Effects of Electric Fields on Block Copolymer Nanostructures

  • Heiko G. Schoberth
  • Violetta Olszowka
  • Kristin Schmidt
  • Alexander BökerEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 227)


In this chapter we overview electric-field-induced effects on block copolymer microdomains. First, we will consider the thin film behavior and elucidate the parameters governing electric-field-induced alignment. We describe the structural evolution of the alignment in an electric field via quasi in situ scanning force microscopy (SFM) using a newly developed SFM setup that allows solvent vapor treatment in the presence of high electric fields. Second, we will turn to bulk structures and show novel effects of high field strengths on the block copolymer phase behavior. We will describe a procedure that allows tuning the morphology and size of the nanoscopic patterns by application of high electric fields and present experimental evidence for the electric-field-induced decrease of the order–disorder transition temperature in a block copolymer.


Electric field Block copolymers Microdomain orientation In situ SFM Orientation mechanism 







Charge-coupled device


Electric field


Free energy


Number-average molecular weight


Weight-average molecular weight


Order–disorder transition


Orientational order parameter


Poly(2-hydroxyethyl methacrylate)




Poly(methyl methacrylate)




Poly(2-vinyl pyridine)


Polystyrene-block-poly (2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate)


Polystyrene-block-poly(2-vinyl pyridine)


Small-angle X-ray scattering


Scanning force microscopy


Polystyrene-block-polyisoprene diblock copolymer


Transmission electron microscopy




Order–disorder transition temperature



The authors thank D. Andelman, P. Bösecke, E. di Cola, F. Fischer, H. Hänsel, M. Hund, S. Hüttner, G. Krausch, H. Krejtschi, V. Kuntermann, C. Liedel, A. Mihut, T. Narayanan, C. W. Pester, S. Rehse, M. Ruppel, K. A. Schindler, F. Schubert, G. J. A. Sevink, S. Stepanov, M. Sztucki, L. Tsarkova, Y. Tsori, V. Urban, T. M. Weiss, H. Zettl, and A. V. Zvelindovsky for support of this work. We are grateful to the ESRF for provision of synchrotron beam time. This work was carried out in the framework of the Sonderforschungsbereich 481 (TP A2) funded by the German Science Foundation (DFG). AB acknowledges financial support by the Lichtenberg-Program of the VolkswagenStiftung.


  1. 1.
    Angelescu DE et al (2005) Shear-induced alignment in thin films of spherical nanodomains. Adv Mater 17(15):1878CrossRefGoogle Scholar
  2. 2.
    Albalak RJ, Thomas EL (1993) Microphase separation of block copolymer solutions in a flow field. J Polym Sci B Polym Phys 31(1):37–46CrossRefGoogle Scholar
  3. 3.
    Hashimoto T et al (1999) The effect of temperature gradient on the microdomain orientation of diblock copolymers undergoing an order-disorder transition. Macromolecules 32(3):952–954CrossRefGoogle Scholar
  4. 4.
    Kim SH et al (2004) Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv Mater 16(3):226CrossRefGoogle Scholar
  5. 5.
    Yoon J, Lee W, Thomas EL (2006) Highly oriented thin-film microdomain patterns of ultrahigh molecular weight block copolymers via directional solidification of a solvent. Adv Mater 18(20):2691CrossRefGoogle Scholar
  6. 6.
    Segalman RA, Yokoyama H, Kramer EJ (2001) Graphoepitaxy of spherical domain block copolymer films. Adv Mater 13:1152CrossRefGoogle Scholar
  7. 7.
    Morkved TL et al (1996) Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273:931CrossRefGoogle Scholar
  8. 8.
    Thurn-Albrecht T et al (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290(5499):2126–2129CrossRefGoogle Scholar
  9. 9.
    Olszowka V et al (2006) Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. Soft Matter 2(12):1089–1094CrossRefGoogle Scholar
  10. 10.
    Xu T, Wang J, Russell TP (2007) Electric field alignment of diblock copolymer thin films. In: Zvelindovsky AV (ed) Nanostructured soft matter: experiment, theory, simulation and perspectives. Springer, Berlin, pp 171–198CrossRefGoogle Scholar
  11. 11.
    Böker A et al (2006) The influence of incompatibility and dielectric contrast on the electric field-induced orientation of lamellar block copolymers. Polymer 47(3):849–857CrossRefGoogle Scholar
  12. 12.
    Böker A et al (2003) Electric field induced alignment of concentrated block copolymer solutions. Macromolecules 36(21):8078–8087CrossRefGoogle Scholar
  13. 13.
    Thurn-Albrecht T et al (2000) Overcoming interfacial interactions with electric fields. Macromolecules 33:3250–3253CrossRefGoogle Scholar
  14. 14.
    Xu T, Hawker CJ, Russell TP (2003) Interfacial energy effects on the electric field alignment of symmetric diblock copolymers. Macromolecules 36(16):6178–6182CrossRefGoogle Scholar
  15. 15.
    Tsori Y, Andelman D (2002) Thin film diblock copolymers in electric field: transition from perpendicular to parallel lamellae. Macromolecules 35(13):5161–5170CrossRefGoogle Scholar
  16. 16.
    Pereira GG, Williams DRM (1999) Diblock copolymer melts in electric fields: the transition from parallel to perpendicular alignment using a capacitor analogy. Macromolecules 32(24):8115–8120CrossRefGoogle Scholar
  17. 17.
    Böker A, Müller AHE, Krausch G (2001) Nanoscopic surface patterns from functional ABC triblock copolymers. Macromolecules 34(21):7477–7488CrossRefGoogle Scholar
  18. 18.
    Brandrup J, Immergut EH (1998) Polymer handbook, 4th edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Olszowka V, Tsarkova L, Böker A (2009) 3-Dimensional control over lamella orientation and order in thick block copolymer films. Soft Matter 5(4):812–819CrossRefGoogle Scholar
  20. 20.
    Olszowka V, Kuntermann V, Böker A (2008) Control of orientational order in block copolymer thin films by electric fields: a combinatorial approach. Macromolecules 41:5515–5518CrossRefGoogle Scholar
  21. 21.
    Rockford L et al (1999) Polymers on nanoperiodic, heterogeneous surfaces. Phys Rev Lett 82(12):2602–2605CrossRefGoogle Scholar
  22. 22.
    Kim SO et al (2003) Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424(6947):411–414CrossRefGoogle Scholar
  23. 23.
    Amundson K et al (1991) Effect of an electric field on block copolymer microstructure. Macromolecules 24(24):6546–6548CrossRefGoogle Scholar
  24. 24.
    Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamonn, OxfordGoogle Scholar
  25. 25.
    Chen ZR et al (1997) Pathways to macroscale order in nanostructured block copolymers. Science 277(5330):1248–1253CrossRefGoogle Scholar
  26. 26.
    Balsara NP, Hammouda B (1994) Shear effects on solvated block-copolymer lamellae – polystyrene-polyisoprene in dioctyl phthalate. Phys Rev Lett 72(3):360–363CrossRefGoogle Scholar
  27. 27.
    Winey KI et al (1993) Morphology of a lamellar diblock copolymer aligned perpendicular to the sample plane – transmission electron-microscopy and small-angle X-ray-scattering. Macromolecules 26(16):4373–4375CrossRefGoogle Scholar
  28. 28.
    Polis DL et al (1999) Shear-induced lamellar rotation observed in a diblock copolymer by in situ small-angle X-ray scattering. Macromolecules 32(14):4668–4676CrossRefGoogle Scholar
  29. 29.
    Wiesner U (1997) Lamellar diblock copolymers under large amplitude oscillatory shear flow: order and dynamics. Macromol Chem Phys 198:3319–3352CrossRefGoogle Scholar
  30. 30.
    Böker A et al (2002) Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. Phys Rev Lett 89(13):135502CrossRefGoogle Scholar
  31. 31.
    Schmidt K et al (2005) Influence of initial order on the microscopic mechanism of electric field induced alignment of block copolymer microdomains. Langmuir 21(25):11974–11980CrossRefGoogle Scholar
  32. 32.
    Hund M, Herold H (2007) Design of a scanning probe microscope with advanced sample treatment capabilities: an atomic force microscope combined with a miniaturized inductively coupled plasma source. Rev Sci Instrum 78(6):063703CrossRefGoogle Scholar
  33. 33.
    Olszowka V et al (2009) Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism. ACS Nano 3(5):1091–1096CrossRefGoogle Scholar
  34. 34.
    Hund M, Herold H (2006) Rastersondenmikroskop. German Patent No. 10 2004 043 191 B4 (24 May 2006); US Patent Application No. US 20080229812 A1 (25 Sep 2008)Google Scholar
  35. 35.
    Scherdel S et al (2006) Non-linear registration of scanning probe microscopy images. Nanotechnology 17(3):881–887CrossRefGoogle Scholar
  36. 36.
    Tsarkova L, Knoll A, Magerle R (2006) Rapid transitions between defect configurations in a block copolymer melt. Nano Lett 6:1574–1577CrossRefGoogle Scholar
  37. 37.
    Horvat A et al (2008) Specific features of defect structure and dynamics in cylinder phase of block copolymers. ACS Nano 2(6):1143–1152CrossRefGoogle Scholar
  38. 38.
    Constantin D, Oswald P (2000) Diffusion coefficients in a lamellar lyotropic phase: evidence for defects connecting the surfactant structure. Phys Rev Lett 85(20):4297–4300CrossRefGoogle Scholar
  39. 39.
    Hubbard PL, McGrath KM, Callaghan PT (2005) A study of anisotropic water self-diffusion and defects in the lamellar mesophase. Langmuir 21(10):4340–4346CrossRefGoogle Scholar
  40. 40.
    Trebin HR (1982) The topology of nonuniform media in condensed matter physics. Adv Phys 31(3):195–254CrossRefGoogle Scholar
  41. 41.
    Mermin ND (1979) Topological theory of defects in ordered media. Rev Mod Phys 51(3): 591–648CrossRefGoogle Scholar
  42. 42.
    Hahm J et al (1998) Defect evolution in ultrathin films of polystyrene-block-polymethylmethacrylate diblock copolymers observed by atomic force microscopy. J Chem Phys 109(23):10111–10114CrossRefGoogle Scholar
  43. 43.
    Hahm J, Sibener SJ (2001) Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology. J Chem Phys 114(10):4730–4740CrossRefGoogle Scholar
  44. 44.
    Zvelindovsky AV, Sevink GJA (2003) Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. Comment. Phys Rev Lett 90(4):049601CrossRefGoogle Scholar
  45. 45.
    Böker A, Abetz V, Krausch G (2003) Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. Reply. Phys Rev Lett 90(4):049602CrossRefGoogle Scholar
  46. 46.
    Choi MC et al (2004) Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc Natl Acad Sci USA 101(50):17340–17344CrossRefGoogle Scholar
  47. 47.
    Tsarkova L et al (2006) Defect evolution in block copolymer thin films via temporal phase transitions. Langmuir 22(19):8089–8095CrossRefGoogle Scholar
  48. 48.
    Winey KI, Thomas EL, Fetters LJ (1991) Swelling a lamellar diblock copolymer with homopolymer – influences of homopolymer concentration and molecular-weight. Macromolecules 24(23):6182–6188CrossRefGoogle Scholar
  49. 49.
    Winey KI, Thomas EL, Fetters LJ (1991) Ordered morphologies in binary blends of diblock copolymer and homopolymer and characterization of their intermaterial dividing surfaces. J Chem Phys 95(12):9367–9375CrossRefGoogle Scholar
  50. 50.
    Tanaka H, Hasegawa H, Hashimoto T (1991) Ordered structure in mixtures of a block copolymer and homopolymers.1. Solubilization of low-molecular-weight homopolymers. Macromolecules 24(1):240–251CrossRefGoogle Scholar
  51. 51.
    Jeong UY et al (2003) Precise control of nanopore size in thin film using mixtures of asymmetric block copolymer and homopolymer. Macromolecules 36(26):10126–10129CrossRefGoogle Scholar
  52. 52.
    Gurovich E (1994) On microphase separation of block-copolymers in an electric-field – 4 universal classes. Macromolecules 27(25):7339–7362CrossRefGoogle Scholar
  53. 53.
    Gurovich E (1995) Why does an electric-field align structures in copolymers? Phys Rev Lett 74(3):482–485CrossRefGoogle Scholar
  54. 54.
    Matsen MW, Bates FS (1997) Block copolymer microstructures in the intermediate-segregation regime. J Chem Phys 106(6):2436–2448CrossRefGoogle Scholar
  55. 55.
    de Gennes PG (1991) Scaling concepts in polymer physics, 4th edn. Cornell University Press, Cornell, p 324Google Scholar
  56. 56.
    Adachi K, Kotaka T (1993) Dielectric normal-mode relaxation. Prog Polym Sci 18(3):585–622CrossRefGoogle Scholar
  57. 57.
    Schmidt K et al (2008) Reversible tuning of a block copolymer nanostructure via electric fields. Nat Mater 3(7):142–145CrossRefGoogle Scholar
  58. 58.
    Lodge TP, McLeish TCB (2000) Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33(14):5278–5284CrossRefGoogle Scholar
  59. 59.
    Furukawa J et al (1969) Stiffness of molecular chain of synthetic rubber. J Appl Polym Sci 13(12):2527CrossRefGoogle Scholar
  60. 60.
    Huang CI et al (1998) Quantifying the “neutrality” of good solvents for block copolymers: poly(styrene-b-isoprene) in toluene, benzene, and THF. Macromolecules 31(26):9384–9386CrossRefGoogle Scholar
  61. 61.
    Debye P, Kleboth K (1965) Electrical field effect on the critical opalescence. J Chem Phys 42(9):3155–3162CrossRefGoogle Scholar
  62. 62.
    Wirtz D, Fuller GG (1993) Phase transitions induced by electric fields in near-critical polymer solutions. Phys Rev Lett 71(14):2236–2239CrossRefGoogle Scholar
  63. 63.
    Amundson K et al (1994) Alignment of lamellar block-copolymer microstructure in an electric-field. 2. Mechanisms of alignment. Macromolecules 27(22):6559–6570CrossRefGoogle Scholar
  64. 64.
    Lin C-Y, Schick M, Andelman D (2005) Structural changes of diblock copolymer melts due to an external electric field: a self-consistent-field theory study. Macromolecules 38(13):5766–5773CrossRefGoogle Scholar
  65. 65.
    Gunkel I et al (2007) Fluctuation effects of the microphase separation of diblock-cpolymers in the presence of an electric field. Macromolecules 40(6):2186–2191CrossRefGoogle Scholar
  66. 66.
    Onuki A (1995) Electric-field effects in fluids near the critical-point. Europhys Lett 29(8):611–616CrossRefGoogle Scholar
  67. 67.
    Orzechowski K (1999) Electric field effect on the upper critical solution temperature. Chem Phys 240:275–281CrossRefGoogle Scholar
  68. 68.
    Reich S, Gordon JM (1979) Electric field dependence of lower critical phase separation behavior in polymer-polymer mixtures. J Polym Sci B Polym Phys 17(3):371–378CrossRefGoogle Scholar
  69. 69.
    Tsori Y (2004) Demixing in simple fluids induced by electric field gradients. Nature 430:544–547CrossRefGoogle Scholar
  70. 70.
    Schmidt K et al (2007) Scaling behavior of the reorientation kinetics of block copolymers exposed to electric fields. Soft Matter 3(4):448–453CrossRefGoogle Scholar
  71. 71.
    Sakamoto N, Hashimoto T (1995) Order-disorder transition of low molecular weight polystyrene-block-polyisoprene. 1. SAXS analysis of two chracteristic temperatures. Macromolecules 28(20):6825–6834CrossRefGoogle Scholar
  72. 72.
    Schoberth HG et al (2009) Shifting the order-disorder transition temperature of block copolymer systems with electric fields. Macromolecules 42(10):3433–3436CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Heiko G. Schoberth
    • 1
  • Violetta Olszowka
    • 1
  • Kristin Schmidt
    • 1
  • Alexander Böker
    • 1
    • 2
    Email author
  1. 1.Lehrstuhl für Physikalische Chemie IIUniversität BayreuthBayreuthGermany
  2. 2.Lehrstuhl für Makromolekulare Materialien und Oberflächen and DWI an der RWTH Aachen e.V.RWTH Aachen UniversityAachenGermany

Personalised recommendations