Advertisement

Rubber–Clay Nanocomposites: Some Recent Results

  • Amit DasEmail author
  • De-Yi Wang
  • Klaus Werner Stöckelhuber
  • René Jurk
  • Juliane Fritzsche
  • Manfred Klüppel
  • Gert Heinrich
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 239)

Abstract

In order to produce high-performance elastomeric materials, the incorporation of different types of nanoparticles such as layered silicates, layered double hydroxides (LDHs), carbon nanotubes, nanosilica, etc. into the elastomer matrix is now a growing area of rubber research. However, the reflection of the “nanoeffect” on the properties and performance can be realized only through a uniform and homogeneous dispersion of filler particles in the rubber matrix. Generally, the properties and the performance of a reinforced elastomeric composite predominantly depend on the crosslinking chemistry of the rubbers, the nature of the fillers, the physical and chemical interaction of the fillers with the rubber matrix and, especially, on the degree of filler dispersion in the rubber matrix. This article is therefore aimed exclusively at addressing the prevailing problems related to the filler dispersion, intercalation, and exfoliation of layered clays in various rubber matrices and compositions to produce advanced high-performance elastomeric nanocomposites. The effect of two chemically distinct layered nanofillers, namely montmorillonite and LDH, on the curing behavior, mechanical, thermo-mechanical, and dielectric properties, etc. are systematically discussed with respect to various elastomeric systems. Different attempts, such as melt interaction, master batch dilution techniques, and further chemical modification of the organoclay, have been taken into consideration and a major portion of this paper will be dedicated to these works.

Keywords

Layered double hydroxides Layered silicates Nanocomposites Organic modification Reinforcement Rubber Rubber curatives 

References

  1. 1.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185CrossRefGoogle Scholar
  2. 2.
    de Paiva LB, Morales AR, Diaz FRV (2008) Appl Clay Sci 42:8–24CrossRefGoogle Scholar
  3. 3.
    Ibarra L, Rodríguez A, Mora I (2007) Eur Polym J 43:753CrossRefGoogle Scholar
  4. 4.
    Wu YP, Zhang LQ, Wang YQ, Liang Y, Yu DS (2001) J Appl Polym Sci 82:2842CrossRefGoogle Scholar
  5. 5.
    Goettler LA (2005) 63rd Annual Technical Conference by Society of Plastics Engineers, May 1–5, BostonGoogle Scholar
  6. 6.
    Das A, Jurk R, Stöckelhuber KW, Majumder PS, Engelhardt T, Fritzsche J, Klüppel M, Heinrich G (2009) J Macromol Sci Chem 46:7–15CrossRefGoogle Scholar
  7. 7.
    Hwang WG, Wei KH, Wu CM (2004) Polymer 45:5729CrossRefGoogle Scholar
  8. 8.
    Kim JT, Oh TS, Lee DH (2003) Polym Int 52:1203CrossRefGoogle Scholar
  9. 9.
    Nah CW, Ryu HJ, Kim WD, Choi SS (2002) Polym Advn Technol 13:649CrossRefGoogle Scholar
  10. 10.
    Hwang WG, Wei KH, Wu CM (2004) Polym Eng Sci 44:2117–2124CrossRefGoogle Scholar
  11. 11.
    Liu L, Jia D, Luo Y, Guo B (2006) J Appl Polym Sci 100:1905–1913CrossRefGoogle Scholar
  12. 12.
    Han M, Kim H, Kim E (2006) Nanotechnology 17:403–409CrossRefGoogle Scholar
  13. 13.
    Kim JT, Lee DY, Oh TS, Lee DH (2003) Appl Polym Sci 89:2633–2640Google Scholar
  14. 14.
    Usuki A, Tukigase A, Kato M (2002) Polymer 43:2185CrossRefGoogle Scholar
  15. 15.
    Varghese S, Karger-Kocsis J (2004) J Appl Polym Sci 91:813CrossRefGoogle Scholar
  16. 16.
    Das A, Jurk R, Stöckelhuber KW, Heinrich G (2007) Express Polym Lett 1:17CrossRefGoogle Scholar
  17. 17.
    Ma Y, Li QF, Zhang LQ, Wu YP (2007) Polym J 39:48CrossRefGoogle Scholar
  18. 18.
    Das A, Jurk R, Stöckelhuber KW, Heinrich G (2008) Macromol Mater Eng 293:479–490CrossRefGoogle Scholar
  19. 19.
    Das A, Debnath SC, De D, Naskar N, Basu DK (2004) Polym Advn Technol 15:551CrossRefGoogle Scholar
  20. 20.
    Das A, De D, Naskar N, Debnath SC (2006) J Appl Polym Sci 99:1132CrossRefGoogle Scholar
  21. 21.
    Yeh MH, Hwang WS, Cheng LR (2007) Appl Sur Sci 253:4777–4781CrossRefGoogle Scholar
  22. 22.
    Wang Y, Zhang H, Wu Y, Wang J, Zhang L (2005) J Appl Polym Sci 96:318–323CrossRefGoogle Scholar
  23. 23.
    Das A, Costa FR, Wagenknecht U, Heinrich G (2008) Eur Polym J 44:3456–3465CrossRefGoogle Scholar
  24. 24.
    Wang DY, Costa FR, Leuteritz A, Schoenhals A, Anastasia V, Scheler U, Wagenknecht U, Kutlu B, Heinrich G (2010) Polyolefin nanocomposites with layer double hydroxides. In: Mittal V (ed) Advances in polyolefin nanocomposite. CRC, Boca RatonGoogle Scholar
  25. 25.
    Wang DY, Das A, Leuteritz A, Boldt R, Häußler L, Wagenknecht U, Heinrich G (2010) Polym Degrad Stab (in press) doi:10.1016/j.polymdegradstab.2010.03.003Google Scholar
  26. 26.
    Sae-Oui P, Sirisinha C, Thepsuwan U, Hatthapanit K (2007) Eur Polym J 43:185–9316CrossRefGoogle Scholar
  27. 27.
    Ma J, Xu J, Ren JH, Yu ZZ, Mai YW (2003) Polymer 44:4619CrossRefGoogle Scholar
  28. 28.
    Mousa A, Karger-Kocsis J (2001) Macromol Mater Eng 4:286Google Scholar
  29. 29.
    Jia QX, Wu YP, Wang YQ, Lu M, Zhang LQ (2008) Comp Sci Technol 68:1050–1056CrossRefGoogle Scholar
  30. 30.
    Al-Yamani F, Goettler LA (2007) Rub Chem Technol 80:100–114CrossRefGoogle Scholar
  31. 31.
    Jia QX, Wu YP, Xu YL, Mao HH, Zhang LQ (2006) Macromol Mater Eng 291:218–226CrossRefGoogle Scholar
  32. 32.
    Jia QX, Wu YP, Wang YQ, Lu M, Yang J, Zhang LQ (2007) J Appl Polym Sci 103:1826–1833CrossRefGoogle Scholar
  33. 33.
    Ma J, Xiang P, Mai YW, Zhang LQ (2004) Macromol Rapid Commun 25:1692–1696CrossRefGoogle Scholar
  34. 34.
    Sadhu S, Bhowmick AK (2004) J Appl Polym Sci 92:698–709CrossRefGoogle Scholar
  35. 35.
    Ganter M, Gronski W, Reichert P, Mülhaupt R (2001) Rubb Chem Technol 74:221235CrossRefGoogle Scholar
  36. 36.
    Sadhu S, Bhowmick AK (2003) Rubb Chem Technol 76:860–874CrossRefGoogle Scholar
  37. 37.
    Das A, Heinrich G, Jurk R, Stöckelhuber KW, Herrmann W, Recker C, Schmidt C (2007) German Patent File no. 10 2006 014 873.5Google Scholar
  38. 38.
    Das A, Jurk R, Stöckelhuber KW, Engelhardt T, Fritzsche J, Klüppel M, Heinrich G (2008) J Macromol Sci Chem 45:144–150CrossRefGoogle Scholar
  39. 39.
    Fritzsche J, Das A, Jurk R, Stöckelhuber KW, Heinrich G, Klüppel M (2008) Express Polym Lett 2:373CrossRefGoogle Scholar
  40. 40.
    Eisenberg A, Hird B, Moor RB (1990) Macromolecules 23:4098CrossRefGoogle Scholar
  41. 41.
    Heinrich G, Klüppel M (2002) Adv Polym Sci 160:1–44CrossRefGoogle Scholar
  42. 42.
    Kalgaonkar RA, Jog JP (2008) J Polym Sci Phys 46:2539–2555CrossRefGoogle Scholar
  43. 43.
    Rao Y, Pochan JM (2007) Macromolecules 40:290CrossRefGoogle Scholar
  44. 44.
    Hernandez MC, Suarez N, Martinez LA, Feijoo JL, Mocano SL, Salazar N (2008) Phys Rev E 77:051801CrossRefGoogle Scholar
  45. 45.
    Page KA, Adachi K (2006) Polymer 47:6406CrossRefGoogle Scholar
  46. 46.
    Psarras GC, Gatos KG, Karger-Kocsis J (2007) J Appl Polym Sci 106:1405CrossRefGoogle Scholar
  47. 47.
    Steeman PAM, van Turnhout J (1997) Colloid Polym Sci 275:106–115CrossRefGoogle Scholar
  48. 48.
    Wübbenhorst M, van Turnhout J (2000) Dielectric Newsletter 14:1–3Google Scholar
  49. 49.
    Morgan AB, Gilman JF (2003) J Appl Polym Sci 87:1327CrossRefGoogle Scholar
  50. 50.
    Eckel DF, Balogh MP, Fasulo PD, Rodgers WR (2004) J Appl Polym Sci 93:1110CrossRefGoogle Scholar
  51. 51.
    Herrmann W, Uhl C, Heinrich G, Jehnichen D (2006) Polym Bull 57:395CrossRefGoogle Scholar
  52. 52.
    Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D (2006) Polymer 47:403CrossRefGoogle Scholar
  53. 53.
    Gatos KG, Százdi L, Pukánszky B, Karger-Kocsis J (2005) Macromol Rapid Commun 26:915–919CrossRefGoogle Scholar
  54. 54.
    Gatos KG, Karger-Kocsis J (2005) Polymer 46:3069–3076CrossRefGoogle Scholar
  55. 55.
    Vaia RA, Liu W (2002) J Polym Sci Part B Polym Phys 40:1590CrossRefGoogle Scholar
  56. 56.
    Kim JT, Lee DY, Oh TS, Lee DH (2003) J Appl Polym Sci 89:2633CrossRefGoogle Scholar
  57. 57.
    Liu L, Jia Y, Luo B, Guo B (2006) J Appl Polym Sci 100:1905CrossRefGoogle Scholar
  58. 58.
    Das A, Debnath SC, Naskar N, Pal S, Datta RN (2005) Kautsch Gummi Kunstst 6:304Google Scholar
  59. 59.
    Ma Y, Wu Y-P, Zhang LQ, Li QF (2008) J Appl Polym Sci 109:1925–1934CrossRefGoogle Scholar
  60. 60.
    Ishida H, Campbell S, Blackwell J (2000) Chem Mater 12:1260CrossRefGoogle Scholar
  61. 61.
    Burrell H, (1995) Solubility parameter values. In: Bandrup J, Immergut EH (eds) Polymer handbook, 2nd edn. Wiley, New York, pp 337–359Google Scholar
  62. 62.
    Thielen G (2007) Kautsch Gummi Kunstst 60:389Google Scholar
  63. 63.
    Ghosh AK, Naskar N, Debnath SC, Basu DK (2001) J Appl Polym Sci 81:800CrossRefGoogle Scholar
  64. 64.
    Das A, Ghosh AK, Pal S, Basu DK (2004) Polym Advan Technol 15:197CrossRefGoogle Scholar
  65. 65.
    Das A, Ghosh AK, Basu DK (2005) Kautsch Gummi Kunstst 58:230Google Scholar
  66. 66.
    Vo LT, Giannelis EP (2007) Macromolecules 40:8271CrossRefGoogle Scholar
  67. 67.
    Baghaei B, Jafari SH, Khonakdar HA, Rezaeian I, As’habi L, Ahmadian S (2009) Polym Bull 62:255–270CrossRefGoogle Scholar
  68. 68.
    Fang Z, Harrats C, Moussaif N, Groeninckx G (2007) J Appl Polym Sci 106:3125CrossRefGoogle Scholar
  69. 69.
    SinhaRay S, Bandyopadhyay J, Bousmina M (2007) Macromol Mater Eng 292:729CrossRefGoogle Scholar
  70. 70.
    Kawazoe M, Ishida H (2008) Macromolecules 41:2931CrossRefGoogle Scholar
  71. 71.
    Zhang P, Huang G, Liu Z (2009) J Appl Polym Sci 111:673Google Scholar
  72. 72.
    García-López D, López-Quintana S, Gobernado-Mitre I, Merino JC, Pastor JM (2007) Polym Eng Sci 47:1033CrossRefGoogle Scholar
  73. 73.
    Arroyo M, Lópej-Manchado MA, Valentin JL, Carretero J (2007) Comp Sci Technol 67:1330–1339CrossRefGoogle Scholar
  74. 74.
    Das A, Stöckelhuber KW, Heinrich G (2009) Macromol Chem Phys 210:189–199Google Scholar
  75. 75.
    Das A, Naskar N, Basu DK (2004) J Appl Polym Sci 91:1913CrossRefGoogle Scholar
  76. 76.
    Deuri AS, Bhowmick AK (1987) J Appl Polym Sci 34:2205–2222CrossRefGoogle Scholar
  77. 77.
    Ramesan MT, Mathew G, Kuriakose B, Alex R (2001) Eur Polym J 37:719–728CrossRefGoogle Scholar
  78. 78.
    Good RJ, Girifalco LA (1960) J Phys Chem 64:561CrossRefGoogle Scholar
  79. 79.
    Stöckelhuber KW, Das A, Jurk R, Heinrich G (2009) Proceedings of the 17. NDVak, Dresden, pp. 112–115. ISBN: 978-3-9812550-1-0Google Scholar
  80. 80.
    Göldel A, Kasaliwal G, Pötschke P (2009) Macromol Rapid Commun 30:423–429CrossRefGoogle Scholar
  81. 81.
    Voulgaris D, Petridis D (2002) Polymer 43:2213CrossRefGoogle Scholar
  82. 82.
    Li Y, Shimizu H (2004) Polymer 45:7381CrossRefGoogle Scholar
  83. 83.
    Ramorino G, Bignotti F, Conzatti L, Riccol T (2007) Polym Eng Sci 47:1650CrossRefGoogle Scholar
  84. 84.
    Fritzsche J, Klüppel M (2009) Kautsch Gummi Kunstst 62:16Google Scholar
  85. 85.
    Ganter M, Gronski W, Reichert P, Mülhaupt R (2001) Rubber Chem Technol 74:221CrossRefGoogle Scholar
  86. 86.
    Antony P, De SK, Van Duin M (2001) Rub Chem Technol 74:376CrossRefGoogle Scholar
  87. 87.
    Mukhopadhyay S, De SK (1991) J Appl Polym Sci 43:2283CrossRefGoogle Scholar
  88. 88.
    Miyata Y, Atsumi M (1988) J Polym Sci Part A Polym Chem 26:2561CrossRefGoogle Scholar
  89. 89.
    Johnson PR (1976) Rubber Chem Technol 49:650CrossRefGoogle Scholar
  90. 90.
    Kovacis P (1955) Rubber Chem Technol 28:1021CrossRefGoogle Scholar
  91. 91.
    Wolf S, Donnet JB (1976) Rubber Chem Technol 49:650CrossRefGoogle Scholar
  92. 92.
    Tomova D, Kressler J, Radusch HJ (2000) Polymer 41:7773CrossRefGoogle Scholar
  93. 93.
    Biswas T, Das A, Debnath SC, Naskar N, Das AR, Basu DK (2004) Eur Polym J 40:847CrossRefGoogle Scholar
  94. 94.
    Sergey V, Ion D, Fan XW, Rigoberto A (2004) Macromol Rapid Commun 25:498CrossRefGoogle Scholar
  95. 95.
    Wang DY, Wang YZ, Wang JS, Chen DQ, Zhou Q, Yang B, Li WY (2005) Polym Degrad Stab 87:171CrossRefGoogle Scholar
  96. 96.
    Miyata S (1980) Clays Clay Miner 28:50CrossRefGoogle Scholar
  97. 97.
    Meyn M, Beneke K, Legaly G (1990) Inorg Chem 29:5201CrossRefGoogle Scholar
  98. 98.
    Stanimirova TS, Kirov G, Dinolova E (2001) J Mater Sci Lett 20:453CrossRefGoogle Scholar
  99. 99.
    Khan AI, O’Hare D (2002) J Mater Chem 12:3191CrossRefGoogle Scholar
  100. 100.
    Wang DY, Costa FR, Anastasia V, Leuteritz A, Scheler U, Jehnichen D, Wagenknecht U, Häußler L, Heinrich G (2009) Chem Mater 21:4490CrossRefGoogle Scholar
  101. 101.
    Wang DY, Leuteritz A, Wagenknecht U, Heinrich G (2009) Trans Nonferrous Met Soc China 6:1470Google Scholar
  102. 102.
    Acharya H, Srivastava SK, Bhowmick AK (2007) Comp Sci Tech 67:2807CrossRefGoogle Scholar
  103. 103.
    Acharya H, Srivastava SK, Bhowmick AK (2007) Nanoscale Res Lett 2:1CrossRefGoogle Scholar
  104. 104.
    Pradhan S, Costa FR, Wagenknecht U, Jehnichen D, Bhowmick AK, Heinrich G (2008) Eur Polym J 44:3122CrossRefGoogle Scholar
  105. 105.
    Thakur V, Das A, Mahaling RN, Rooj S, Gohs U, Wagenknecht U, Heinrich G (2009) Macromol Mater Eng 94(9):561CrossRefGoogle Scholar
  106. 106.
    Kuila T, Srivastava SK, Bhowmick AK (2009) J Appl Polym Sci 111:635CrossRefGoogle Scholar
  107. 107.
    Khattab MA (2000) J Appl Polym Sci 78:2134CrossRefGoogle Scholar
  108. 108.
    Costa FR, Wagenknecht U, Heinrich G (2007) Polym Degrad Stab 92:1813CrossRefGoogle Scholar
  109. 109.
    Costa FR, Saphiannikova M, Wagenknecht U, Heinrich G (2008) Adv Polym Sci 210:101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Amit Das
    • 1
  • De-Yi Wang
    • 2
  • Klaus Werner Stöckelhuber
    • 1
  • René Jurk
    • 1
  • Juliane Fritzsche
    • 3
  • Manfred Klüppel
    • 3
  • Gert Heinrich
    • 1
    • 4
  1. 1.Leibniz-Institut für Polymerforschung Dresden e.V.DresdenGermany
  2. 2.Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE), College of Chemistry; State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina
  3. 3.Deutsches Institut für Kautschuktechnologie e.V.HannoverGermany
  4. 4.Technische Universität Dresden, Institut für WerkstoffwissenschaftDresdenGermany

Personalised recommendations