Antimicrobial Surfaces

  • Joerg C. TillerEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 240)


In this review, the general principles of antimicrobial surfaces will be discussed in detail. Because many common products that keep microbes off surfaces have been banned in the past decade, the search for alternatives is in full run. In recent research, numerous new ways to produce so-called self-sterilizing surfaces have been introduced. These technologies are discussed with respect to their mechanism, particularly focusing on the distinction between biocide-releasing and non-releasing contact-active systems. New developments in the catalytic formation of biocides and their advantages and limitations are also covered. The combination of several mechanisms in one surface modification has considerable benefits, and will be discussed.


Antibacterial Antimicrobial Bacteria Biocide Contact-active Light-activated Photocatalytic Release Self-polishing Surface 


  1. 1.
    Lode HM (2009) Clinical impact of antibiotic-resistant Gram-positive pathogens. Clin Microbiol Infect 15:212–217CrossRefGoogle Scholar
  2. 2.
    Gonzales FP, Maisch T (2010) XF drugs: a new family of antibacterials. Drug News Perspect 23:167–174CrossRefGoogle Scholar
  3. 3.
    Klevens RM, Morrison MA, Nadle J et al. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771CrossRefGoogle Scholar
  4. 4.
    Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215CrossRefGoogle Scholar
  5. 5.
    Meyer B (2003) Approaches to prevention, removal and killing of biofilms. Int Biodeterior Biodegradation 51:249–253CrossRefGoogle Scholar
  6. 6.
    Landini P, Antoniani D, Burgess JG et al. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86:813–823Google Scholar
  7. 7.
    Mah T-F, Pitts B, Pellock B et al. (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310CrossRefGoogle Scholar
  8. 8.
    Tiller JC (2008) Coatings for prevention or deactivation of biological contamination. In: Kohli R, Mittal KL (eds) Developments in surface contamination and cleaning. William Andrew, Norwich, NY, pp 1013–1065CrossRefGoogle Scholar
  9. 9.
    Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586CrossRefGoogle Scholar
  10. 10.
    Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384CrossRefGoogle Scholar
  11. 11.
    Tew GN, Scott RW, Klein ML et al. (2010) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39CrossRefGoogle Scholar
  12. 12.
    Tiller JC (2006) Silver-based antimicrobial coatings. ACS Symp Ser 924:215–231CrossRefGoogle Scholar
  13. 13.
    Gettings RL, White WC (1987) Formation of polymeric antimicrobial surfaces from organofunctional silanes. Polym Mater Sci Eng 57:181–185Google Scholar
  14. 14.
    Kanazawa A, Ikeda T, Endo T (1993) Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J Poly Sci A Poly Chem 31: 1467–1472Google Scholar
  15. 15.
    Tiller JC, Sprich C, Hartmann L (2005) Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Control Release 103:355–367CrossRefGoogle Scholar
  16. 16.
    Huttinger KJ, Muller H, Bomar MT (1982) Synthesis and effect of carrier-bound disinfectants. J Colloid Interface Sci 88:274–285CrossRefGoogle Scholar
  17. 17.
    Eknoian MW, Worley SD, Bickert J et al. (1998) Novel antimicrobial N-halamine polymer coatings generated by emulsion polymerization. Polymer 40:1367–1371CrossRefGoogle Scholar
  18. 18.
    Fallgren C, Utt M, Petersson AC et al. (1998) In vitro anti-staphylococcal activity of heparinized biomaterials bonded with combinations of rifampicin. Zentralbl Bakteriol 287:19–31Google Scholar
  19. 19.
    Brash JL, Uniyal S (1979) Dependence of albumin-fibrinogen simple and competitive adsorption on surface-properties of biomaterials. J Poly Sci C Poly Symp (66):377–389CrossRefGoogle Scholar
  20. 20.
    An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348CrossRefGoogle Scholar
  21. 21.
    Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces 14:105–119CrossRefGoogle Scholar
  22. 22.
    Humphries M, Nemcek J, Cantwell JB et al. (1987) The use of graft-copolymers to inhibit the adhesion of bacteria to solid-surfaces. FEMS Microbiol Ecol 45:297–304CrossRefGoogle Scholar
  23. 23.
    Jansen B, Kohnen W (1995) Prevention of biofilm formation by polymer modification. J Ind Microbiol 15:391–396CrossRefGoogle Scholar
  24. 24.
    Park KD, Kim YS, Han DK et al. (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–859CrossRefGoogle Scholar
  25. 25.
    Tiller JC, Bonner G, Pan L-C et al. (2001) Improving biomaterial properties of collagen films by chemical modification. Biotechnol Bioeng 73:246–252CrossRefGoogle Scholar
  26. 26.
    Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces 18:261–275CrossRefGoogle Scholar
  27. 27.
    Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932Google Scholar
  28. 28.
    Cheng G, Zhang Z, Chen SF et al. (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199CrossRefGoogle Scholar
  29. 29.
    Ista LK, Perez-Luna VH, Lopez GP (1999) Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Environ Microbiol 65:1603–1609Google Scholar
  30. 30.
    Pratt-Terpstra IH, Weerkamp AH, Busscher HJ (1987) Adhesion of oral Streptococci from a flowing suspension to uncoated and albumin-coated surfaces. J Gen Microbiol 133: 3199–3206Google Scholar
  31. 31.
    Lichter JA, Thompson MT, Delgadillo M et al. (2008) Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules 9:1571–1578CrossRefGoogle Scholar
  32. 32.
    Dowling DP, Donnelly K, McConnell ML et al. (2001) Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 398–399:602–606CrossRefGoogle Scholar
  33. 33.
    Charville GW, Hetrick EM, Geer CB et al. (2008) Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 29:4039–4044CrossRefGoogle Scholar
  34. 34.
    Kristensen JB, Meyer RL, Laursen BS et al. (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481CrossRefGoogle Scholar
  35. 35.
    Leroy C, Delbarre-Ladrat C, Ghillebaert F et al. (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24:11–22CrossRefGoogle Scholar
  36. 36.
    Tasso M, Pettitt ME, Cordeiro AL et al. (2009) Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25:505–516CrossRefGoogle Scholar
  37. 37.
    Kim J, Delio R, Dordick JS (2002) Protease-containing silicates as active antifouling materials. Biotechnol Prog 18:551–555CrossRefGoogle Scholar
  38. 38.
    Aldred N, Phang IY, Conlan SL et al. (2008) The effects of a serine protease, Alcalase (R), on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling 24:97–107CrossRefGoogle Scholar
  39. 39.
    Isquith AJ, Abbott EA, Walters PA (1972) Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24:859–863Google Scholar
  40. 40.
    Tiller JC, Liao C-J, Lewis K et al. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985CrossRefGoogle Scholar
  41. 41.
    Tiller JC, Lee SB, Lewis K et al. (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79:465–471CrossRefGoogle Scholar
  42. 42.
    Lin J, Tiller JC, Lee SB et al. (2002) Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnol Lett 24:801–805CrossRefGoogle Scholar
  43. 43.
    Lin J, Qiu SY, Lewis K et al. (2002) Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog 18:1082–1086CrossRefGoogle Scholar
  44. 44.
    Haldar J, An DQ, de Cienfuegos LA et al. (2006) Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci USA 103:17667–17671CrossRefGoogle Scholar
  45. 45.
    Milovic NM, Wang J, Lewis K et al. (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90:715–722CrossRefGoogle Scholar
  46. 46.
    Lee SB, Koepsel RR, Morley SW et al. (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882CrossRefGoogle Scholar
  47. 47.
    Kurt P, Wood L, Ohman DE et al. (2007) Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir 23:4719–4723CrossRefGoogle Scholar
  48. 48.
    Waschinski CJ, Zimmermann J, Salz U et al. (2008) Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater 20:104–108CrossRefGoogle Scholar
  49. 49.
    Waschinski CJ, Barnert S, Theobald A et al. (2008) Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules 9:1764–1771CrossRefGoogle Scholar
  50. 50.
    Waschinski CJ, Herdes V, Schueler F et al. (2005) Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci 5:149–156CrossRefGoogle Scholar
  51. 51.
    Waschinski CJ, Tiller JC (2005) Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules 6:235–243CrossRefGoogle Scholar
  52. 52.
    Kang S, Pinault M, Pfefferle LD et al. (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673CrossRefGoogle Scholar
  53. 53.
    Gottenbos B, van der Mei HC, Klatter F et al. (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23:1417–1423CrossRefGoogle Scholar
  54. 54.
    Madkour AE, Dabkowski JM, Nusslein K et al. (2009) Fast disinfecting antimicrobial surfaces. Langmuir 25:1060–1067CrossRefGoogle Scholar
  55. 55.
    Bouloussa O, Rondelez F, Semetey V (2008) A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem Commun:951–953Google Scholar
  56. 56.
    Kugler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348CrossRefGoogle Scholar
  57. 57.
    Tiller JC, Liao CJ, Lewis K et al. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985CrossRefGoogle Scholar
  58. 58.
    Murata H, Koepsel RR, Matyjaszewski K et al. (2007) Permanent, non-leaching antibacterial surfaces - 2: How high density cationic surfaces kill bacterial cells. Biomaterials 28: 4870–4879CrossRefGoogle Scholar
  59. 59.
    Huang JY, Koepsel RR, Murata H et al. (2008) Nonleaching antibacterial glass surfaces via “Grafting Onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 24:6785–6795CrossRefGoogle Scholar
  60. 60.
    Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831CrossRefGoogle Scholar
  61. 61.
    Bieser A (2008) Surface modifications by hydrogelation and by coating with antimicrobial cellulose derivatives Dissertation, University of FreiburgGoogle Scholar
  62. 62.
    Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323Google Scholar
  63. 63.
    Bagheri M, Beyermann M, Dathe M (2009) Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother 53:1132–1141CrossRefGoogle Scholar
  64. 64.
    Glinel K, Jonas AM, Jouenne T et al. (2009) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20:71–77CrossRefGoogle Scholar
  65. 65.
    Humblot V, Yala JF, Thebault P et al. (2009) The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30:3503–3512CrossRefGoogle Scholar
  66. 66.
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRefGoogle Scholar
  67. 67.
    Salick DA, Kretsinger JK, Pochan DJ et al. (2007) Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. J Am Chem Soc 129:14793–14799CrossRefGoogle Scholar
  68. 68.
    Chen R, Cole N, Willcox Mark DP et al. (2009) Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling 25:517–524CrossRefGoogle Scholar
  69. 69.
    Hilpert K, Elliott M, Jenssen H et al. (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69CrossRefGoogle Scholar
  70. 70.
    Statz Andrea R, Park Jong P, Chongsiriwatana Nathaniel P et al. (2008) Surface-immobilised antimicrobial peptoids. Biofouling 24:439–448CrossRefGoogle Scholar
  71. 71.
    Willcox MDP, Hume EBH, Aliwarga Y et al. (2008) A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol 105:1817–1825CrossRefGoogle Scholar
  72. 72.
    Xing BG, Yu CW, Chow KH et al. (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846–14847CrossRefGoogle Scholar
  73. 73.
    Roy S, Das PK (2008) Antibacterial hydrogels of amino acid-based cationic amphiphiles. Biotechnol Bioeng 100:756–764CrossRefGoogle Scholar
  74. 74.
    Debnath S, Shome A, Das D et al. Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B 114: 4407–4415Google Scholar
  75. 75.
    Fleming A (1922) Containing papers of a biological character. Proc R Soc Lond B 93: 306–317CrossRefGoogle Scholar
  76. 76.
    Schindler CA, Schuhardt VT (1964) Lysostaphin – new bacteriolytic agent for Staphylococcus. Proc Natl Acad Sci USA 51:414–421CrossRefGoogle Scholar
  77. 77.
    Navarre WW, Ton-That H, Faull KF et al. (1999) Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi 11 – identification of a d-alanyl-glycine endopeptidase activity. J Biol Chem 274:15847–15856CrossRefGoogle Scholar
  78. 78.
    Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889CrossRefGoogle Scholar
  79. 79.
    Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172CrossRefGoogle Scholar
  80. 80.
    Edwards JV, Sethumadhavan K, Ullah AHJ (2000) Conjugation and modeled structure/function analysis of lysozyme on glycine esterified cotton cellulose-fibers. Bioconjug Chem 11:469–473CrossRefGoogle Scholar
  81. 81.
    Luckarift HR, Dickerson MB, Sandhage KH et al. (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2:640–643CrossRefGoogle Scholar
  82. 82.
    Wang Q, Fan XR, Hu YJ et al. (2009) Antibacterial functionalization of wool fabric via immobilizing lysozymes. Bioprocess Biosyst Eng 32:633–639CrossRefGoogle Scholar
  83. 83.
    Watanabe S, Kato H, Shimizu Y et al. (1981) Antibacterial biomaterials by immobilization of hen egg-white lysozyme onto collagen-synthetic polymer composites – histological-findings of immobilized lysozyme in the tissue of a different species. Artif Organs 5:309–309Google Scholar
  84. 84.
    Liu WK, Brown MRW, Elliott TSJ (1997) Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother 39:687–695CrossRefGoogle Scholar
  85. 85.
    Grahl T, Maerkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45:148–157CrossRefGoogle Scholar
  86. 86.
    Dutreux N, Notermans S, Wijtzes T et al. (2000) Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. Int J Food Microbiol 54:91–98CrossRefGoogle Scholar
  87. 87.
    Conner CJ, Harper RJ Jr. (1979) Biocidal rating system for outdoor weathered cotton fabric. Textile Chemist Colorist 11:62–65Google Scholar
  88. 88.
    Aymonier C, Schlotterbeck U, Antonietti L et al. (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun:3018–3019Google Scholar
  89. 89.
    Brunt KD (1995) A silver lining for paints and coatings - a revolutionary preservative system. Spec Publ R Soc Chem 165:243–251Google Scholar
  90. 90.
    Ho CH, Tobis J, Sprich C et al. (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961CrossRefGoogle Scholar
  91. 91.
    de Nys R, Givskov M, Kumar N et al. (2006) Furanones. Prog Mol Subcell Biol 42:55–86Google Scholar
  92. 92.
    Kristinsson KG, Jansen B, Treitz U et al. (1991) Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone. J Biomater Appl 5:173–184CrossRefGoogle Scholar
  93. 93.
    Kugel AJ, Jarabek LE, Daniels JW et al. (2009) Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J Coat Technol Res 6:107–121CrossRefGoogle Scholar
  94. 94.
    Nablo BJ, Schoenfisch MH (2003) Antibacterial properties of nitric oxide-releasing sol-gels. J Biomed Mater Res A 67A:1276–1283CrossRefGoogle Scholar
  95. 95.
    Li Y, Worley SD (2001) Biocidal copolymers of N-haloacryloxymethylhydantoin. J Bioact Compat Polym 16:493–506CrossRefGoogle Scholar
  96. 96.
    Matl FD, Zlotnyk J, Obermeier A et al. (2009) New anti-infective coatings of surgical sutures based on a combination of antiseptics and fatty acids. J Biomater Sci Polym Ed 20:1439–1449CrossRefGoogle Scholar
  97. 97.
    Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789CrossRefGoogle Scholar
  98. 98.
    Norowski PA Jr, Bumgardner Joel D (2009) Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 88:530–543Google Scholar
  99. 99.
    Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1:1553–1560CrossRefGoogle Scholar
  100. 100.
    Rudra JS, Dave K, Haynie DT (2006) Antimicrobial polypeptide multilayer nanocoatings. J Biomater Sci Polym Ed 17:1301–1315CrossRefGoogle Scholar
  101. 101.
    Chuang HF, Smith RC, Hammond PT (2008) Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 9:1660–1668CrossRefGoogle Scholar
  102. 102.
    Dai JH, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501CrossRefGoogle Scholar
  103. 103.
    Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586CrossRefGoogle Scholar
  104. 104.
    Gollwitzer H, Ibrahim K, Meyer H et al. (2003) Antibacterial poly(d,l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 51:585–591CrossRefGoogle Scholar
  105. 105.
    Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Controll Release 128:2–22CrossRefGoogle Scholar
  106. 106.
    Shukla A, Fleming Kathleen E, Chuang Helen F et al. (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31:2348–2357CrossRefGoogle Scholar
  107. 107.
    Woo GLY, Yang ML, Yin HQ et al. (2002) Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J Biomed Mater Res 59:35–45CrossRefGoogle Scholar
  108. 108.
    Tanihara M, Suzuki Y, Nishimura Y et al. (1998) Thrombin-sensitive peptide linkers for biological signal-responsive drug release systems. Peptides 19:421–425CrossRefGoogle Scholar
  109. 109.
    Suzuki Y, Tanihara M, Nishimura Y et al. (1998) A new drug delivery system with controlled release of antibiotic only in the presence of infection. J Biomed Mater Res 42:112–116CrossRefGoogle Scholar
  110. 110.
    Tanihara M, Suzuki Y, Nishimura Y et al. (1999) A novel microbial infection-responsive drug release system. J Pharm Sci 88:510–514CrossRefGoogle Scholar
  111. 111.
    Yancheva E, Paneva D, Maximova V et al. (2007) Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: preparation, characterization, and antibacterial properties. Biomacromolecules 8:976–984CrossRefGoogle Scholar
  112. 112.
    Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25:7686–7694CrossRefGoogle Scholar
  113. 113.
    Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  114. 114.
    Zeiger HJ, Henrich VE, Dresselhaus G (1977) Interaction of O2 and H2O with surface defects on TIO2 and SRTIO3. Bull Am Phys Soc 22:419–419Google Scholar
  115. 115.
    Watanabe T, Nakajima A, Wang R et al. (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351:260–263CrossRefGoogle Scholar
  116. 116.
    Jaeger CD, Bard AJ (1979) Spin trapping and electron-spin resonance detection of radical intermediates in the photo-decomposition of water at TiO2 particulate systems. J Phys Chem 83:3146–3152CrossRefGoogle Scholar
  117. 117.
    Nadtochenko V, Denisov N, Sarkisov O et al. (2006) Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2. J Photochem Photobiol A Chem 181:401–407CrossRefGoogle Scholar
  118. 118.
    Dung DH, Serpone N, Gratzel M (1984) Integrated systems for water cleavage by visible-light – sensitization of TiO2 particles by surface derivatization with ruthenium complexes. Helv Chim Acta 67:1012–1018CrossRefGoogle Scholar
  119. 119.
    Houlding VH, Gratzel M (1983) Photochemical H2 generation by visible-light – sensitization of TiO2 particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696CrossRefGoogle Scholar
  120. 120.
    Sung-Suh HM, Choi JR, Hah HJ et al. (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol A Chem 163:37–44CrossRefGoogle Scholar
  121. 121.
    Hu C, Hu XX, Guo J et al. (2006) Efficient destruction of pathogenic bacteria with NiO∕SrBi2O4 under visible light irradiation. Environ Sci Technol 40:5508–5513CrossRefGoogle Scholar
  122. 122.
    Raab O (1900) Effect of fluorescent substances on Infusoria. Z Biol 39:524Google Scholar
  123. 123.
    Foote CS (1991) Definition of type-I and type-II photosensitized oxidation. Photochem Photobiol 54:659–659CrossRefGoogle Scholar
  124. 124.
    Halliwell B, Gutteridge JMC (1984) Lipid-peroxidation, oxygen radicals, cell-damage, and antioxidant therapy. Lancet 1:1396–1397CrossRefGoogle Scholar
  125. 125.
    Noimark S, Dunnill CW, Wilson M et al. (2009) The role of surfaces in catheter-associated infections. Chem Soc Rev 38:3435–3448CrossRefGoogle Scholar
  126. 126.
    Wilson M (2003) Light-activated antimicrobial coating for the continuous disinfection of surfaces. Infect Control Hosp Epidemiol 24:782–784CrossRefGoogle Scholar
  127. 127.
    Bozja J, Sherrill J, Michielsen S et al. (2003) Porphyrin-based, light-activated antimicrobial materials. J Polym Sci A Polym Chem 41:2297–2303CrossRefGoogle Scholar
  128. 128.
    Perni S, Piccirillo C, Pratten J et al. (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93CrossRefGoogle Scholar
  129. 129.
    Garcia-Garibay M, Luna-Salazar A, Casas LT (1995) Antimicrobial effect of the lactoperoxidase system in milk activated by immobilized enzymes. Food Biotechnol 9:157–166CrossRefGoogle Scholar
  130. 130.
    Vartiainen J, Ratto M, Paulussen S (2005) Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films. Packag Technol Sci 18:243–251CrossRefGoogle Scholar
  131. 131.
    Kristensen JB, Olsen SM, Laursen BS et al. (2010) Enzymatic generation of hydrogen peroxide shows promising antifouling effect. Biofouling 26:141–153CrossRefGoogle Scholar
  132. 132.
    Amitai G, Andersen J, Wargo S et al. (2009) Polyurethane-based leukocyte-inspired biocidal materials. Biomaterials 30:6522–6529CrossRefGoogle Scholar
  133. 133.
    Kuo PL, Chuang TF, Wang HL (1999) Surface-fragmenting, self-polishing, tin-free antifouling coatings. J Coat Technol 71:77–83CrossRefGoogle Scholar
  134. 134.
    Ibbitson D, Johnson AF, Morley NJ et al. (1986) Structure property relationships in TIN-based antifouling paints. ACS Symp Ser 322:326–340Google Scholar
  135. 135.
    Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234CrossRefGoogle Scholar
  136. 136.
    Cheng G, Xue H, Zhang Z et al. (2008) A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed 47:8831–8834CrossRefGoogle Scholar
  137. 137.
    Liang J, Chen Y, Barnes K et al. (2006) N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials 27:2495–2501CrossRefGoogle Scholar
  138. 138.
    Li Z, Lee D, Sheng XX et al. (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823CrossRefGoogle Scholar
  139. 139.
    Sambhy V, MacBride MM, Peterson BR et al. (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808CrossRefGoogle Scholar
  140. 140.
    Guyomard A, De E, Jouenne T et al. (2008) Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18:758–765CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Biomaterials and Polymer Science, Department of Bio- and Chemical EngineeringTU DortmundDortmundGermany

Personalised recommendations