Production, Properties and Applications of Fungal Cell Wall Polysaccharides: Chitosan and Glucan

Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 244)

Abstract

Chitosan and β-glucan have attracted increased interest for use in many pharmaceutical applications, especially in tissue engineering, medicine, and immunology. Commercially, chitosans are produced from the shells of shrimps and crabs and the bone plates of squids. In fungal cell walls, chitosan occurs in two forms, as free chitosan and covalently bounded to β-glucan. Low cost products of these two polymers could be produced using industrial waste mycelia and mycelia obtained from cultivation of fungus in medium obtained from industrial by-products. The quantity and quality of chitosan extracted from fungal mycelia depends on fungal strain, type of fermentation, fermentation medium composition such as trace metal content and concentration of nutrients, pH of fermentation medium, harvesting time of fungal mycelia, and chitosan extraction procedure. The growth of fungi in solid state/substrate and submerged fermentation, synthesis of chitosan and glucan in fungal cell walls, production of valuable products from fungi, production of chitosan and glucan from fungal mycelia, and applications of chitosan and glucan are discussed in this chapter.

Graphical Abstract

Keywords

Chitosan Fungi Glucan Production Properties 

References

  1. 1.
    Dube HC (1990) Fungi, general characteristics. An introduction to fungi, 2nd revised edn. Vikas, New Delhi, pp 11–146Google Scholar
  2. 2.
    Roberts GAF (1992) Structure of chitin and chitosan. Chitin chemistry, 1st edn. Macmillan, London, pp 1–53Google Scholar
  3. 3.
    Muzzarelli RAA, Tanfani F, Scarpini G (1980) Chelating, film-forming, and coagulating ability of the chitosan–glucan complex from Aspergillus niger industrial wastes. Biotechnol Bioeng 22:885–896CrossRefGoogle Scholar
  4. 4.
    Nwe N, Stevens WF (2002) Production of fungal chitosan by solid substrate fermentation followed by enzymatic extraction. Biotechnol Lett 24:131–134CrossRefGoogle Scholar
  5. 5.
    Jaworska MM, Konieczna E (2001) The influence of supplemental components in nutrient medium on chitosan formation by the fungus Absidia orchidis. Appl Microbiol Biotechnol 56:220–224CrossRefGoogle Scholar
  6. 6.
    Pochanavanich P, Suntornsuk W (2002) Fungal chitosan production and its characterization. Lett Appl Microbiol 35:17–21CrossRefGoogle Scholar
  7. 7.
    Tan SC, Tan TK, Wong SM, Khor E (1996) The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydr Polym 30:239–242CrossRefGoogle Scholar
  8. 8.
    Nwe N, Furuike T, Tamura H (2010) Production of fungal chitosan by enzymatic method and applications in plant tissue culture and tissue engineering: 11 years of our progress, present situation and future prospects. In: Elnashar M (ed) Biopolymers, SCIYO Rijeka, chapter 7, pp 135–162Google Scholar
  9. 9.
    Nwe N, Furuike T, Tamura H (2011) Chitosan from aquatic and terrestrial organisms and microorganisms: production, properties and applications. In: Johnson BM, Berkel ZE (eds) Biodegradable materials: production, properties and applications. Nova Science, Hauppauge, NY, chapter 2, pp 29–50Google Scholar
  10. 10.
    Yokoi H, Aratake T, Nishio S, Hirose J, Hayashi S, Takasaki Y (1998) Chitosan production from Shochu distillery wastewater by funguses. J Ferment Bioeng 85:246–249CrossRefGoogle Scholar
  11. 11.
    Streit F, Koch F, Mauro CML, Ninow JL (2009) Production of fungal chitosan in liquid cultivation using apple pomace as substrate. Braz J Microbiol 40:20–25CrossRefGoogle Scholar
  12. 12.
    Wang W, Dua Y, Qiu Y, Wang X, Hu Y, Yang J, Cai J, John F, Kennedy JF (2008) A new green technology for direct production of low molecular weight chitosan. Carbohydr Polym 74:127–132CrossRefGoogle Scholar
  13. 13.
    Dow JM, Rubery PH (1977) Chemical fractionation of the cell walls of mycelial and yeast-like forms of Mucor rouxii: a comparative study of the polysaccharide and glycoprotein components. J Gen Microbiol 99:29–41Google Scholar
  14. 14.
    Durand A, Blachere H (1988) Solid state fermentation. In: Raimbault M (ed) Solid state fermentation bioconversion of agro-industrial raw material. Proceedings of the seminar ORSTOM-Montpellier, France, pp 83–89Google Scholar
  15. 15.
    Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid state fermentation in biotechnology: Fundamentals and application. Asiatech, New Delhi, pp 3–97Google Scholar
  16. 16.
    Laukevics JJ, Apsite AF, Viesturs UE (1984) Solid substrate fermentation of wheat straw to fungal protein. Biotechnol Bioeng 26:1465–1474CrossRefGoogle Scholar
  17. 17.
    Durand A, de la Broise D, Blachere H (1988) Laboratory scale bioreactor for solid state process. J Biotechnol 8:59–66CrossRefGoogle Scholar
  18. 18.
    Almanza S, Durand A, Renaud R, Maratray J, Diez M (1995) Laboratory scale reactor for aseptic solid state cultivation. Biotechnol Tech 9:395–400CrossRefGoogle Scholar
  19. 19.
    Durand A, Renaud R, Maratray J, Almanza S, Diez M (1996) INRA-Dijion reactors for solid state fermentation: designs and applications. J Sci Ind Res 55:317–332Google Scholar
  20. 20.
    Araujo AADE, Lepilleur C, Delcourt S, Colavitti P, Roussos S (1997) Laboratory scale bioreactors for study of fungal physiology and metabolism in solid state fermentation system. In: Advances in solid state fermentation. Proceedings of the 2nd international symposium on solid state fermentation, FEMS-95, Montpellier, France, 27–28 February 1997. Kluwer, The Netherlands, pp 93–111Google Scholar
  21. 21.
    Davoust N, Hansson G (1992) Identifying the conditions for development beneficial mycelium morphology for chitosan-production Absidia spp. in submersed cultures. Appl Microbiol Biotechnol 36:618–620CrossRefGoogle Scholar
  22. 22.
    Wong G (2003) Fungi in manufacturing of food. http://www.botany.hawaii.edu/faculty/wong/BOT135/Lect16.htm.Last accessed 25 Accessed 25 March 2011
  23. 23.
    Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz J, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer Academic/Plenum, New York, pp 307–340Google Scholar
  24. 24.
    Luef E, Prey T, Kubicek CP (1991) Biosorption of zinc by fungal mycelial wastes. Appl Microbiol Biotechnol 34:688–692CrossRefGoogle Scholar
  25. 25.
    Tianwei T, Binwu W, Xinyuan S (2002) Separation of chitosan from Penicillium chrysogenum mycelium and its applications. J Bioact Compat Polym 17:173–182CrossRefGoogle Scholar
  26. 26.
    Mathewson PR (1998) Enzymes. Eagan Press, Saint Paul, pp 93–95Google Scholar
  27. 27.
    Chen H, Liu L, Lv S, Liu X, Wang M, Song A, Jia X (2010) Immobilization of xylanase on chitosan using dialdehyde starch as a coupling agent. Appl Biochem Biotechnol 162:24–32CrossRefGoogle Scholar
  28. 28.
    Cai J, Yang J, Du Y, Fan L, Qiu Y, Li J, Kennedy JF (2006) Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant. Carbohydr Polym 64:151–157CrossRefGoogle Scholar
  29. 29.
    Davis LL, Bartnicki-Garcia S (1984) Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochemistry 23:1065–1073CrossRefGoogle Scholar
  30. 30.
    Moore-Landecker E (1996) Fundamentals of the fungi, 4th edn. Prentice Hall, Upper Saddle River, NJ, pp 251–278Google Scholar
  31. 31.
    Bartnicki-Garcia S (1968) Cell wall chemistry. Annu Rev Microbiol 22:87–108CrossRefGoogle Scholar
  32. 32.
    Gooday GW (1995) Cell walls. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman & Hall, London, pp 3–62Google Scholar
  33. 33.
    Robson G (1999) Hyphal cell biology. In: Oliver RP, Schweizer M (eds) Molecular fungal biology. Cambridge University Press, Cambridge, pp 164–184Google Scholar
  34. 34.
    Wessels JGH, Mol PC, Sietsma JH, Vermeulen CA (1990) Wall structure, wall growth, and fungal cell morphogenesis. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi. Springer, Berlin, pp 81–84Google Scholar
  35. 35.
    Sietsma JH, Vermeulen CA, Wessels JGH (1985) The role of chitin in hyphal morphogenesis. In: Muzzarelli R, Juniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum, New York, pp 63–69Google Scholar
  36. 36.
    Nwe N, Stevens WF, Montet D, Tokura S, Tamura H (2008) Decomposition of myceliar matrix and extraction of chitosan from Gongronella butleri USDB 0201 and Absidia coerulea ATCC 14076. Int J Biol Macromol 43:2–7CrossRefGoogle Scholar
  37. 37.
    Nwe N, Stevens WF, Tokura S, Tamura H (2008) Characterization of chitin and chitosan-glucan complex extracted from cell wall of fungus Gongronella butleri USDB 0201 by enzymatic method. Enzyme Microbial Technol 42:242–251CrossRefGoogle Scholar
  38. 38.
    Nwe N, Stevens WF, Tamura H (2007) Extraction of the chitosan–glucan complex and chitosan from fungal cell wall and their application in tissue engineering. In: Abstracts of papers, 234th ACS national meeting, Boston, CARB-118Google Scholar
  39. 39.
    Li Q, Dunn ET, Grandmaison EW, Goosen MFA (1997) Applications and properties of chitosan. In: Goosen MFA (ed) Application of chitin and chitosan. Technomic Publishing Company, Lancaster, pp 3–29Google Scholar
  40. 40.
    Kogan G, Machova E, Chorvatovicova D, Sandula J (1998) Chitin–glucan complex of Aspergillus Niger and its derivatives: antimutagenic and antinfective activity. In: Chen RH, Chen HC (eds) Proceedings of the 3rd Asia Pacific chitin and chitosan symposium, Keelung, The National Taiwan Ocean University, Taiwan, pp 372–379Google Scholar
  41. 41.
    Sietma JH, Wessels JGH (1979) Evidence for covalent linkages between chitin and β-glucan in a fungal wall. J Gen Microbiol 114:99–108Google Scholar
  42. 42.
    Gopal P, Sullivan PA, Shepherd MG (1984) Isolation and structure of glucan from regenerating spheroplasts of Candida albicans. J Gen Microbiol 130:1217–1225Google Scholar
  43. 43.
    Surarit R, Gopal PK, Shepherd MG (1988) Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans. J Gen Microbiol 134:1723–1730Google Scholar
  44. 44.
    Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall, the linkage between chitin and β-1,3-glucan. J Biol Chem 270:1170–1178CrossRefGoogle Scholar
  45. 45.
    Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latge JP (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607Google Scholar
  46. 46.
    Muzzarelli RAA, Ilari P, Tarsi R, Dubini B, Xia W (1994) Chitosan from Absidia coerulea. Carbohydr Polym 25:45–50CrossRefGoogle Scholar
  47. 47.
    Nwe N, Furuike T, Osaka I, Fujimori H, Kawasaki H, Arakawa R, Tokura S, Stevens WF, Tamura H (2011) Laboratory scale production of 13C labeled chitosan by fungi Absidia coerulea and Gongronella butleri grown in solid substrate and submerged fermentation. Carbohydr Polym 84:743–750CrossRefGoogle Scholar
  48. 48.
    Suntornsuk W, Pochanavanich P, Suntornsuk L (2002) Fungal chitosan production on food processing by-products. Process Biochem 37:727–729CrossRefGoogle Scholar
  49. 49.
    Khalaf SA (2004) Production and characterization of fungal chitosan under solid-state fermentation conditions. Int J Agric Biol 6:1033–1036Google Scholar
  50. 50.
    Rane KD, Hoover DG (1993) Production of chitosan by fungi. Food Biotechnol 7:11–33CrossRefGoogle Scholar
  51. 51.
    Miyoshi H, Shimura K, Watanabe K, Onodera K (1992) Characterization of some fungal chitosans. Biosci Biotechnol Biochem 56:1901–1905CrossRefGoogle Scholar
  52. 52.
    Hu KJ, Yeung KW, Ho KP, Hu JL (1999) Rapid extraction of high-quality chitosan from mycelia of Absida Glauca. J Food Biochem 23:187–196CrossRefGoogle Scholar
  53. 53.
    Davoust N, Persson A (1992) Effects of growth morphology and time of harvesting on the chitosan yield of Absidia repens. Appl Microbiol Biotechnol 37:572–575CrossRefGoogle Scholar
  54. 54.
    Arcidiacono S, Kaplan DL (1992) Molecular weight distribution of chitosan isolated from Mucor rouxii under different culture and processing conditions. Biotechnol Bioeng 39:281–286CrossRefGoogle Scholar
  55. 55.
    White SA, Farina PR, Fulton I (1979) Production and isolation of chitosan from Mucor rouxii. Appl Environ Microbiol 38:323–328Google Scholar
  56. 56.
    Hang YD (1990) Chitosan production from Rhizopus mycelia. Biotechnol Lett 12:911–913CrossRefGoogle Scholar
  57. 57.
    Nwe N, Chandrkrachang S, Stevens WF, Maw T, Tan TK, Khor E, Wong SM (2002) Production of fungal chitosan by solid state and submerged fermentation. Carbohydr Polym 49:235–237CrossRefGoogle Scholar
  58. 58.
    Crestini C, Kovac B, Giovannozzi-Sermanni G (1996) Production and isolation of chitosan by submerged and solid-state fermentation from Lentinus edodes. Biotechnol Bioeng 50:207–210CrossRefGoogle Scholar
  59. 59.
    Prathumpai W (1998) Chitin and chitosan production by fungi in solid state and surface culture processes. Master thesis, Bioprocess Technology Program, Asian Institute of Technology, Bangkok, Thailand, pp 24–43Google Scholar
  60. 60.
    Jaworska MM, Szewczyk KW (2001) The continuous cultivation of Absidia orchidis fungi. In: Uragami T, Kurita K, Fukamizo T (eds) Proceedings of the 8th international chitin and chitosan conference and 4th Asia pacific chitin and chitosan symposium, Yamaguchi, Japan, Kodansha Scientific Ltd, Tokyo, pp 519–523Google Scholar
  61. 61.
    Rane KD, Hoover DG (1993) An evaluation of alkali and acid treatments for chitosan extraction from fungi. Process Biochem 28:115–118CrossRefGoogle Scholar
  62. 62.
    Rungsardthong V, Wongvuttanakul N, Kongpien N, Chotiwaranon P (2006) Application of fungal chitosan for clarification of apple juice. Process Biochem 41:589–593CrossRefGoogle Scholar
  63. 63.
    Kuĉera J (2004) Fungal mycelium – the source of chitosan for chromatography. J Chromatogr B 808:69–73CrossRefGoogle Scholar
  64. 64.
    Nwe N, Furuike T, Tamura H (2009) The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials 2:374–398CrossRefGoogle Scholar
  65. 65.
    Nge KL, Nwe N, Chandrkrachang S, Stevens WF (2006) Chitosan as growth stimulator in orchid tissue culture. Plant Sci 170:1185–1190CrossRefGoogle Scholar
  66. 66.
    Bartnicki-Garcia S (1999) Glucan, walls, and morphogenesis: on the contributions of J. G. H. Wessels to the golden decades of fungal physiology and beyond. Fungal Genet Biol 27:119–127CrossRefGoogle Scholar
  67. 67.
    Carbonero ER, Montai AV, Mellinger CG, Eliasaro S, Sassaki GL, Gorin PAJ, Iacomini M (2005) Glucans of lichenized fungi: significance for taxonomy of the genera Parmotrema and Rimelia. Phytochemistry 66:929–934CrossRefGoogle Scholar
  68. 68.
    Schmid E, Stone BA, McDougall BM, Bacic A, Martin KL, Brownlee RTC, Chai E, Seviour RJ (2001) Structure of epiglucan, a highly side-chain/branched (1 → 3;1 → 6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb Ex Schlecht. Carbohydr Res 331:163–171CrossRefGoogle Scholar
  69. 69.
    Hochstenbach F, Klis FM, Hvd E, Ev D, Peters PJ, Klausner RD (1998) Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc Natl Acad Sci 95:9161–9166CrossRefGoogle Scholar
  70. 70.
    Wolski EA, Lima C, Agusti R, Daleo GR, Andreu AB, de Lederkremer RM (2005) An α glucan elicitor from the cell wall of a biocontrol binucleate Rhizoctonia isolate. Carbohydr Res 340:619–627CrossRefGoogle Scholar
  71. 71.
    Marchessault H, Deslandes Y (1979) Fine structure of (1–3)-β-d-glucan: curdlan and paramylon. Carbohydr Res 75:231–242CrossRefGoogle Scholar
  72. 72.
    Yalin W, Cuirong S, Yuanjiang P (2006) Studies on isolation and structural features of a polysaccharide from the mycelium of an Chinese edible fungus (Cordyceps sinensis). Carbohydr Polym 63:251–256CrossRefGoogle Scholar
  73. 73.
    Rout D, Mondal S, Chakraborty I, Pramanik M, Islam SS (2005) Chemical analysis of a new (1 → 3)-, (1 → 6)-branched glucan from an eatable mushroom, Pleurotus florida. Carbohydr Res 340:2533–2539CrossRefGoogle Scholar
  74. 74.
    Herrera JR (1991) Fungal glucans. In: Fungal cell wall: structure, synthesis, and assembly. CRC, Mexico, pp 59–88Google Scholar
  75. 75.
    Wang Y, Yao S, Guan Y, Wu T, Kennedy JF (2005) A novel process for preparation of (1 → 3)-β-d-glucan sulphate by a heterogeneous reaction and its structural elucidation. Carbohydr Polym 59:93–99CrossRefGoogle Scholar
  76. 76.
    Ikeda N, Uno M, Harata M, Nishiyama Y, Kurita K (2001) Synthesis of branched polysaccharides from linear glucans. In: Uragami T, Kurita K, Fukamizo T (eds) Proceedings of the 8th international chitin and chitosan conference and 4th Asia pacific chitin and chitosan symposium, Yamaguchi, Japan, Kodansha Scientific Ltd, Tokyo, pp 368–369Google Scholar
  77. 77.
    Sietma JH, Wessels JGH (1981) Solubility of (1–3)-β-D/(1–6)-β-d-glucose in fungal walls: importance of presumed linkage between glucan and chitin. J Gen Microbiol 125:209–212Google Scholar
  78. 78.
    Sandula J, Kogan G, Kacurakova M, Machova E (1999) Microbial (1–3)-β-d-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydr Polym 38:247–253CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Materials and BioengineeringKansai UniversitySuitaJapan

Personalised recommendations