Non-Layer-by-Layer Assembly and Encapsulation Uses of Nanoparticle-Shelled Hollow Spheres

  • Gautam C. Kini
  • Sibani L. Biswal
  • Michael S. WongEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 229)


Nanoparticles (NPs, diameter range of 1–100nm) can have size-dependent physical and electronic properties that are useful in a variety of applications. Arranging them into hollow shells introduces the additional functionalities of encapsulation, storage, and controlled release that the constituent NPs do not have.This chapter examines recent developments in the synthesis routes and properties of hollow spheres formed out of NPs. Synthesis approaches reviewed here are recent developments in the electrostatics-based tandem assembly and interfacial stabilization routes to the formation of NP-shelled structures. Distinct from the well-established layer-by-layer (LBL) synthesis approach, the former route leads to NP/polymer composite hollow spheres that are potentially useful in medical therapy, catalysis, and encapsulation applications. The latter route is based on interfacial activity and stabilization by NPs with amphiphilic properties, to generate materials like colloidosomes, Pickering emulsions, and foams. The varied types of NP shells can have unique materials properties that are not found in the NP building blocks, or in polymer-based, surfactant-based, or LBL-assembled capsules.


Hollow spheres Nanoparticles Layer-by-layer assembly Tandem assembly Nanoparticle assembled capsule Interfacial stabilization Particle stabilized emulsion 





Energy of attachment


Tetrasodium ethylenediamine tetraacetate


Food and Drug Administration


Indocyanine green


Boltzmann’s constant






Nanoparticle assembled capsule








Poly(acrylic acid)


Poly(allylamine hydrochloride)






Quantum dot


R ratio, defined as the total negative charge from a multivalent anion divided by the total positive charge from the polymer


Particle radius


Scanning electron microscope




Transmission electron microscope


Thermogravimetric analysis





We acknowledge the financial support of National Science Foundation (CBET-0652073) and the Rice University Institute of Biosciences and Bioengineering Medical Innovations Award.


  1. 1.
    Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology and technology meet, 2 edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Israelachvili JN (1991) Intermolecular and surface forces. Academic, New YorkGoogle Scholar
  3. 3.
    Claesson PM, Ederth T, Bergeron V et al (1996) Techniques for measuring surface forces. Adv Colloid Interface Sci 67:119–183CrossRefGoogle Scholar
  4. 4.
    Grabar KC, Brown KR, Keating CD et al (1997) Nanoscale characterization of gold colloid monolayers: a comparison of four techniques. Anal Chem 69(3):471–477CrossRefGoogle Scholar
  5. 5.
    Schatz GC (2007) Using theory and computation to model nanoscale properties. Proc Natl Acad Sci 104(17):6885–6892CrossRefGoogle Scholar
  6. 6.
    Tang ZY, Kotov NA (2005) One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv Mater 17(8):951–962CrossRefGoogle Scholar
  7. 7.
    Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1(1):18–52CrossRefGoogle Scholar
  8. 8.
    Caruso F (2003) Nanoscale surface modification via sequential electrostatic assembly. In: Caruso F (ed) Colloids and colloid assemblies. Wiley, WeinheimCrossRefGoogle Scholar
  9. 9.
    Parviz BA, Ryan D, Whitesides GM (2003) Using self-assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans Adv Packaging 26(3):233–241CrossRefGoogle Scholar
  10. 10.
    Chane-Ching JY, Cobo F, Aubert D et al (2005) A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chem Eur J 1(3):979–987CrossRefGoogle Scholar
  11. 11.
    Huang MH, Mao S, Feick H et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRefGoogle Scholar
  12. 12.
    Han MY, Gao XH, Su JZ et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631–635CrossRefGoogle Scholar
  13. 13.
    Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13(1):11–22CrossRefGoogle Scholar
  14. 14.
    Connolly S, Fitzmaurice D (1999) Programmed assembly of gold nanocrystals in aqueous solution. Adv Mater 11(14):1202–1205CrossRefGoogle Scholar
  15. 15.
    Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016CrossRefGoogle Scholar
  16. 16.
    Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018CrossRefGoogle Scholar
  17. 17.
    Alivisatos AP, Johnsson KP, Peng XG et al (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382(6592):609–611CrossRefGoogle Scholar
  18. 18.
    Mirkin CA, Letsinger RL, Mucic RC et al (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609CrossRefGoogle Scholar
  19. 19.
    El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264CrossRefGoogle Scholar
  20. 20.
    Grieve K, Mulvaney P, Grieser F (2000) Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr Opin Colloid Interface Sci 5(1–2):168–172CrossRefGoogle Scholar
  21. 21.
    Wilcox DL Sr, Berg M, Bernat T et al (1995) Hollow and solid spheres and microspheres: science and technology associated with their fabrication and application. Materials Research Society, Pittsburgh, PAGoogle Scholar
  22. 22.
    Yang M, Ma J, Zhang CL et al (2005) General synthetic route toward functional hollow spheres with double-shelled structures. Angew Chem Int Ed. 44(41):6727–6730CrossRefGoogle Scholar
  23. 23.
    Huie JC (2003) Guided molecular self-assembly: a review of recent efforts. Smart Mater Struct 12(2):264–271CrossRefGoogle Scholar
  24. 24.
    Boncheva M, Bruzewicz DA, Whitesides GM (2003) Millimeter-scale self-assembly and its applications. Pure Appl Chem 75(5):621–630CrossRefGoogle Scholar
  25. 25.
    Iler RK (1966) Multilayers of colloidal particles. J Colloid Sci 21(6):569–594CrossRefGoogle Scholar
  26. 26.
    Caruso RA, Antonietti M (2001) Sol-gel nanocoating: an approach to the preparation of structured materials. Chem Mater 13(10):3272–3282CrossRefGoogle Scholar
  27. 27.
    Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem Macromol Sym 46:321–327CrossRefGoogle Scholar
  28. 28.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237CrossRefGoogle Scholar
  29. 29.
    Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114CrossRefGoogle Scholar
  30. 30.
    Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6(3):413–419CrossRefGoogle Scholar
  31. 31.
    Jiang CY, Tsukruk VV (2006) Freestanding nanostructures via layer-by-layer assembly. Adv Mater 18(7):829–840CrossRefGoogle Scholar
  32. 32.
    Wong MS, Cha JN, Choi KS et al (2002) Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Lett 2(6):583–587CrossRefGoogle Scholar
  33. 33.
    Cha JN, Birkedal H, Euliss LE et al (2003) Spontaneous formation of nanoparticle vesicles from homopolymer polyelectrolytes. J Am Chem Soc 125(27):8285–8289CrossRefGoogle Scholar
  34. 34.
    Murthy VS, Cha JN, Stucky GD et al (2004) Charge-driven flocculation of poly(l-lysine)-gold nanoparticle assemblies leading to hollow microspheres. J Am Chem Soc 126(16):5292–5299CrossRefGoogle Scholar
  35. 35.
    Rana RK, Murthy VS, Yu J et al (2005) Nanoparticle self-assembly of hierarchically ordered microcapsule structures. Adv Mater 17(9):1145–1150CrossRefGoogle Scholar
  36. 36.
    Binks BP, Murakami R (2006) Phase inversion of particle-stabilized materials from foams to dry water. Nat Mater 5(11):865–869CrossRefGoogle Scholar
  37. 37.
    Binks BP (2002) Particles as surfactants - similarities and differences. Curr Opin Colloid Interface Sci 7(1–2):21–41CrossRefGoogle Scholar
  38. 38.
    Dinsmore AD, Hsu MF, Nikolaides MG et al (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298(5595):1006–1009CrossRefGoogle Scholar
  39. 39.
    Horozov TS, Binks BP (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer? Angew Chem Int Ed. 45(5):773–776CrossRefGoogle Scholar
  40. 40.
    Hsu MF, Nikolaides MG, Dinsmore AD et al (2005) Self-assembled shells composed of colloidal particles: fabrication and characterization. Langmuir 21(7):2963–2970CrossRefGoogle Scholar
  41. 41.
    Johnston APR, Cortez C, Angelatos AS et al (2006) Layer-by-layer engineered capsules and their applications. Curr Opin Colloid Interface Sci 11(4):203–209CrossRefGoogle Scholar
  42. 42.
    Gibbs BF, Kermasha S, Alli I et al (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50(3):213–224CrossRefGoogle Scholar
  43. 43.
    Park J, Fouche LD, Hammond PT (2005) Multicomponent patterning of layer-by-layer assembled polyelectrolyte/nanoparticle composite thin films with controlled alignment. Adv Mat 17(21):2575–2579CrossRefGoogle Scholar
  44. 44.
    Nikolic K, Murugesan M, Forshaw M et al (2007) Self-assembly of nanoparticles on the surface of ionic crystals: structural properties. Surf Sci 601(13):2730–2734CrossRefGoogle Scholar
  45. 45.
    Davies P, Schurr GA, Meenan P et al (1998) Engineered particle surfaces. Adv Mat 10(15):1264–1270CrossRefGoogle Scholar
  46. 46.
    Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40(22):4128–4158CrossRefGoogle Scholar
  47. 47.
    Davis SA, Breulmann M, Rhodes KH et al (2001) Template-directed assembly using nanoparticle building blocks: a nanotectonic approach to organized materials. Chem Mater 13(10):3218–3226CrossRefGoogle Scholar
  48. 48.
    Huwiler C, Halter M, Rezwan K et al (2005) Self-assembly of functionalized spherical nanoparticles on chemically patterned microstructures. Nanotechnology 16(12):3045–3052CrossRefGoogle Scholar
  49. 49.
    Maury PA, Reinhoudt DN, Huskens J (2008) Assembly of nanoparticles on patterned surfaces by noncovalent interactions. Curr Opin Colloid Interface Sci 13(1–2):74–80CrossRefGoogle Scholar
  50. 50.
    Jana NR (2004) Shape effect in nanoparticle self-assembly. Angew Chem Int Ed 43(12):1536–1540CrossRefGoogle Scholar
  51. 51.
    Bognolo G (2003) The use of surface-active agents in the preparation and assembly of quantum-sized nanoparticles. Adv Colloid Interface Sci 106:169–181CrossRefGoogle Scholar
  52. 52.
    Barrero A, Loscertales IG (2007) Micro- and nanoparticles via capillary flows. Annu Rev Fluid Mech 39:89–106CrossRefGoogle Scholar
  53. 53.
    Hua F, Shi J, Lvov Y et al (2002) Patterning of layer-by-layer self-assembled multiple types of nanoparticle thin films by lithographic technique. Nano Lett 2(11):1219–1222CrossRefGoogle Scholar
  54. 54.
    Gao JH, Zhang B, Zhang XX et al (2006) Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide. Angew Chem Int Ed. 45(8): 1220–1223CrossRefGoogle Scholar
  55. 55.
    Sayle DC, Feng XD, Ding Y et al (2007) “Simulating synthesis”: ceria nanosphere self-assembly into nanorods and framework architectures. J Am Chem Soc 129(25):7924–7935CrossRefGoogle Scholar
  56. 56.
    Shi ZT, Pan DY, Zhao SF et al (2006) Self-assembly of ordered silver nanoparticle chains on triblock copolymer templates. Mod Phys Lett B 20(20):1261–1266CrossRefGoogle Scholar
  57. 57.
    Govor LV, Reiter G, Parisi J et al (2004) Self-assembled nanoparticle deposits formed at the contact line of evaporating micrometer-size droplets. Phys Rev E 69(6):061609CrossRefGoogle Scholar
  58. 58.
    Govor LV, Reiter G, Bauer GH et al (2004) Nanoparticle ring formation in evaporating micron-size droplets. Appl Phys Lett 84(23):4774–4776CrossRefGoogle Scholar
  59. 59.
    Tripp SL, Dunin-Borkowski RE, Wei A (2003) Flux closure in self-assembled cobalt nanoparticle rings. Angew Chem Int Ed 42(45):5591–5593CrossRefGoogle Scholar
  60. 60.
    Haryono A, Binder WH (2006) Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small 2(5):600–611CrossRefGoogle Scholar
  61. 61.
    Osterloh FE, Martino JS, Hiramatsu H et al (2003) Stringing up the pearls: self-assembly, optical and electronic properties of cdse- and Au-limo3se3 nanoparticle-nanowire composites. Nano Lett 3(2):125–129CrossRefGoogle Scholar
  62. 62.
    Osterloh FE (2006) Directional superparamagnetism and photoluminescence in clusters of magnetite and cadmium selenide nanoparticles. Comments Inorg Chem 27(1–2):41–59CrossRefGoogle Scholar
  63. 63.
    Arumugam P, Xu H, Srivastava S et al (2007) ‘Bricks and mortar’ nanoparticle self-assembly using polymers. Polym Int 56(4):461–466CrossRefGoogle Scholar
  64. 64.
    Kakkassery JJ, Abid JP, Carrara M (2004) Electrochemical and optical properties of two dimensional electrostatic assembly of Au nanocrystals. Faraday Discuss 125:157–169CrossRefGoogle Scholar
  65. 65.
    Angelatos AS, Radt B, Caruso F (2005) Light-responsive polyelectrolyte/gold nanoparticle microcapsules. J Phys Chem B 109(7):3071–3076CrossRefGoogle Scholar
  66. 66.
    Angelatos AS, Katagiri K, Caruso F (2006) Bioinspired colloidal systems via layer-by-layer assembly. Soft Matt 2(1):18–23CrossRefGoogle Scholar
  67. 67.
    Dokoutchaev A, James JT, Koene SC et al (1999) Colloidal metal deposition onto functionalized polystyrene microspheres. Chem Mater 11(9):2389–2399CrossRefGoogle Scholar
  68. 68.
    De Geest BG, Skirtach AG, De Beer TRM et al (2007) Stimuli-responsive multilayered hybrid nanoparticle/polyelectrolyte capsules. Macromol Rapid Commun 28(1):88–95CrossRefGoogle Scholar
  69. 69.
    Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30:475–521CrossRefGoogle Scholar
  70. 70.
    Fukumori Y, Ichikawa H (2006) Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 17(1):1–28CrossRefGoogle Scholar
  71. 71.
    Wang WT, Wang YM, Dai ZH et al (2007) Nonlinear optical properties of periodic gold nanoparticle arrays. Appl Surf Sci 253(10):4673–4676CrossRefGoogle Scholar
  72. 72.
    Zhang H, Edwards EW, Wang DY et al (2006) Directing the self-assembly of nanocrystals beyond colloidal crystallization. PCCP 8(28):3288–3299CrossRefGoogle Scholar
  73. 73.
    Barsotti RJ, Vahey MD, Wartena R et al (2007) Assembly of metal nanoparticles into nanogaps. Small 3(3):488–499CrossRefGoogle Scholar
  74. 74.
    Hofman-Caris CHM (1994) Polymers at the surface of oxide nanoparticles. New J Chem 18(10):1087–1096Google Scholar
  75. 75.
    Caruso F (2003) Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly. In Colloid Chem II, Vol. 227, pp 145–168CrossRefGoogle Scholar
  76. 76.
    Capsulution (2009) Turning ideas into reality.
  77. 77.
    Priest C, Quinn A, Postma A et al (2008) Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip 8(12):2182–2187CrossRefGoogle Scholar
  78. 78.
    Tjipto E, Cadwell KD, Quinn JF et al (2006) Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly. Nano Lett 6(10): 2243–2248CrossRefGoogle Scholar
  79. 79.
    Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20(3):848–858CrossRefGoogle Scholar
  80. 80.
    Murthy VS, Rana RK, Wong MS (2006) Nanoparticle-assembled capsule synthesis: Formation of colloidal polyamine-salt intermediates. J Phys Chem B 110(51):25619–25627CrossRefGoogle Scholar
  81. 81.
    Yu J, Murthy VS, Rana RK, Wong MS (2006) Synthesis of nanoparticle-assembled tin oxide/polymer microcapsules. Chem Commun 10:1097–1099CrossRefGoogle Scholar
  82. 82.
    Partch R (1997) Materials synthesis and characterization. In: Perry D (ed) Plenum, New York, pp 1–17Google Scholar
  83. 83.
    Atwood JL, Davies JED, Macnicol DD et al (1996) Templating, self assembly and self-organization. In: Sauvage JP, Hosseini MW (eds) Comprehensive supramolecular chemistry, Vol. 35b. Pergamon, Oxford, pp 507–528Google Scholar
  84. 84.
    Cha JN, Bartl MH, Wong MS et al (2003) Microcavity lasing from block peptide hierarchically assembled quantum dot spherical resonators. Nano Lett 3(7):907–911CrossRefGoogle Scholar
  85. 85.
    McKenna BJ, Birkedal H, Bartl MH et al (2004) Micrometer-sized spherical assemblies of polypeptides and small molecules by acid-base chemistry. Angew Chem Int Ed 43(42): 5652–5655CrossRefGoogle Scholar
  86. 86.
    Yu J, Yaseen MA, Anvari B, Wong MS (2007) Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chem Mater 19(6):1277–1284CrossRefGoogle Scholar
  87. 87.
    Kadali SB, Soultanidis N, Wong MS (2008) Assembling colloidal silica into porous hollow microspheres. Top Catal 49:251–258CrossRefGoogle Scholar
  88. 88.
    Bagaria HG, Kadali SB, Wong MS (2009) Shell thickness control of nanoparticle/polymer composite microcapsules (unpublished)Google Scholar
  89. 89.
    Toprak MS, McKenna BJ, Mikhaylova M et al (2007) Spontaneous assembly of magnetic microspheres. Adv Mater 19(10):1362–1368CrossRefGoogle Scholar
  90. 90.
    Toprak MS, McKenna BJ, Waite JH et al (2007) Control of size and permeability of nanocomposite microspheres. Chem Mater 19(17):4263–4269CrossRefGoogle Scholar
  91. 91.
    Murthy VS, Kadali SB, Wong MS (2009) Polyamine-guided synthesis of anisotropic, multicompartment microparticles. ACS Appl Mat Interfaces 1(3):590–596CrossRefGoogle Scholar
  92. 92.
    Tavera EM, Kadali SB, Bagaria HG et al (2009) Experimental and modeling analysis of diffusive release from single-shell microcapsules. AIChE J 55(11):2950–2965CrossRefGoogle Scholar
  93. 93.
    Pickering SU (1907) Emulsions. J Chem Soc 91:2001–2021CrossRefGoogle Scholar
  94. 94.
    Binks BP, Whitby CP (2005) Nanoparticle silica-stabilized oil-in-water emulsions: improving emulsion stability. Colloids Surf A 253(1–3):105–115CrossRefGoogle Scholar
  95. 95.
    Binks BP, Rodrigues JA, Frith WJ (2007) Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant. Langmuir 23(7):3626–3636CrossRefGoogle Scholar
  96. 96.
    Binks BP, Desforges A, Duff DG (2007) Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant. Langmuir 23(3):1098–1106CrossRefGoogle Scholar
  97. 97.
    Duan HW, Wang DY, Sobal NS et al (2005) Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Lett 5(5):949–952CrossRefGoogle Scholar
  98. 98.
    He YJ, Yu XY (2007) Preparation of silica nanoparticle-armored polyaniline microspheres in a Pickering emulsion. Mater Lett 61(10):2071–2074CrossRefGoogle Scholar
  99. 99.
    Binks BP, Clint JH, Fletcher PDI et al (2006) Growth of gold nanoparticle films driven by the coalescence of particle-stabilized emulsion drops. Langmuir 22(9):4100–4103CrossRefGoogle Scholar
  100. 100.
    Binks BP, Duncumb B, Murakami R (2007) Effect of ph and salt concentration on the phase inversion of particle-stabilized foams. Langmuir 23(18):9143–9146CrossRefGoogle Scholar
  101. 101.
    Binks BP, Kirkland M (2002) Interfacial structure of solid-stabilized emulsions studied by scanning electron microscopy. PCCP 4(15):3727–3733CrossRefGoogle Scholar
  102. 102.
    Binks BP, Rodrigues JA (2007) Double inversion of emulsions by using nanoparticles and a di-chain surfactant. Angew Chem Int Ed 46(28):5389–5392CrossRefGoogle Scholar
  103. 103.
    Binks BP, Rodrigues JA (2007) Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation. Langmuir 23(14):7436–7439CrossRefGoogle Scholar
  104. 104.
    Nie YR, Li W, An LJ et al (2006) Fabricating ordered 2D arrays of magnetic rings on patterned self-assembly monolayers via dewetting and thermal decomposition. Colloids Surf A 278(1–3):229–234CrossRefGoogle Scholar
  105. 105.
    Schacht S, Huo Q, VoigtMartin IG et al (1996) Oil-water interface templating of mesoporous macroscale structures. Science 273(5276):768–771CrossRefGoogle Scholar
  106. 106.
    Madou M (1998) Fundamentals of microfabrication. CRC, Boca RatonGoogle Scholar
  107. 107.
    Cui TH, Hua F, Lvov Y (2004) Lithographic approach to pattern multiple nanoparticle thin films prepared by layer-by-layer self-assembly for microsystems. Sens Actuators A 14(2–3): 501–504Google Scholar
  108. 108.
    Choi DG, Jang SG, Kim S et al (2006) Multifaceted and nanobored particle arrays sculpted using colloidal lithography. Adv Funct Mater 16(1):33–40CrossRefGoogle Scholar
  109. 109.
    Barry CR, Lwin NZ, Zheng W et al (2003) Printing nanoparticle building blocks from the gas phase using nanoxerography. Appl Phys Lett 83(26):5527–5529CrossRefGoogle Scholar
  110. 110.
    Barry CR, Steward MG, Lwin NZ et al (2003) Printing nanoparticles from the liquid and gas phases using nanoxerography. Nanotechnology 14(10):1057–1063CrossRefGoogle Scholar
  111. 111.
    Zharov VP, Galitovskaya EN, Johnson C et al (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Laser Surg Med 37(3):219–226CrossRefGoogle Scholar
  112. 112.
    Choi WS, Koo HY, Park JH et al (2005) Synthesis of two types of nanoparticles in polyelectrolyte capsule nanoreactors and their dual functionality. J Am Chem Soc 127(46): 16136–16142CrossRefGoogle Scholar
  113. 113.
    Perro A, Reculusa S, Ravaine S et al (2005) Design and synthesis of Janus micro and nanoparticles. J Mater Chem 15(35–36):3745–3760CrossRefGoogle Scholar
  114. 114.
    Kickhoefer VA, Garcia Y, Mikyas Y et al (2005) Engineering of vault nanocapsules with enzymatic and fluorescent properties. Proc Natl Acad Sci 102(12):4348–4352CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Gautam C. Kini
    • 1
  • Sibani L. Biswal
    • 1
  • Michael S. Wong
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringRice UniversityHoustonUSA
  2. 2.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations