Self-Assembled Structures of Amphiphilic Ionic Block Copolymers: Theory, Self-Consistent Field Modeling and Experiment

  • Oleg V. Borisov
  • Ekaternia B. Zhulina
  • Frans A. M. Leermakers
  • Axel H. E. Müller
Chapter

Abstract

We present an overview of statistical thermodynamic theories that describe the self-assembly of amphiphilic ionic/hydrophobic diblock copolymers in dilute solution. Block copolymers with both strongly and weakly dissociating (pH-sensitive) ionic blocks are considered. We focus mostly on structural and morphological transitions that occur in self-assembled aggregates as a response to varied environmental conditions (ionic strength and pH in the solution). Analytical theory is complemented by a numerical self-consistent field approach. Theoretical predictions are compared to selected experimental data on micellization of ionic/hydrophobic diblock copolymers in aqueous solutions.

Keywords

Amphiphilic block copolymers Micelles Polyelectrolytes Polymorphism Self-assembly 

References

  1. 1.
    Galaev I, Mattiasson B (ed) (2008) Smart polymers: applications in biotechnology and biomedicine, CRC, Boca RatonGoogle Scholar
  2. 2.
    Dai L (2003) Intelligent macromolecules for Smart devices: from material synthesis to device application. Springer, LondonGoogle Scholar
  3. 3.
    Minko S (2006) Responsive polymer materials: design and applications. Backwell, OxfordGoogle Scholar
  4. 4.
    Lazzari M, Liu G, Lecommandoux S (ed) (2006) Block copolymers in nanoscience. Wiley, WeinheimGoogle Scholar
  5. 5.
    Hamley IW (1998) The physics of block copolymers. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170Google Scholar
  7. 7.
    Gohy JF (2005) Adv Polym Sci 190:65Google Scholar
  8. 8.
    Förster S, Abetz V, Müller AHE (2004) Adv Polym Sci 166:267Google Scholar
  9. 9.
    Cohen Stuart MA, Hofs B, Voets IK, de Keizer A (2005) Curr Opin Coll Int Sci 10:30Google Scholar
  10. 10.
    Borisov OV, Zhulina EB, Leermakers FAM, Müller AHE, Ballauff M (2011) Adv Polym Sci DOI: 12_2010_104Google Scholar
  11. 11.
    Aseyev VO, Tenhu H, Winnik FM (2006) Adv Polym Sci 196:1Google Scholar
  12. 12.
    Dimitrov I, Trzebicrf B, Müller AHE, Dworak A, Tsvetanov CD (2007) Prog Polym Sci 32:1275Google Scholar
  13. 13.
    Marko JF, Rabin Y (1992) Macromolecules 25:1503Google Scholar
  14. 14.
    Wittmer J, Joanny J-F (1993) Macromolecules 26:2691Google Scholar
  15. 15.
    Shusharina NP, Nyrkova IA, Khokhlov AR (1996) Macromolecules 29:3167Google Scholar
  16. 16.
    Huang C, Olivera de la Cruz M, Delsanti M, Guenoun P (1997) Macromolecules 30:8019Google Scholar
  17. 17.
    Netz RR (1999) Europhys Lett 47:391Google Scholar
  18. 18.
    Borisov OV, Zhulina EB (2002) Macromolecules 35:4472Google Scholar
  19. 19.
    Zhulina EB, Borisov OV (2002) Macromolecules 35:9191Google Scholar
  20. 20.
    Borisov OV, Zhulina EB (2003) Macromolecules 36:10029Google Scholar
  21. 21.
    Borisov OV, Zhulina EB (2005) Langmuir 21:3229Google Scholar
  22. 22.
    Zhulina EB, Borisov OV (2005) Macromolecules 38:6726Google Scholar
  23. 23.
    Lauw Y, Leermakers FAM, Cohen Stuart MA, Borisov OV, Zhulina EB (2006) Macromolecules 39:3628Google Scholar
  24. 24.
    Viktorov AI, Plotnikov NV, Hong P-D (2010) J Phys Chem B 114:8846Google Scholar
  25. 25.
    Pincus PA (1991) Macromolecules 24:2912Google Scholar
  26. 26.
    Ross R, Pincus P (1992) Macromolecules 25:2177Google Scholar
  27. 27.
    Borisov OV, Birshtein TM, Zhulina EB (1991) J Phys II (France) 1:521Google Scholar
  28. 28.
    Borisov OV, Zhulina EB, Birshtein TM (1994) Macromolecules 27:4795Google Scholar
  29. 29.
    Zhulina EB, Borisov OV (1996) Macromolecules 29:2618Google Scholar
  30. 30.
    Zhulina EB, Borisov OV (1997) J Chem Phys 107:5952Google Scholar
  31. 31.
    Zhulina EB, Birshtein TM, Borisov OV (1995) Macromolecules 28:1491Google Scholar
  32. 32.
    Zhulina EB, Birshtein TM, Borisov OV (2006) Eur Phys J E 20:243Google Scholar
  33. 33.
    Ballauff M, Borisov OV (2006) Curr Opin Colloid Interface Sci 11:316Google Scholar
  34. 34.
    Tanford C (1973) The hydrophobic effect: formation of micelles and biological membranes. Wiley-Interscience, New YorkGoogle Scholar
  35. 35.
    Israelachvili JN (1985) Intermolecular and surface forces. Academic, LondonGoogle Scholar
  36. 36.
    Hill TL (1994) Thermodynamics of small systems. Dover, New YorkGoogle Scholar
  37. 37.
    Izzo D, Marques CM (1993) Macromolecules 26:7189Google Scholar
  38. 38.
    Konop AJ, Colby RH (1999) Langmuir 15:58Google Scholar
  39. 39.
    Halperin A, Tirrell M, Lodge T (1990) Adv Polym Sci 100:31Google Scholar
  40. 40.
    Borisov OV, Zhulina EB (2008) Responsive polymer brushes: a theoretical outlook. In: Galaev I, Mattiasson B (eds) Smart polymers: applications in biotechnology and biomedicine. CRC, Boca Raton, p 53Google Scholar
  41. 41.
    Grosberg AY, Khokhlov AR (1994) Statistical physics of macromolecules. AIS, New YorkGoogle Scholar
  42. 42.
    Polotsky AA, Daoud M, Borisov OV, Birshtein TM (2010) Macromolecules 43:1629Google Scholar
  43. 43.
    Flory P (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  44. 44.
    Ushakova AS, Govogun EN, Khokhlov AR (2006) J Phys Condens Matter 18:915Google Scholar
  45. 45.
    Zhulina YB, Birshtein TM (1985) Polym Sci USSR 27:570Google Scholar
  46. 46.
    Halperin A (1987) Macromolecules 20:2943Google Scholar
  47. 47.
    Halperin A (1989) Europhys Lett 8:351Google Scholar
  48. 48.
    Halperin A, Alexander S (1989) Macromolecules 22:2403Google Scholar
  49. 49.
    Birshtein TM, Zhulina EB (1989) Polymer 30:170Google Scholar
  50. 50.
    Zhulina EB, Adam M, Sheiko S, LaRue I, Rubinstein M (2005) Macromolecules 38:5330Google Scholar
  51. 51.
    Alexander S (1977) J Phys (France) 38:983Google Scholar
  52. 52.
    de Gennes PG (1980) Macromolecules 13:1069Google Scholar
  53. 53.
    Daoud M, Cotton JP (1982) J Phys (France) 43:531Google Scholar
  54. 54.
    Zhulina YB (1984) Polym Sci USSR 26:794Google Scholar
  55. 55.
    Birshtein TM, Zhulina EB (1984) Polymer 25:1453Google Scholar
  56. 56.
    Birshtein TM, Zhulina EB, Borisov OV (1986) Polymer 27:1079Google Scholar
  57. 57.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  58. 58.
    LaRue I, Adam M, Zhulina EB, Rubinstein M, Pitsikalis M, Hadjichristidis N, Hammouda B, Lin MY, Ivanov DA, Gearba RI, Anokhin DV, Sheiko SS (2008) Macromolecules 41:6555Google Scholar
  59. 59.
    Semenov AN (1985) Sov Phys JETP 61:733Google Scholar
  60. 60.
    Wang Z-G, Safran SA (1988) J Chem Phys 89:5323Google Scholar
  61. 61.
    Borisov OV (1996) J Phys II (France) 6:1Google Scholar
  62. 62.
    Borisov OV, Zhulina EB (1998) Europ Phys J B 4:205Google Scholar
  63. 63.
    Klein Wolterink J, Leermakers FAM, Fleer GJ, Koopal LK, Zhulina EB, Borisov OV (1999) Macromolecules 32:2365Google Scholar
  64. 64.
    Klein Wolterink J, van Male J, Cohen Stuart MA, Koopal LK, Zhulina EB, Borisov OV (2002) Macromolecules 35:9176Google Scholar
  65. 65.
    Noolandi J, Hong KM (1983) Macromolecules 16:1443Google Scholar
  66. 66.
    Leermakers FAM, Scheutjens JMHM (1988) J Chem Phys 89:3264Google Scholar
  67. 67.
    Leermakers FAM, Scheutjens JMHM (1989) J Phys Chem 93:7417Google Scholar
  68. 68.
    Leermakers FAM, Scheutjens JMHM (1988) J Chem Phys 89:6912Google Scholar
  69. 69.
    Leermakers FAM, Scheutjens JMHM (1990) Biochim Biophys Acta 1024:139Google Scholar
  70. 70.
    Leermakers FAM, Scheutjens JMHM (1990) J Colloid Interface Sci 136:231Google Scholar
  71. 71.
    Leermakers FAM, Lyklema J (1992) Colloids Surf 67:239Google Scholar
  72. 72.
    Cogan KA, Leermakers FAM, Gast AP (1992) Langmuir 8:429Google Scholar
  73. 73.
    Leermakers FAM, Wijmans CM, Fleer GJ (1995) Macromolecules 28:3434Google Scholar
  74. 74.
    Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman and Hall, LondonGoogle Scholar
  75. 75.
    Evers OA, Scheutjens JMHM, Fleer GJ (1990) Macromolecules 23:5221Google Scholar
  76. 76.
    Leermakers FAM, Rabinovich AL (2007) Phys Rev E 76:031904/1Google Scholar
  77. 77.
    Charlaganov MI, Borisov OV, Leermakers FAM (2008) Macromolecules 41:3668Google Scholar
  78. 78.
    Jódar-Reyes AB, Ortega-Vinuesa JL, Martin-Rodriguez A, Leermakers FAM (2003) Langmuir 19:878Google Scholar
  79. 79.
    Lauw Y, Leermakers FAM, Cohen Stuart MA (2003) J Phys Chem 107:10912Google Scholar
  80. 80.
    Oversteegen SM, Leermakers FAM (2000) Phys Rev E 62:8453Google Scholar
  81. 81.
    Jódar-Reyes AB, Leermakers FAM (2006) J Phys Chem B 110:6300Google Scholar
  82. 82.
    Li F, Marcelis ATM, Sudholter EJR, Cohen Stuart MA, Leermakers FAM (2009) Soft Matter 5:4173Google Scholar
  83. 83.
    Meijer LA, Leermakers FAM, Lyklema J (1994) Recl Trav Chim Pays-Bas 113:167Google Scholar
  84. 84.
    Claessens MMAE, van Oort BF, Leermakers FAM, Hoekstra FA, Cohen Stuart MA (2004) Biophys J 87:3882Google Scholar
  85. 85.
    Lauw Y, Leermakers FAM, Cohen Stuart MA (2006) J Phys Chem B 110:465Google Scholar
  86. 86.
    Lauw Y, Leermakers FAM, Cohen Stuart MA (2007) J Phys Chem B 111:8158Google Scholar
  87. 87.
    Leermakers FAM, van der Schoot PPAM, Scheutjens JMHM, Lyklema J (1990) In: Mittal KL (ed) Surfactants in solution, vol 7. Plenum, New York, pp 43–60Google Scholar
  88. 88.
    Leermakers FAM, Eriksson JC, Lyklema J (2005) Association colloids and their equilibrium modelling. In: Lyklema J (ed) Fundamentals of interface and colloid science, vol V: Soft colloids. Elsevier, Amsterdam, pp 4.1–4.121Google Scholar
  89. 89.
    Israëls R, Leermakers FAM, Fleer GJ, Zhulina EB (1994) Macromolecules 27:3249Google Scholar
  90. 90.
    Israëls R, Leermakers FAM, Fleer GJ (1994) Macromolecules 27:3087Google Scholar
  91. 91.
    Edwards SF (1966) Proc Phys Soc 88:265Google Scholar
  92. 92.
    Hall DG, Pethica BA (1967) In: Schick MJ (ed) Nonionic surfactants. Marcel Dekker, New York, pp 515–557Google Scholar
  93. 93.
    Voets IK, Leermakers FAM (2008) Phys Rev E 78:061801Google Scholar
  94. 94.
    Meijer LA, Leermakers FAM, Lyklema J (1999) J Chem Phys 110:6560Google Scholar
  95. 95.
    Kik RA, Leermakers FAM, Kleijn JM (2005) Phys Chem Chem Phys 7:1996Google Scholar
  96. 96.
    Kik RA, Leermakers FAM, Kleijn JM (2010) Phys Rev E 81:021915Google Scholar
  97. 97.
    Biesheuvel PM (2004) J Colloid Interface Sci 275:97Google Scholar
  98. 98.
    Kiserow D, Prochazka K, Ramireddy C, Tuzar Z, Munk P, Webber SE (1992) Macromolecules 25:461Google Scholar
  99. 99.
    Qin A, Tian M, Ramireddy C, Webber SE, Munk P (1994) Macromolecues 27:120Google Scholar
  100. 100.
    Matĕjíček P, Podhájecká K, Humpolíčková J, Uhlík F, Jelínek K, Limpouchová Z, Procházka K (2004) Macromolecules 37:10141Google Scholar
  101. 101.
    Khougaz K, Astafieva I, Eisenberg A (1995) Macromolecules 28:7135Google Scholar
  102. 102.
    Zang L, Eisenberg A (1995) Science 268:1728Google Scholar
  103. 103.
    Zang L, Barlow RJ, Eisenberg A (1995) Macromolecules 28:6055Google Scholar
  104. 104.
    Gao Z, Yarshney SK, Wong S, Eisenberg A (1994) Macromolecules 27:7923Google Scholar
  105. 105.
    Shen H, Eisenberg A (2000) Macromolecules 33:2561Google Scholar
  106. 106.
    Guenoun P, Davis HT, Tirrell M, Mays JW (1996) Macromolecules 29:3965Google Scholar
  107. 107.
    Guenoun P, Muller F, Delsanti M, Auvray L, Chen YJ, Mays JW, Tirrell M (1998) Phys Rev Lett 81:3872Google Scholar
  108. 108.
    Guenoun P, Delsanti M, Gaseau D, Auvray L, Cook DC, Mays JW, Tirrell M (1998) Eur Phys J B 1:77Google Scholar
  109. 109.
    Förster S, Hemsdorf N, Leube W, Schnablegger H, Regenbrecht M, Akari S, Lindner P, Böttcher C (1999) J Phys Chem 103:6657Google Scholar
  110. 110.
    Muller F, Delsanti M, Auvray L, Yang J, Chen YJ, Mays JW, Demé B, Tirrell M, Guenoun P (2000) Eur Phys J E 3:45Google Scholar
  111. 111.
    Muller F, Guenoun P, Delsanti M, Deme B, Auvray L, Yang J, Mays JW (2004) Eur Phys J E 15:465Google Scholar
  112. 112.
    Van der Maarel JRC, Groenewegen W, Egelhaaf SU, Lapp A (2000) Langmuir 16:7510Google Scholar
  113. 113.
    Groenewegen W, Egelhaalf SU, Lapp A, van der Maarel JRC (2000) Macromolecules 33:3283Google Scholar
  114. 114.
    Groenewegen W, Lapp A, Egelhaalf SU, van der Maarel JRC (2000) Macromolecules 33:4080Google Scholar
  115. 115.
    Müller AHE, Cai Y, Hartenstein M, Gradzielski M, Zhang M, Mori H, Pergushov DV (2004) Polymer Prepr (Am Chem Soc, Div Polym Chem) 45:267Google Scholar
  116. 116.
    Eghbali E, Colombani O, Drechsler M, Müller AHE, Hoffmann H (2006) Langmuir 22:4766Google Scholar
  117. 117.
    Schumacher M, Ruppel M, Burkhardt M, Drechsler M,Colombani O, Schweins R, Müller AHE (2007) Polym Mater Sci Eng 96:374Google Scholar
  118. 118.
    Colombani O, Ruppel M, Schubert F, Zettl H, Pergushov DV, Müller AHE (2007) Macromolecules 40:4338Google Scholar
  119. 119.
    Colombani O, Ruppel M, Burkhardt M, Drechsler M, Schumacher M, Schweins R, Müller AHE (2007) Macromolecules 40:4351Google Scholar
  120. 120.
    Won YY, Davis HT, Bates FS (2003) Macromolecules 36:953Google Scholar
  121. 121.
    Kataoka K, Harada A, Nagasaki Y (2001) Adv Drug Deliv Rev 47:113Google Scholar
  122. 122.
    Gillies ER, Fréchet MJ (2004) Pure Appl Chem 76:1295Google Scholar
  123. 123.
    Förster S, Hemsdorf N, Böttcher C, Lindner P (2002) Macromolecules 35:4096Google Scholar
  124. 124.
    Schuch H, Klingler J, Rossmanith P, Frechen T, Gerst N, Feldthusen J, Müller AHE (2000) Macromolecules 33:1734Google Scholar
  125. 125.
    Pergushov DV, Remizova EV, Gradzielski M, Lindner P, Feldthusen J, Zezin AB, Müller AHE (2004) Polymer 45:367Google Scholar
  126. 126.
    Burkhardt M, Martinez-Castro N, Tea S, Drechsler M, Babin I, Grishagin I, Schweins R, Pergushov DV, Gradzielski M, Zezin AB, Müller AHE (2007) Langmuir 23:12864Google Scholar
  127. 127.
    Burkhardt M, Ruppel M, Tea S, Drechsler M, Schweins R, Pergushov DV, Gradzielski M, Zezin AB, Müller AHE (2008) Langmuir 24:1769Google Scholar
  128. 128.
    Jacquin M, Muller P, Cottet H, Théodoly O (2010) Langmuir 26:18681Google Scholar
  129. 129.
    Lee AS, Gast AP, Bütün V, Armes SP (1999) Macromolecules 32:4302Google Scholar
  130. 130.
    Lee AS, Bütün V, Vamvakaki M, Armes SP, Pople JA, Gast AP (2002) Macromolecules 35:8540Google Scholar
  131. 131.
    Schilli CM, Zhang M, Müller AHE, Rizzardo E, Thang SH, Chong YK, Edwards K, Karlsson G (2004) Macromolecules 37:7861Google Scholar
  132. 132.
    André X, Zhang M, Müller AHE (2005) Macromol Rapid Commun 26:558Google Scholar
  133. 133.
    André X, Burkhardt M, Drechsler M, Lindner P, Gradzielski M, Müller AHE (2007) Polym Mater Sci Eng 96:560Google Scholar
  134. 134.
    Lokitz BS, York AW, Stempka JE, Treat ND, Li Y, Jarrett WL, McCormick CL (2007) Macromolecules 40:6473Google Scholar
  135. 135.
    Xu L, Zhu Z, Borisov OV, Zhulina EB, Sukhishvili SA (2009) Phys Rev Lett 103:N118301Google Scholar
  136. 136.
    Won YY, Bates FS (2006) In: Zana R, Kaler EW (eds) Giant micelles: properties and applications. CRC, Boca RatonGoogle Scholar
  137. 137.
    Lodge TP, Bang J, Li Z, Hillmayer MA, Talmon YR (2005) Soc Chem Faraday Discuss 128:1Google Scholar
  138. 138.
    Bang J, Jain S, Li Z, Lodge PT (2006) Macromolecules 39:1199Google Scholar
  139. 139.
    Larue I, Adam M, Sheiko S, Rubinstein M (2003) Polym Mater Sci Eng 88:236Google Scholar
  140. 140.
    Khougaz K, Zhang L, Moffitt M, Eisenberg A (1996) Polymer Science 38A:331Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oleg V. Borisov
    • 1
    • 2
  • Ekaternia B. Zhulina
    • 2
  • Frans A. M. Leermakers
    • 3
  • Axel H. E. Müller
    • 4
  1. 1.Institut Pluridisciplinaire de Recherche sur, l’Environnement et les MatériauxUMR 5254 CNRS/UPPAPauFrance
  2. 2.Institute of Macromolecular Compounds of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Laboratory of Physical Chemistry and Colloid ScienceWageningen UniversityWageningenThe Netherlands
  4. 4.Makromolekulare Chemie II and Bayreuther Zentrum für Kolloide und GrenzflächenUniversität BayreuthBayreuthGermany

Personalised recommendations