistic diversity of enzyme- catalyzed beta-diketone cleavage. Biochem J 388:721–730CrossRefGoogle Scholar
  84. 84.
    Klomklang W, Tani A et al (2005) Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3. Microbiology 151:1255–1262CrossRefGoogle Scholar
  85. 85.
    Skals PB, Krabek A, Nielsen PH, Wenzel H (2008) Environmental assessment of enzyme assisted processing in pulp and paper industry. Int J LCA 13:124–132CrossRefGoogle Scholar
  86. 86.
    Ronkvist M, Lu W, Feder D, Gross R (2009) Cutinase-catalyzed deacetylation of poly(vinyl acetate). Macromolecules 42:6086–6097CrossRefGoogle Scholar
  87. 87.
    Shimao M, Onishi S, Kato N, Sakazawa C (1989) Pyrroloquinoline quinone-dependent cytochrome reduction in polyvinyl alcohol-degrading Pseudomonas sp. strain VM15C. Appl Environ Microbiol 55:275–278Google Scholar
  88. 88.
    Shimao M, Tamogami T, Nishi K, Harayama S (1996) Cloning and characterization of the gene encoding pyrroloquinoline quinone-dependent poly(vinyl alcohol) dehydrogenase of Pseudomonas sp. strain VM15C. Biosci Biotechnol Biochem 60:1056–1062CrossRefGoogle Scholar
  89. 89.
    Shimao M, Tamogami T, Kishida S, Harayama S (2000) The gene pvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the poly-vinyl alcohol dehydrogenase gene pvaA. Microbiology 146:649–657Google Scholar
  90. 90.
    Mamoto R, Hu X, Chiue H, Fujioka Y, Kawai F (2008) Cloning and expression of soluble cytochrome c and its role in poly-vinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain 113P3. J Biosci Bioeng 105:147–151CrossRefGoogle Scholar
  91. 91.
    Hu X, Mamoto R, Fujioka Y, Tani A, Kimbara K, Kawai F (2008) The pva operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl Microbiol Biotechnol 78:685–893CrossRefGoogle Scholar
  92. 92.
    Tang B, Liaoa X et al (2010) Enhanced production of poly(vinyl alcohol)-degrading enzymes by mixed microbial culture using 1,4-butanediol and designed fermentation strategies. Polym Degrad Stab 95:557–563CrossRefGoogle Scholar
  93. 93.
    Ishigaki T, Sugano W, Nakanishi A, Tateda M, Ike M, Fujita M (2004) The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 54:225–233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.WACKER Consortium für elektrochemische IndustrieMunichGermany

Personalised recommendations