Advertisement

Co-assembly Towards Janus Micelles

  • Ilja K. Voets
  • Frans A. Leermakers
  • Arie de Keizer
  • Marat Charlaganov
  • Martien A. Cohen Stuart
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 241)

Abstract

In this paper, we report on our recent findings concerning the structure of complex coacervate core micelles composed of two types of (complementary) block copolymers. Both copolymers have a polyelectrolyte (one cationic and the other anionic) block combined with a neutral one. The opposite charges attract and form a close-to-electroneutral core. The two neutral blocks form the corona of the micelles. Here, we focus on the structure of the corona, which among other possibilities assumes the Janus configuration. Corresponding self-consistent field calculations confirm the rich behaviour of these systems. Unless the solvent quality of one of the corona chains is poor, we do not expect an onion-like corona with a clear interface between the layers. Disparities in chain length and solvent quality may only lead to gradual differences (local enrichments) in radial distributions. In the case that both corona chains are in good solvent, an unfavourable mixing of the two chains leads to the formation of Janus micelles, where the two blocks occupy different hemispheres. The interface that separates the two regions exerts a force on the core, which will deform when the core surface tension is not too high. In line with experimental results, the core flattens like a disk and the corona chains extend most in the direction of the poles.

Keywords

Coacervate Co-assembly Janus Micelle Polyelectrolyte Polymer Scattering Segregation Self-assembly Self-consistent field calculations 

Notes

Acknowledgements

We thank Gert Buurman for the creation of Fig. 1. This work is part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). It has been carried out in the framework of the EU Polyamphi/Marie Curie program (FP6–2002, proposal 505027). I.V. was financed by the SONS Eurocores program (Project JA016-SONS-AMPHI). Holger Schmalz is gratefully acknowledged for the synthesis of the P2MVP-b-PEO polymer, Rhodia (Aubervilliers, France) for providing us with a sample of PAA-b-PAAm, and C. Detrembleur, A. Aqil, and A. Debuigne for the synthesis of the PAA-b-PNIPAAm and PAA-b-PVOH polymers.

References

  1. 1.
    Zhang LF, Eisenberg A (1996) J Am Chem Soc 118:3168CrossRefGoogle Scholar
  2. 2.
    Zhulina EB, Adam M, LaRue I, Sheiko SS, Rubinstein M (2005) Macromolecules 38:5330CrossRefGoogle Scholar
  3. 3.
    Nagarajan R, Ruckenstein E (1991) Langmuir 7:2934CrossRefGoogle Scholar
  4. 4.
    Missel PJ, Mazer NA, Benedek GB, Carey MC (1983) J Phys Chem 87:1264CrossRefGoogle Scholar
  5. 5.
    Schlaad H, You LC, Sigel R, Smarsly B, Heydenreich M, Mantion A, Masic A (2009) Chem Commun:1478Google Scholar
  6. 6.
    Uchman M, Stepanek M, Prochazka K, Mountrichas G, Pispas S, Voets IK, Walther A (2009) Macromolecules 42:5605CrossRefGoogle Scholar
  7. 7.
    Schmalz H, Schmelz J, Drechsler M, Yuan J, Walther A, Schweimer K, Mihut AM (2008) Macromolecules 41:3235CrossRefGoogle Scholar
  8. 8.
    Li ZB, Hillmyer MA, Lodge TP (2006) Nano Lett 6:1245CrossRefGoogle Scholar
  9. 9.
    Schacher F, Walther A, Ruppel M, Drechsler M, Mueller AHE (2009) Macromolecules 42:3540CrossRefGoogle Scholar
  10. 10.
    Walther A, Drechsler M, Rosenfeldt S, Harnau L, Ballauff M, Abetz V, Muller AHE (2009) J Am Chem Soc 131:4720CrossRefGoogle Scholar
  11. 11.
    Kriz J, Masar B, Plestil J, Tuzar Z, Pospisil H, Doskocilova D (1998) Macromolecules 31:41CrossRefGoogle Scholar
  12. 12.
    Schrage S, Sigel R, Schlaad H (2003) Macromolecules 36:1417CrossRefGoogle Scholar
  13. 13.
    Kim SH, Tan JPK, Nederberg F, Fukushima K, Yang YY, Waymouth RM, Hedrick JL (2009) Macromolecules 42:25CrossRefGoogle Scholar
  14. 14.
    Kuo SW, Tung PH, Lai CL, Jeong KU, Chang FC (2008) Macromol Rapid Commun 29:229CrossRefGoogle Scholar
  15. 15.
    Voets IK, de Keizer A, de Waard P, Frederik PM, Bomans PHH, Schmalz H, Walther A, King SM, Leermakers FAM, Cohen Stuart MA (2006) Angew Chem Int Ed Engl 45:6673Google Scholar
  16. 16.
    Voets IK, Fokkink R, Hellweg T, King SM, de Waard P, de Keizer A, Cohen Stuart MA (2009) Soft Matter 5:999Google Scholar
  17. 17.
    Voets IK, Moll PM, Aqil A, Jerome C, Detrembleur C, de Waard P, de Keizer A, Cohen Stuart MA (2008) J Phys Chem B 112:10833Google Scholar
  18. 18.
    Gohy JF, Khousakoun E, Willet N, Varshney SK, Jerome R (2004) Macromol Rapid Commun 25:1536CrossRefGoogle Scholar
  19. 19.
    Luo LB, Eisenberg A (2002) Angew Chem Int Ed Engl 41:1001CrossRefGoogle Scholar
  20. 20.
    Voets IK, de Keizer A, Cohen Stuart MA (2009) Adv Colloid Interface Sci 147–48:300Google Scholar
  21. 21.
    Plestil J, Konak C, Hu XS, Lal J (2006) Macromol Chem Physic 207:231CrossRefGoogle Scholar
  22. 22.
    Prochazka K, Martin TJ, Webber SE, Munk P (1996) Macromolecules 29:6526CrossRefGoogle Scholar
  23. 23.
    Talingting MR, Munk P, Webber SE, Tuzar Z (1999) Macromolecules 32:1593CrossRefGoogle Scholar
  24. 24.
    Plestil J, Kriz J, Tuzar Z, Prochazka K, Melnichenko YB, Wignall GD, Talingting MR, Munk P, Webber SE (2001) Macromol Chem Phys 202:553CrossRefGoogle Scholar
  25. 25.
    Zhang WQ, Shi LQ, Gao LC, An YL, Wu K (2005) Macromol Rapid Commun 26:1341CrossRefGoogle Scholar
  26. 26.
    Harada A, Kataoka K (1995) Macromolecules 28:5294–5299.CrossRefGoogle Scholar
  27. 27.
    Xie DH, Xu K, Bai RK, Zhang GZ (2007) J Phys Chem B 111:778CrossRefGoogle Scholar
  28. 28.
    Xiong DA, Shi LQ, Jiang XW, An YL, Chen X, Lu JA (2007) Macromol Rapid Commun 28:194CrossRefGoogle Scholar
  29. 29.
    Gohy JF, Varshney SK, Jerome R (2001) Macromolecules 34:3361CrossRefGoogle Scholar
  30. 30.
    Park JS, Akiyama Y, Yamasaki Y, Kataoka K (2007) Langmuir 23:138CrossRefGoogle Scholar
  31. 31.
    Chelushkin PS, Lysenko EA, Bronich TK, Eisenberg A, Kabanov VA, Kabanov AV (2007) J Phys Chem B 111:8419CrossRefGoogle Scholar
  32. 32.
    Hofs B, Voets IK, de Keizer A, Cohen Stuart MA (2006) Phys Chem Chem Phys 8:4242Google Scholar
  33. 33.
    Lindhoud S, de Vries R, Norde W, Cohen Stuart MA (2007) Biomacromolecules 8:2219Google Scholar
  34. 34.
    Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A (1996) Macromolecules 29:6797CrossRefGoogle Scholar
  35. 35.
    Burkhardt M, Ruppel M, Tea S, Drechsler M, Schweins R, Pergushov DV, Gradzielski M, Zezin AB, Muller AHE (2008) Langmuir 24:1769CrossRefGoogle Scholar
  36. 36.
    Groger S, Geschke D, Karger J, Stallmach F, Konak C (2004) Macromol Rapid Commun 25:1015CrossRefGoogle Scholar
  37. 37.
    Gohy JF, Varshney SK, Antoun S, Jerome R (2000) Macromolecules 33:9298CrossRefGoogle Scholar
  38. 38.
    Pergushov DV, Remizova EV, Gradzielski M, Lindner P, Feldthusen J, Zezin AB, Müller AHE, Kabanov VA (2004) Polymer 45:367CrossRefGoogle Scholar
  39. 39.
    Podhajecka K, Stepanek M, Prochazka K, Brown W (2001) Langmuir 17:4245CrossRefGoogle Scholar
  40. 40.
    Cohen Stuart MA, Hofs B, Voets IK, de Keizer A (2005) Curr Opin Colloid Interface Sci 10:30Google Scholar
  41. 41.
    van der Burgh S, de Keizer A, Cohen Stuart MA (2004) Langmuir 20:1073Google Scholar
  42. 42.
    Harada A, Kataoka K (1999) Science 283:65CrossRefGoogle Scholar
  43. 43.
    Stepanek M, Podhajecka K, Tesarova E, Prochazka K, Tuzar Z, Brown W (2001) Langmuir 17:4240CrossRefGoogle Scholar
  44. 44.
    Yan XH, Liu GJ, Hu JW, Willson CG (2006) Macromolecules 39:1906CrossRefGoogle Scholar
  45. 45.
    Bronich TK, Cherry T, Vinogradov SV, Eisenberg A, Kabanov VA, Kabanov AV (1998) Langmuir 14:6101CrossRefGoogle Scholar
  46. 46.
    Bronich TK, Kabanov AV, Kabanov VA, Yu K, Eisenberg A (1997) Macromolecules 30:3519CrossRefGoogle Scholar
  47. 47.
    Vinogradov SV, Bronich TK, Kabanov AV (1998) Bioconjugate Chem 9:805CrossRefGoogle Scholar
  48. 48.
    Harada A, Kataoka K (1999) J Am Chem Soc 121:9241CrossRefGoogle Scholar
  49. 49.
    Voets IK, de Keizer A, Cohen Stuart MA, Justynska J, Schlaad H (2007) Macromolecules 40:2158Google Scholar
  50. 50.
    Hofs B, Brzozowska A, de Keizer A, Norde W, Cohen Stuart MA (2008) J Colloid Interface Sci 325:309Google Scholar
  51. 51.
    Jaturanpinyo M, Harada A, Yuan XF, Kataoka K (2004) Bioconjugate Chem 15:344CrossRefGoogle Scholar
  52. 52.
    Kakizawa Y, Harada A, Kataoka K (2001) Biomacromolecules 2:491CrossRefGoogle Scholar
  53. 53.
    Kawarmura A, Harada A, Kono K, Kataoka K (2007) Bioconjugate Chem 18:1555CrossRefGoogle Scholar
  54. 54.
    Yuan XF, Yamasaki Y, Harada A, Kataoka K (2005) Polymer 46:7749CrossRefGoogle Scholar
  55. 55.
    Voets IK, de Keizer A, Cohen Stuart MA (2009) Adv Colloid Interface Sci 147–148:300Google Scholar
  56. 56.
    Kabanov AV, Kabanov VA (1998) Adv Drug Deliver Rev 30:49CrossRefGoogle Scholar
  57. 57.
    Kataoka K, Harada A, Nagasaki Y (2001) Adv Drug Deliver Rev 47:113CrossRefGoogle Scholar
  58. 58.
    Scott RL (1949) J Chem Phys 17:279CrossRefGoogle Scholar
  59. 59.
    Voets IK, de Vries R, Fokkink R, Sprakel J, May R, de Keizer A, Cohen Stuart MA (2009) Eur Phys J E 30:351Google Scholar
  60. 60.
    Voets IK, van der Burgh S, Farago B, Fokkink R, Kovacevic D, Hellweg T, de Keizer A, Cohen Stuart MA (2007) Macromolecules 40:8476Google Scholar
  61. 61.
    Voets IK, Fokkink R, de Keizer A, May RP, de Waard P, Cohen Stuart MA (2008) Langmuir 24:12221Google Scholar
  62. 62.
    Silva M, Machado JC, Mano V, Silva GG (2003) J Polym Sci B Polym Phys 41:1493CrossRefGoogle Scholar
  63. 63.
    Hefford RJ (1984) Polymer 25:979CrossRefGoogle Scholar
  64. 64.
    Perrau MB, Iliopoulos I, Audebert R (1989) Polymer 30:2112CrossRefGoogle Scholar
  65. 65.
    Voets IK, de Keizer A, Cohen Stuart MA, de Waard P (2006) Macromolecules 39:5952Google Scholar
  66. 66.
    Voets IK, Debuigne A, Detrembleur C, Jérôme R, de Keizer A, Cohen Stuart MA (2009) Eur Polym J 45:2913Google Scholar
  67. 67.
    Charlaganov M, Borisov OV, Leermakers FAM (2008) Macromolecules 41:3668CrossRefGoogle Scholar
  68. 68.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  69. 69.
    Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman and Hall, LondonGoogle Scholar
  70. 70.
    Evers OA, Scheutjens J, Fleer GJ (1990) Macromolecules 23:5221CrossRefGoogle Scholar
  71. 71.
    Leermakers FAM, Eriksson JC, Lyklema J (2005) Association colloids and their equilibrium modelling. In: Lyklema J (ed) Soft colloids. Fundamentals of interface and colloid science, vol V. Elsevier, Amsterdam, p 4.1Google Scholar
  72. 72.
    Leermakers FAM, Wijmans CM, Fleer GJ (1995) Macromolecules 28:3434CrossRefGoogle Scholar
  73. 73.
    Scheutjens J, Fleer GJ (1979) J Phys Chem 83:1619CrossRefGoogle Scholar
  74. 74.
    Leermakers FAM, Scheutjens J (1990) J Colloid Interface Sci 136:231CrossRefGoogle Scholar
  75. 75.
    Wijmans CM, Zhulina EB (1993) Macromolecules 26:7214CrossRefGoogle Scholar
  76. 76.
    Skvortsov AM, Klushin LI, Leermakers FAM (2002) Europhys Lett 58:292CrossRefGoogle Scholar
  77. 77.
    Erhardt R, Boker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Müller AHE (2001) Macromolecules 34:1069CrossRefGoogle Scholar
  78. 78.
    von Berlepsch H, Boettcher C, Skrabania K, Laschewsky A (2009) Chem Commun:2290Google Scholar
  79. 79.
    Hoppenbrouwers E, Li Z, Liu GJ (2003) Macromolecules 36:876CrossRefGoogle Scholar
  80. 80.
    Voets IK, Leermakers FAM (2008) Phys Rev E 78:061801CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ilja K. Voets
    • 1
    • 2
  • Frans A. Leermakers
    • 1
  • Arie de Keizer
    • 1
  • Marat Charlaganov
    • 1
    • 3
  • Martien A. Cohen Stuart
    • 1
  1. 1.Laboratory of Physical Chemistry and Colloid ScienceWageningen UniversityWageningenThe Netherlands
  2. 2.Adolphe Merkle InstituteUniversity of FribourgMarly 1Switzerland
  3. 3.Soft Matter Chemistry, Faculty of Science, Leiden Institute of ChemistryUniversity of Leiden, Gorlaeus LaboratoriesLeidenNetherlands

Personalised recommendations