Conjugated Organosilicon Materials for Organic Electronics and Photonics

Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 235)

Abstract

In this chapter different types of conjugated organosilicon materials possessing luminescent and/or semiconducting properties will be described. Such macromolecules have various topologies and molecular structures: linear, branched and hyperbranched oligomers, polymers, and dendrimers. Specific synthetic approaches to access these structures will be discussed. Special attention is devoted to the role of silicon in these structures and its influence on their optical and electrical properties, leading to their potential application in the emerging areas of organic and hybrid electronics.

Keywords

Anthradithiophene Dendrimer Electroluminescence Oligothiophene Organic field-effect transistor (OFET) Organic light-emitting diode (OLED) Organic solar cells Pentacene Photoluminescence Poly(1 4-phenylene vinylene) Silafluorene Silole 

Abbreviations

[C70]PCBM

([6,6]-Phenyl C71-butyric acid methyl ester)

2T

2, 2-Bithiophene

3AC

Anthracene

3D

Three-dimensional

3T

2, 2 : 5,2′′-Terthiophene

4AC

Tetracene

4T

2, 2:5, 2′′:5′′, 2′′′-Quaterthiophene

5AC

Pentacene

5T

2, 2:5, 2′′ : 5′′, 2′′′:5′′′, 2′′′′-Quinquethiophene

6T

2, 2:5, 2:5′′, 2′′′:5′′′, 2′′′′:5′′′′, 2′′′′′-Sexithiophene

7T

2, 2:5, 2′′:5′′, 2′′′:5′′′, 2′′′′:5′′′′, 2′′′′′:5′′′′′, 2′′′′′′-Septithiophene

ηEL

External electroluminescence quantum efficiency

ΦF

Luminescence quantum yield

Ac

Acetyl

ADT

Anthradithiophene

AFM

Atomic force microscopy

AIE

Aggregation induced emission

Alq3

Tris(8-quinolinolato) aluminum(III) complex

BS

Dibenzosilole

Bu

n-Butyl

tBu

tert-Butyl

n-BuLi

n-Butyl lithium

t-BuLi

tert-Butyl lithium

CEE

Cooling-enhanced emission

CIE

International Commission on Illumination

CV

Cyclic voltammogram

Cz

Carbazolyl

D–A complex

Donor–acceptor complex

Dec

n-Decyl

DFT

Density functional theory

DMS

Dimethylsilyl

DMSO

Dimethyl sulfoxide

DSC

Differential scanning calorimetry

EDOT

3,4-Ethylenedioxythiophene

EL

Electroluminescence

Et

Ethyl

ET

Electron transport

eV

Electron volt

Fe(acac)3

Iron(III) acetylacetonate

FET

Field-effect transistor

FF

Fill factor

HB

Hyperbranched

Hex

n-Hexyl

HOMO

Highest occupied molecular orbital

HTL

Hole-transporting layer

IP

Ionization potential

Isc

Short circuit current

ITO

Indium tin oxide

LDA

Lithium di(iso-propyl)amide

LEC

Light-emitting electrochemical cell

LOPV

Ladder oligo(p-phenylenevinylene)

LUMO

Lowest unoccupied molecular orbital

MALDI–TOF

Matrix assisted laser desorption ionization–time-of-flight mass spectrometry

Me

Methyl

MEH-PPV

Poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene]

Mn

Number-averaged molecular weight

Mw

Weight-averaged molecular weight

NiCl2(dppe)

1,2-Bis(diphenylphosphino)ethane nickel(II) chloride

NIR

Near infrared

NPB

N, N-Bis(1-naphthyl)-N, N-diphenylbenzidine

NPD

4, 4-Bis[N-1-naphthyl-N-phenylamino]-biphenyl

Oct

n-Octyl

OEt

Ethoxy

OFET

Organic field-effect transistor

OLED

Organic light-emitting diode

OligoT

Oligothiophene

OMe

Methoxy

OPV

Organic photovoltaics

OTFT

Organic thin film transistor

P3HT

Poly(3-hexylthiophene)

PBD

2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole

PCBM

[6,6]-Phenyl C61-butyric acid methyl ester

PCE

Power conversion efficiency

PEDOT

Poly(3,4-ethylenedioxythiophene)

PF

Polyfluorene

Ph

Phenyl

PL

Photoluminescence

PMMA

Poly(methyl methacrylate)

PPV

Poly(1,4-phenylene vinylene)

ppy

2-Phenylpyridine

PS

Polystyrene

PSS

Poly(styrene sulfonate)

PTV

Polythiophenevinylene

PVK

Poly(N-vinyl carbazole)

Py

Pyridyl

SAM

Self-assembled monolayer

SAMFET

Self-assembled monolayer field-effect transistor

SBAr

Silicon-bridged biaryl

SCE

Saturated calomel electrode

SiF

Silafluorene

T

Thienyl

TES

Triethylsilyl

TGA

Thermal gravimetric analysis

TIPS

Triisopropylsilyl

TMS

Trimethylsilyl

TPD

N, N-Diphenyl-N, N-di(m-tolyl)biphenyl-4, 4-diamine

TPS

Triphenylsilyl

TPSppy

2-(4-(Triphenylsilyl)biphenyl-3-yl)pyridine

TS

Dithienosilole

TVS

Trivinylsilyl

Und

n-Undecyl

UV-vis

Ultraviolet-visible

Voc

Open-circuit voltage

References

  1. 1.
    Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918CrossRefGoogle Scholar
  2. 2.
    Klauk H (ed) (2006) Organic electronics: materials, manufacturing and applications. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Facchetti A (2007) Semiconductors for organic transistors. Mater Today 10:28–38CrossRefGoogle Scholar
  4. 4.
    Braun D (2002) Semiconducting polymer LEDs. Mater Today 5:32–39CrossRefGoogle Scholar
  5. 5.
    Brabec C, Dyakonov C, Scherf U (eds) (2008) Organic photovoltaics. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33CrossRefGoogle Scholar
  7. 7.
    Lloyd MT, Anthony JE, Malliaras GG (2007) Photovoltaics from soluble small molecules. Mater Today 10:34–41CrossRefGoogle Scholar
  8. 8.
    Sokolov AN, Roberts ME, Bao Z (2009) Fabrication of low-cost electronic biosensors. Mater Today 12:12–20CrossRefGoogle Scholar
  9. 9.
    Sun Y, Liu Y, Zhu D (2005) Advances in organic field-effect transistors. J Mater Chem 15: 53–65CrossRefGoogle Scholar
  10. 10.
    Murphy AR, Fréchet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107:1066–1096CrossRefGoogle Scholar
  11. 11.
    Sauvajol JL, Lère-Porte JP, Moreau JJE (1997) Silicon-containing thiophene oligomers and polymers: synthesis, characterization and properties. In: Nalwa NS (ed) Conductive polymers. Handbook of organic conductive molecules and polymers, vol 2. Wiley, New YorkGoogle Scholar
  12. 12.
    Herrema JK, Hutten PF, Gill RE, Wildeman J, Wieringa RH, Hadziioannou G (1995) Tuning of the luminescence in multiblock alternating copolymers. 1. synthesis and spectroscopy of poly [(silanylene)thiophenels. Macromolecules 28:8102–8116CrossRefGoogle Scholar
  13. 13.
    Tour JM, Wu R (1992) Synthesis and UV-visible properties of soluble α-thiophene oligomers. Monomer to octamer. Macromolecules 25:1901–1907CrossRefGoogle Scholar
  14. 14.
    Hapiot P, Gaillon L, Audebert P, Moreau JJE, Lère-Porte JP, Wong Chi Man M (1995) Solvent effects on the polymerization kinetics of some alfa-sylulated thiophene oligomers. Special influence of the α-silyl group. Synth Met 72:129–134Google Scholar
  15. 15.
    Lere-Porte JP, Moreau JJE, Torreilles C, Bouachrine M, Sauvajol JL, Serein-Spirau F (1999) Oxidative polymerisation of silyl monomers. Applications and limits. Synth Met 101:15–16CrossRefGoogle Scholar
  16. 16.
    Barbarella G, Ostoja P, Maccagnani P, Pudova O, Antolini L, Casarini D, Bongini A (1998) Structural and electrical characterization of processable bis-silylated thiophene oligomers. Chem Mater 10:3683–3689CrossRefGoogle Scholar
  17. 17.
    Halik M, Klauk H, Zschieschang U, Schmid G, Radlik W, Ponomarenko S, Kirchmeyer S, Weber W (2003) High-mobility organic thin-film transistors based on α, α‘-didecyloligothiophenes. J Appl Phys 93:2977–2981CrossRefGoogle Scholar
  18. 18.
    Halik M, Klauk H, Zschieschang U, Schmid G, Ponomarenko S, Kirchmeyer S, Weber W (2003) Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv Mater 15:917–922CrossRefGoogle Scholar
  19. 19.
    Yassar A, Garnier F, Deloffre F, Horowitz G, Ricard L (1994) Crystal structure of α, ω-bis(triisopropylsylyl)-sexithiophene: unusual conjugated chain distortion induced by interchain steric effects. Adv Mater 6:660–663CrossRefGoogle Scholar
  20. 20.
    Kim DH, Ohshita J, Kosuge T, Kunugi A, Kunai A (2006) Synthesis of silicon-bridged oligothiophenes and applications to thin film transistors. Chem Lett 35:266–267CrossRefGoogle Scholar
  21. 21.
    Ohshita J, Izumi Y, Kim DH, Kunai A, Kosuge T, Kunugi Y, Naka A, Ishikawa M (2007) Applications of silicon-bridged oligothiophenes to organic FET materials. Organometallics 26:6150–6154CrossRefGoogle Scholar
  22. 22.
    Facchetti A, Mushrush M, Yoon MH, Hutchison GR, Ratner MA, Marks TJ (2004) Building blocks for n-type molecular and polymeric electronics. perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nT; n = 2–6). Systematics of thin film microstructure, semiconductor performance, and modeling of majority charge injection in field-effect transistors. J Am Chem Soc 126:13859–13874CrossRefGoogle Scholar
  23. 23.
    Meyer-Friedrichsen T, Elschner A, Keohan F, Lövenich W, Ponomarenko SA (2009) Conductors and semiconductors for advanced organic electronics. Proc SPIE 7417:741704CrossRefGoogle Scholar
  24. 24.
    Ponomarenko SA, Borshchev OV, Setayesh S, Smits ECP, Mathijssen SGJ, Pleshkova AP, Meyer-Friedrichsen T, Kirchmeyer S, Muzafarov AM, de Leeuw DM (2010) Synthesis of monochlorosilyl derivatives of dialkyloligothiophenes for self-assembling monolayer field-effect transistors. Organometallics (submitted)Google Scholar
  25. 25.
    Mathijssen SGJ, Smits ECP, van Hal PA, Wondergem HJ, Ponomarenko SA, Moser A, Resel R, Bobbert PA, Kemerink M, Janssen RAJ, de Leeuw DM (2009) Monolayer coverage and channel length set the mobility in self-assembled monolayer field-effect transistors. Nat Nanotechnol 4:674–680CrossRefGoogle Scholar
  26. 26.
    Gholamrezaie F, Mathijssen SGJ, Smits ECP, Geuns TCT, van Hal PA, Ponomarenko SA, Cantatore E, Blom PWM, de Leeuw DM (2010) Ordered semiconducting self-assembled monolayers on polymeric surfaces applied in organic integrated circuits. Nano Lett (accepted)Google Scholar
  27. 27.
    Mottaghi M, Lang P, Rodriguez F, Rumyantseva A, Yassar A, Horowitz G, Lenfant S, Tondelier D, Vuillaume D (2007) Adv Funct Mater 17:597–604CrossRefGoogle Scholar
  28. 28.
    Smits ECP, Mathijssen SGJ, van Hal PA, Setayesh S, Geuns TCT, Mutsaers KAHA, Cantatore E, Wondergem HJ, Werzer O, Resel R, Kemerink M, Kirchmeyer S, Muzafarov AM, Ponomarenko SA, de Boer B, Blom PWM, de Leeuw DM (2008) Bottom up organic integrated circuits. Nature 455:956–959CrossRefGoogle Scholar
  29. 29.
    Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048CrossRefGoogle Scholar
  30. 30.
    Landis CA, Parkin SR, Anthony JE (2005) Silylethynylated anthracene derivatives for use in organic light-emitting diodes. Jpn J Appl Phys 44:3921–3922CrossRefGoogle Scholar
  31. 31.
    Odom SA, Parkin SR, Anthony JE (2003) Tetracene derivatives as potential red emitters for organic LEDs. Org Lett 5:4245–4248CrossRefGoogle Scholar
  32. 32.
    Karatsu T, Hazuku R, Asuke M, Nishigaki A, Yagai S, Suzuri Y, Kita H, Kitamura A (2007) Blue electroluminescence of silyl substituted anthracene derivatives. Org Electron 8:357–366CrossRefGoogle Scholar
  33. 33.
    Kelley TW, Muyres DV, Baude PF, Smith TP, Jones TD (2003) High performance organic thin film transistors. Mater Res Soc Symp Proc 771:169-179CrossRefGoogle Scholar
  34. 34.
    Allen CFH, Bell A (1942) Action of Grignard reagents on certain pentacenequinones, 6,13-diphenylpentacene. J Am Chem Soc 64:1253–1260CrossRefGoogle Scholar
  35. 35.
    Anthony JE, Brooks JS, Eaton DL, Parkin SR (2001) Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc 123:9482–9483CrossRefGoogle Scholar
  36. 36.
    Anthony JE, Eaton DL, Parkin S.R (2002) A road map to stable, soluble, easily crystallized pentacene derivatives. Org Lett 4:15–18CrossRefGoogle Scholar
  37. 37.
    Sheraw CD, Jackson TN, Eaton DL, Anthony JE (2003) Functionalized pentacene active layer organic thin-film transistors. Adv Mater 15:2009–2011CrossRefGoogle Scholar
  38. 38.
    Park SK, Jackson TN, Anthony JE, Mourey DA (2007) High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors. Appl Phys Lett 91:063514CrossRefGoogle Scholar
  39. 39.
    Troisi A, Orlandi G, Anthony JE (2005) Electronic interactions and thermal disorder in molecular crystals containing cofacial pentacene units. Chem Mater 17:5024–5031CrossRefGoogle Scholar
  40. 40.
    Lobanova Griffith O, Gruhn NE, Anthony JE, Purushothaman B, Lichtenberger DL (2008) Electron transfer parameters of triisopropylsilylethynyl-substituted oligoacenes. J Phys Chem C 112:20518–20524CrossRefGoogle Scholar
  41. 41.
    Lloyd MT, Mayer AC, Tayi AS, Bowen AM, Kasen TG, Herman DJ, Mourey DA, Anthony JE, Malliaras GG (2006) Photovoltaic cells from a soluble pentacene derivative. Org Electron 7:243–248CrossRefGoogle Scholar
  42. 42.
    Miller GP, Briggs J, Mack J, Lord PA, Olmstead MM, Balch AL (2003) Fullerene–acene chemistry: single-crystal X-ray structures for a [60]fullerene–pentacene monoadduct and a cis-bis[60]fullerene adduct of 6,13-diphenylpentacene. Org Lett 5:4199–4202CrossRefGoogle Scholar
  43. 43.
    Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, Sato F, Tokito S (2004) Perfluoropentacene: high-performance p-n junctions and complementary circuits with pentacene. J Am Chem Soc 126:8138–8140CrossRefGoogle Scholar
  44. 44.
    Inoue Y, Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Tokito S (2005) Organic thin-film transistors with high electron mobility based on perfluoropentacene. Jpn J Appl Phys 44:3663–3668CrossRefGoogle Scholar
  45. 45.
    Swartz CR, Parkin SR, Bullock JE, Anthony JE, Mayer AC, Malliaras GG (2005) Synthesis and characterization of electron-deficient pentacenes. Org Lett 7:3163–3166CrossRefGoogle Scholar
  46. 46.
    Wolak MA, Melinger JS, Lane PA, Palilis LC, Landis CA, Delcamp J, Anthony JE, Kafafi ZH (2006) Photophysical properties of dioxolane-substituted pentacene derivatives dispersed in tris(quinolin-8-olato)aluminum(III). J Phys Chem B 110:7928–7937CrossRefGoogle Scholar
  47. 47.
    Wolak MA, Delcamp J, Landis CA, Lane PA, Anthony J, Kafafi Z (2006) High-performance organic light-emitting diodes based on dioxolane-substituted pentacene derivatives. Adv Funct Mater 16:1943–1949CrossRefGoogle Scholar
  48. 48.
    Chiang CL, Wu MF, Dai CC, When YS, Wang JK, Chen CT (2005) Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes. Adv Funct Mater 15:231–238CrossRefGoogle Scholar
  49. 49.
    Laquindanum JG, Katz HE, Lovinger AJ (1998) Synthesis, morphology, and field-effect mobility of anthradithiophenes. J Am Chem Soc 120:664–672CrossRefGoogle Scholar
  50. 50.
    Payne MM, Parkin SR, Anthony JE, Kuo CC, Jackson TN (2005) Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/vs. J Am Chem Soc 127:4986–4987CrossRefGoogle Scholar
  51. 51.
    Dickey KC, Smith TJ, Stevenson KJ, Subramanian S, Anthony JE, Loo YL (2007) Establishing efficient electrical contact to the weak crystals of triethylsilylethynyl anthradithiophene. Chem Mater 19:5210–5215CrossRefGoogle Scholar
  52. 52.
    Lloyd MT, Mayer AC, Subramanian S, Mourey DA, Herman DJ, Bapat AV, Anthony JE, Malliaras GG (2007) Efficient solution-processed photovoltaic cells based on an anthradithiophene/fullerene blend. J Am Chem Soc 129:9144–9149CrossRefGoogle Scholar
  53. 53.
    Subramanian S, Park SK, Parkin SR, Podzorov V, Jackson TN, Anthony JE (2008) Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. J Am Chem Soc 130:2706–2707CrossRefGoogle Scholar
  54. 54.
    Jurchescu OD, Subramanian S, Kline RJ, Hudson SD, Anthony JE, Jackson TN, Gundlach DJ (2008) Organic single-crystal field-effect transistors of a soluble anthradithiophene. Chem Mater 20:6733–6737CrossRefGoogle Scholar
  55. 55.
    Platt AD, Day J, Subramanian S, Anthony JE, Ostroverkhova O (2009) Optical, fluorescent, and (photo)conductive properties of high-performance functionalized pentacene and anthradithiophene derivatives. J Phys Chem C 113:14006–14014CrossRefGoogle Scholar
  56. 56.
    Payne MM, Parkin SR, Anthony JE (2005) Functionalized higher acenes: hexacene and heptacene. J Am Chem Soc 127:8028–8029CrossRefGoogle Scholar
  57. 57.
    Payne MM, Odom SA, Parkin SR, Anthony JE (2004) Stable, crystalline acenedithiophenes with up to seven linearly fused rings. Org Lett 6:3325–3328CrossRefGoogle Scholar
  58. 58.
    Yamaguchi S, Tamao K (1998) Silole-containing σ- and π-conjugated compounds. J Chem Soc Dalton Trans:3693–3702, Doi: http://dx.doi.org/10.1039/a804491kGoogle Scholar
  59. 59.
    Tamao K, Yamaguchi S, Shiro M (1994) Oligosiloles: first synthesis based on a novel endo-endo mode intramolecular reductive cyclization of diethynylsilanes. J Am Chem Soc 116:11715–11722CrossRefGoogle Scholar
  60. 60.
    Yamaguchi S, Jin RZ, Tamao K, Shiro M (1997) Silicon-catenated silole oligomers: oligo(1,1-silole)s. Organometallics 16:2486–2488CrossRefGoogle Scholar
  61. 61.
    Kanno K, Ichinohe M, Kabuto C, Kira M (1998) Synthesis and structure of a series of oligo[1,1-(2,3,4,5-tetramethylsilole)]s. Chem Lett 27:99–100CrossRefGoogle Scholar
  62. 62.
    Tamao K, Yamaguchi S, Ito Y, Matsuzaki Y, Yamabe T, Fukushima M, Mori S (1995) Silole-containing n-conjugated systems. 3. Series of silole-thiophene cooligomers and copolymers: synthesis, properties, and electronic structures. Macromolecules 28:8668–8675CrossRefGoogle Scholar
  63. 63.
    Tamao K, Ohno S, Yamaguchi S (1996) Silole–pyrrole co-oligomers: their synthesis, structure and UV-VIS absorption spectra. Chem Commun:1873–1874Google Scholar
  64. 64.
    Tamao K, Uchida M, Izumizawa T, Furukawa K, Yamaguchi S (1996) Silole derivatives as efficient electron transporting materials. J Am Chem Soc 118:11974–11975CrossRefGoogle Scholar
  65. 65.
    Murata H, Kafafi ZH, Uchida M (2002) Efficient organic light-emitting diodes with undoped active layers based on silole derivatives. Appl Phys Lett 80:189–191CrossRefGoogle Scholar
  66. 66.
    Palilisa LC, Mäkinen AJ, Uchida M, Kafafi ZH (2003) Highly efficient molecular organic light-emitting diodes based on exciplex emission. Appl Phys Lett 82:2209–2214CrossRefGoogle Scholar
  67. 67.
    Yamaguchi S, Endo T, Uchida M, Izumizawa T, Furukawa K, Tamao K (2000) Toward new materials or organic electroluminescent devices: synthesis, structures, and properties of a series of 2,5-diaryl-3,4-dippenylsiloles. Chem Eur J 6:1683–1692CrossRefGoogle Scholar
  68. 68.
    Lee SH, Jang BB, Kafafi ZH (2005) Highly fluorescent solid-state asymmetric spirosilabifluorene derivatives. J Am Chem Soc 127:9071–9078CrossRefGoogle Scholar
  69. 69.
    Braye EH, Hübel W, Caplier I (1961) New unsaturated heterocyclic systems I. J Am Chem Soc 83:4406–4413CrossRefGoogle Scholar
  70. 70.
    Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 1740–1741Google Scholar
  71. 71.
    Yu G, Yin S, Liu Y, Chen J, Xu X, Sun X, Ma D, Zhan X, Peng Q, Shuai Z, Tang B, Zhu D, Fang W, Luo Y (2005) Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J Am Chem Soc 127:6335–6346CrossRefGoogle Scholar
  72. 72.
    Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID, Zhu D, Tang BZ (2003) Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater 15:1535–1546CrossRefGoogle Scholar
  73. 73.
    Son HJ, Han WS, Chun JY, Lee CJ, Han JI, Ko J, Kang SO (2007) Spiro-silacycloalkyl tetraphenylsiloles with a tunable exocyclic ring: preparation, characterization, and device application of 1,1’-silacycloalkyl-2,3,4,5-tetraphenylsiloles. Organometallics 26:519–526CrossRefGoogle Scholar
  74. 74.
    Zeng Q, Li Z, Dong Y, Di C, Qin A, Hong Y, Ji L, Zhu Z, Jim CKW, Yu G, Li Q, Li Z, Liu Y, Qin J, Tang BZ (2007) Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations: AIE and AIEE effects. Chem Commun 70–72Google Scholar
  75. 75.
    Tang BZ, Zhan X, Yu G, Lee PPS, Liu Y, Zhu D (2001) Efficient blue emission from siloles. J Mater Chem 11:2974–2978CrossRefGoogle Scholar
  76. 76.
    Mi B, Dong Y, Li Z, Lam JWY, Häußler M, Sung HHY, Kwok HS, Dong Y, Williams ID, Liu Y, Luo Y, Shuai Z, Zhu D, Tang BZ (2005) Making silole photovoltaically active by attaching carbazolyl donor groups to the silolyl acceptor core. Chem Commun 3583–3585Google Scholar
  77. 77.
    Gilman H, Gorsich RD (1955) A silicon analog of 9,9-diphenylfluorene. J Am Chem Soc 77:6380–6381CrossRefGoogle Scholar
  78. 78.
    Gilman H, Gorsich RD (1958) Cyclic organosilicon compounds. I. Synthesis of compounds containing the dibenzosilole nucleus. J Am Chem Soc 80:1883–1886Google Scholar
  79. 79.
    Ohshita J, Nodono M, Watanabe T, Ueno Y, Kunai A, Harima Y, Yamashita K, Ishikawa M (1998) J Organomet Chem 553:487–491CrossRefGoogle Scholar
  80. 80.
    Ohshita J, Nodono M, Kai H, Watanabe T, Kunai A, Komaguchi K, Shiotani M, Adachi A, Okita K, Harima Y, Yamashita K, Ishikawa M (1999) Synthesis and optical, electrochemical, and electron-transporting properties of silicon-bridged bithiophenes. Organometallics 18:1453–1459CrossRefGoogle Scholar
  81. 81.
    Ohshita J, Kai H, Takata A, Iida T, Kunai K, Ohta N, Komaguchi K, Shiotani M, Adachi A, Sakamaki K, Okita K (2001) Effects of conjugated substituents on the optical, electrochemical, and electron-transporting properties of dithienosiloles. Organometallics 20:4800–4805CrossRefGoogle Scholar
  82. 82.
    Lee IS, Kim SJ, Kwak YW, Choi MC, Park JW, Ha CS (2008) Synthesis of 2,6-diaryl-4,4-diphenyldithienosiloles and their luminescent properties. J Ind Eng Chem 14:344–349CrossRefGoogle Scholar
  83. 83.
    Kim DH, Ohshita J, Lee KH, Kunugi Y, Kunai A (2006) Synthesis of π-conjugated oligomers containing dithienosilole units. Organometallics 25:1511–1516CrossRefGoogle Scholar
  84. 84.
    Shimizu M, Tatsumi H, Mochida K, Oda K, Hiyama T (2008) Silicon-bridge effects on photophysical properties of silafluorenes. Chem Asian J 3:1238–1247CrossRefGoogle Scholar
  85. 85.
    Ilies L, Tsuji H, Sato Y, Nakamura E (2008) Modular synthesis of functionalized benzosiloles by tin-mediated cyclization of (o-alkynylphenyl)silane. J Am Chem Soc 130:4240–4241CrossRefGoogle Scholar
  86. 86.
    Ilies L, Tsuji H, Nakamura E (2009) Synthesis of benzo[b]siloles via KH-promoted cyclization of (2-alkynylphenyl)silanes. Org Lett 11:3966–3968CrossRefGoogle Scholar
  87. 87.
    Shimizu M, Mochida K, Hiyama T (2008) Modular approach to silicon-bridged biaryls: palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates. Angew Chem Int Ed 47:9760–9764CrossRefGoogle Scholar
  88. 88.
    Yamaguchi S, Xu C, Tamao K (2003) Bis-silicon-bridged stilbene homologues synthesized by new intramolecular reductive double cyclization. J Am Chem Soc 125:13662–13663CrossRefGoogle Scholar
  89. 89.
    Xu C, Wakamiya A, Yamaguchi S (2005) Ladder oligo(p-phenylenevinylene)s with silicon and carbon bridges. J Am Chem Soc 127:1638–1639CrossRefGoogle Scholar
  90. 90.
    Yamaguchi S, Xu C, Yamada H, Wakamiya A (2005) Synthesis, structures, and photophysical properties of silicon and carbon-bridged ladder oligo(p-phenylenevinylene)s and related π-electron systems. J Organomet Chem 690:5365–5377CrossRefGoogle Scholar
  91. 91.
    Fukazawa A, Li Y, Yamaguchi S, Tsuji H, Tamao K (2007) Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. J Am Chem Soc 129:14164–14165CrossRefGoogle Scholar
  92. 92.
    Guay J, Diaz A, Wu R, Tour JM (1993) Electrochemical and electronic properties of neutral and oxidized soluble orthogonally fused thiophene oligomers. J Am Chem Soc 115:1869–1874CrossRefGoogle Scholar
  93. 93.
    Aviram A (1988) Molecules for memory, logic, and amplification. J Am Chem Soc 110: 5687–5692CrossRefGoogle Scholar
  94. 94.
    Tour JM, Wu R, Schumm JS (1991) Extended orthogonally fused conducting oligomers for molecular electronic devices. J Am Chem Soc 113:7064–7066CrossRefGoogle Scholar
  95. 95.
    Lee SH, Jang BB, Kafafi ZH (2005) Highly fluorescent solid-state asymmetric spirosilabifluorene derivatives. J Am Chem Soc 127:9071–9078CrossRefGoogle Scholar
  96. 96.
    Shumilkina EA, Borschev OV, Ponomarenko SA, Surin NM, Pleshkova AP, Muzafarov AM (2007) Synthesis and optical properties of linear and branched bithienylsilanes. Mendeleev Commun 17:34–36CrossRefGoogle Scholar
  97. 97.
    Lukevics E, Ryabova V, Arsenyan P, Belyakov S, Popelis J, Pudova O (2000) Bithienylsilanes: unexpected structure and reactivity. J Organomet Chem 610:8–15CrossRefGoogle Scholar
  98. 98.
    Schwarzer A, Schilling IC, Seichter W, Weber E (2009) Synthesis and X-ray crystal structures of new tetrahedral arylethynyl substituted silanes. Silicon 1:3–12CrossRefGoogle Scholar
  99. 99.
    Tang H, Zhu L, Harima Y, Yamashita K, Lee KK, Naka A, Ishikawa M (2000) Strong fluorescence of nano-size star-like molecules. J Chem Soc Perkin Trans 2:1976–1979CrossRefGoogle Scholar
  100. 100.
    Ishikawa M, Lee KK, Schneider W, Naka A, Yamabe T, Harima Y, Takeuchi T (2000) Synthesis and properties of nanosize starlike silicon compounds. Organometallics 19:2406–2407CrossRefGoogle Scholar
  101. 101.
    Ishikawa M, Teramura H, Lee KK, Schneider W, Naka A, Kobayashi H, Yamaguchi Y, Kikugawa M, Ohshita J, Kunai A, Tang H, Harima Y, Yamabe T, Takeuchi T (2001) Nanosized, starlike silicon compounds. synthesis and optical properties of tris[(tert-butyldimethylsilyl)oligothienylenedimethylsilyl] methylsilanes. Organometallics 20:5331–5341CrossRefGoogle Scholar
  102. 102.
    Arsenyan P, Pudova O, Popelis J, Lukevics E (2004) Novel radial oligothienyl silanes. Tetrahedron Lett 45:3109–3111CrossRefGoogle Scholar
  103. 103.
    Roncali J, Thobie-Gautier C, Brisset H, Favart JF, Guy A (1995) Electro-oxidation of tetra(terthienyl)silanes: towards 3D electroactive π-conjugated systems. J Electroanal Chem 381:257–260CrossRefGoogle Scholar
  104. 104.
    Garnier F, Yassar A, Hajlaoui R, Horowitz G, Deloffre F, Servet B, Ries S, Alnot P (1993) Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers. J Am Chem Soc 115:8716–8721CrossRefGoogle Scholar
  105. 105.
    Roquet S, de Bettignies R, Leriche P, Cravino A, Roncali J (2006) Three-dimensional tetra(oligothienyl)silanes as donor material for organic solar cells. J Mater Chem 16:3040–3045CrossRefGoogle Scholar
  106. 106.
    Kleimyuk EA, Luponosov YN, Troshin PA, Khakina EA, Moskvin YL, Egginger M, Peregudova SM, Babenko SD, Razumov VF, Sariciftci NS, Muzafarov AM, Ponomarenko SA (2010) Three dimensional quater- and quinquethiophensilanes as promising electron donor materials for bulk heterojunction photovoltaic cells. J Mater Chem (submitted)Google Scholar
  107. 107.
    Ponomarenko SA, Tatarinova EA, Muzafarov AM, Kirchmeyer S, Brassat L, Mourran A, Moeller M, Setayesh S, de Leeuw DM (2006) Star-shaped oligothiophenes for solution-processible organic electronics: flexible aliphatic spacers approach. Chem Mater 18:4101–4108CrossRefGoogle Scholar
  108. 108.
    Kirchmeyer S, Meyer-Friedrichsen T, Elschner A, Gaiser D, Lövenich W, Jonas F, Ponomarenko SA, Jang J (2008) Materials for organic electronics: conductors and semiconductors designed for wet processing. Proc SPIE 7054:705402CrossRefGoogle Scholar
  109. 109.
    Mourran A, Defaux M, Luponosov YN, Ponomarenko SA, Muzafarov AM, Moeller M (2010) Film-formation of quaterthiophene derivatives and its multipods having branched 2-ethylhexyl end-groups. Thin Solid Films (submitted)Google Scholar
  110. 110.
    Troshin PA, Ponomarenko SA, Luponosov YN, Khakina EA, Egginger M, Meyer-Friedrichsen T, Elschner A, Peregudova SM, Buzin MI, Razumov VF, Sariciftci NS, Muzafarov AM (2010) Efficient solution-processible organic solar cells utilizing quaterthiophene-based multipods as electron donor materials. Solar Energy Materials & Solar Cells (submitted)Google Scholar
  111. 111.
    Kim C, Kim M (1998) Synthesis of carbosilane dendrimers based on tetrakis (phenylethynyl)silane. J Organomet Chem 563:43–51CrossRefGoogle Scholar
  112. 112.
    Apperloo JJ, Janssen RAJ, Malenfant PRL, Fréchet JMJ (2000) Concentration-dependent thermochromism and supramolecular aggregation in solution of triblock copolymers based on lengthy oligothiophene cores and poly(benzyl ether) dendrons. Macromolecules 33:7038–7043CrossRefGoogle Scholar
  113. 113.
    Adronov A, Malenfant PRL, Fréchet JMJ (2000) Synthesis and steady-state photophysical properties of dye-labeled dendrimers having novel oligothiophene cores: a comparative study. Chem Mater 12:1463–1472CrossRefGoogle Scholar
  114. 114.
    Wang F, Kon AB, Rauh RD (2000) Synthesis of a terminally functionalized bromothiophene polyphenylene dendrimer by a divergent method. Macromolecules 33:5300–5302CrossRefGoogle Scholar
  115. 115.
    Deng S, Locklin J, Patton D, Baba A, Advincula RC (2005) Thiophene dendron jacketed poly(amidoamine) dendrimers: nanoparticle synthesis and adsorption on graphite. J Am Chem Soc 127:1744–1751CrossRefGoogle Scholar
  116. 116.
    Sebastian RM, Caminade AM, Majoral JP, Levillain E, Huchet L, Roncali J (2000) Electrogenerated poly(dendrimers) containing conjugated poly(thiophene) chains. Chem Commun 507–508Google Scholar
  117. 117.
    Zhang Y, Zhao C, Yang J, Kapiamba M, Haze O, Rothberg LJ, Ng MK (2006) Synthesis, optical, and electrochemical properties of a new family of dendritic oligothiophenes. J Org Chem 71:9475–9483CrossRefGoogle Scholar
  118. 118.
    Mitchell WJ, Kopidakis N, Rumbles G, Ginley DS, Shaheen SE (2005) The synthesis and properties of solution processable phenyl cored thiophene dendrimers. J Mater Chem 15:4518–4528CrossRefGoogle Scholar
  119. 119.
    Xia C, Fan X, Locklin J, Advincula RC (2002) A first synthesis of thiophene dendrimers. Org Lett 4:2067–2070CrossRefGoogle Scholar
  120. 120.
    Xia C, Fan X, Locklin J, Advincula RC, Gies A, Nonidez W (2004) Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. J Am Chem Soc 126:8735–8743CrossRefGoogle Scholar
  121. 121.
    Ma CQ, Mena-Osteritz E, Debaerdemaeker T, Wienk MM, Janssen RAJ, Bäuerle P (2007) Functionalized 3D oligothiophene dendrons and dendrimers: novel macromolecules for organic electronics. Angew Chem Int Ed 46:1679–1683CrossRefGoogle Scholar
  122. 122.
    Ma CQ, Fonrodona M, Schikora MC, Wienk MM, Janssen RAJ, Bäuerle P (2008) Solution-processed bulk-heterojunction solar cells based on monodisperse dendritic oligothiophenes. Adv Funct Mater 18:3323–3331CrossRefGoogle Scholar
  123. 123.
    Nakayama J, Lin JS (1997) An organosilicon dendrimer composed of 16 thiophene rings. Tetrahedron Lett 38:6043–6046CrossRefGoogle Scholar
  124. 124.
    Ponomarenko SA, Muzafarov AM, Borshchev OV, Vodopyanov EA, Demchenko NV, Myakushev VD (2005) Synthesis of bithiophenesilane dendrimer of the first generation. Russ Chem Bull 3:684–690CrossRefGoogle Scholar
  125. 125.
    Borshchev OV, Ponomarenko SA, Surin NM, Kaptyug MM, Buzin MI, Pleshkova AP, Demchenko NV, Myakushev VD, Muzafarov AM (2007) Bithiophenesilane dendrimers: synthesis and thermal and optical properties. Organometallics 26:5165–5173CrossRefGoogle Scholar
  126. 126.
    Luponosov YN, Ponomarenko SA, Surin NM, Muzafarov AM (2008) Facile synthesis and optical properties of bithiophenesilane monodendrons and dendrimers. Org Lett 10:2753–2756CrossRefGoogle Scholar
  127. 127.
    Gunawidjaja R, Luponosov YN, Huang F, Ponomarenko SA, Muzafarov AM, Tsukruk VV (2009) Photoluminescence and molecular ordering of functionalized bithiophenesilane monodendrons. Langmuir 25:9270–9284CrossRefGoogle Scholar
  128. 128.
    Surin NM, Borshchev OV, Luponosov YN, Ponomarenko SA, Muzafarov AM (2010) Spectral-luminescent properties of oligothiophenesilane dendritic macromolecules. Russ J Phys Chem A (accepted)Google Scholar
  129. 129.
    Luponosov YN, Ponomarenko SA, Surin NM, Borshchev OV, Shumilkina EA, Muzafarov AM (2009) The first organosilicon molecular antennas. Chem Mater 21:447–455CrossRefGoogle Scholar
  130. 130.
    Borshchev OV, Ponomarenko SA, Shumilkina EA, Luponosov YN, Surin NM, Muzafarov AM (2010) Branched oligothiophenesilanes with effective non-radiative energy transfer between the fragments. Russ Chem Bull (4) (accepted)Google Scholar
  131. 131.
    Xu Z, Moore JS (1994) Design and synthesis of a convergent and directional molecular antenna. Acta Polymer 45:83–87CrossRefGoogle Scholar
  132. 132.
    Borschev OV (2007) Oligothiophenesilane dendrimers of the first generation: synthesis, optical and thermal properties. PhD Thesis, MoscowGoogle Scholar
  133. 133.
    You Y, An C, Lee D, Kim J, Park SY (2006) Silicon-containing dendritic tris-cyclometalated Ir(III) complex and its electrophosphorescence in a polymer host. J Mater Chem 16:4706–4713CrossRefGoogle Scholar
  134. 134.
    Ponomarenko SA, Tatarinova EA, Meyer-Friedrichsen T, Kirchmeyer S, Setayesh S, de Leeuw DM, Magonov SN, Muzafarov AM (2007) Solution processible quaterthiophene-containing carbosilane dendrimers. Polym Mater Sci Eng 96:298–299Google Scholar
  135. 135.
    Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275CrossRefGoogle Scholar
  136. 136.
    Yao J, Son DY (1999) Hyperbranched poly(2,5-silylthiophenes). The possibility of σ-π conjugation in three dimensions. Organometallics 18:1736–1740Google Scholar
  137. 137.
    Ponomarenko S, unpublished resultsGoogle Scholar
  138. 138.
    Xiao Y, Wong RA, Son DY (2000) Synthesis of a new hyperbranched poly(silylenevinylene) with ethynyl functionalization. Macromolecules 33:7232–7234CrossRefGoogle Scholar
  139. 139.
    Yoon K, Son DY (1999) Syntheses of hyperbranched poly(carbosilarylenes). Macromolecules 32:5210–5216CrossRefGoogle Scholar
  140. 140.
    Chen J, Peng H, Law CCW, Dong Y, Lam JWY, Williams ID, Tang BZ (2003) Hyperbranched poly(phenylenesilolene)s: synthesis, thermal stability, electronic conjugation, optical power limiting, and cooling-enhanced light emission. Macromolecules 36:4319–4327CrossRefGoogle Scholar
  141. 141.
    Chen J, Xie Z, Lam JWY, Law CCW, Tang BZ (2003) Silole-containing polyacetylenes. synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation. Macromolecules 36:1108–1117CrossRefGoogle Scholar
  142. 142.
    Kirchmeyer S, Ponomarenko S, Muzafarov A (2008) Macromolecular compounds with a core-shell structure. US patent 7,420,645Google Scholar
  143. 143.
    Masuda T, Higashimura T (1989) Synthesis and properties of silicon-containing polyacetylenes. In: Zeigler JM, Fearon FWG (eds) Silicon-based polymer science. Advances in chemistry, vol 224, pp 641–661, chapter doi: 10.1021/ba-1990–0224.ch035Google Scholar
  144. 144.
    Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105:7473–7474CrossRefGoogle Scholar
  145. 145.
    Savoca AC, Surnamer AD, Tien CF (1993) Gas transport in poly(silylpropynes): the chemical structure point of view. Macromolecules 26:6211–6216CrossRefGoogle Scholar
  146. 146.
    Yampolskii YP, Korikov AP, Shantarovich VP, Nagai K, Freeman BD, Masuda T, Teraguchi M, Kwak G (2001) Gas permeability and free volume of highly branched substituted acetylene polymers. Macromolecules 34:1788–1796CrossRefGoogle Scholar
  147. 147.
    Kusumota T, Hiyama T. (1988) Polymerization of monomers containing two ethynyldimethylsilyl groups. Chem Lett 1149–1152Google Scholar
  148. 148.
    Chen J, Xie Z, Lam JWY, Law CCW, Zhong B (2003) Tang silole-containing polyacetylenes. synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation. Macromolecules 36:1108–1117CrossRefGoogle Scholar
  149. 149.
    Lee YB, Shim HK, Ko SW (2003) Silyl-substituted poly(thienylenevinylene) via heteroaromatic dehydrohalogenation polymerization. Macromol Rapid Commun 24:522–526CrossRefGoogle Scholar
  150. 150.
    Höger S, McNamara JJ, Schricker S, Wudl F (1994) Novel silicon-substituted, soluble poly(phenyleneviny1ene)s: enlargement of the semiconductor bandgap. Chem Mater 6: 171–173CrossRefGoogle Scholar
  151. 151.
    Zhang C, Höger S, Pakbaz K, Wudl F, Heeger AJ (1994) Improved efficiency in green polymer light-emitting diodes with air-stable electrodes. J Electron Mater 23:453–458CrossRefGoogle Scholar
  152. 152.
    Hwang DH, Shim HK, Lee JI, Lee KS (1994) Synthesis and properties of multifunctional poly(2-trimethylsilyl-1,4-phenylenevinylene): a novel, silicon-substituted, soluble PPV derivative. J Chem Soc Chem Commun 2461–2462Google Scholar
  153. 153.
    Kim ST, Hwang DH, Li XC, Grüner J, Friend RH, Holmes AB, Shim HK (1996) Efficient green electroluminescent diodes based on poly(2-dimethyloctylsilyl-1,4-phenylenevinylene). Adv Mater 8:979–982CrossRefGoogle Scholar
  154. 154.
    Greenham NC, Samuel IDW, Hayes GR, Philips RT, Kessener YARR, Moratti SC, Holmes AB, Friend RH (1995) Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem Phys Lett 241:89–96CrossRefGoogle Scholar
  155. 155.
    Hwang DH, Kim ST, Shim HK, Holmes AB, Moratti SC, Friend RH (1996) Green light-emitting diodes from poly(2-dimethyloctylsilyl-1,4-phenylenevinylene). Chem Commun 2241–2242Google Scholar
  156. 156.
    Kim ST, Hwang DH, Holmes AB, Friend RH, Shim HK (1997) Green electroluminescent characteristics of poly(2-dimethyloctylsilyl-1,4-phenylenevinylene). Synth Met 84:655–656CrossRefGoogle Scholar
  157. 157.
    Hwang DH, Kim ST, Shim HK, Holmes AB, Moratti SC, Friend RH (1997) Highly efficient green light-emitting diodes with aluminium cathode. Synth Met 84:615–618CrossRefGoogle Scholar
  158. 158.
    Pei Q, Yu G, Zhang C, Yang Y, Heeger AJ (1995) Polymer light-emitting electrochemical cells. Science 269:1086–1088CrossRefGoogle Scholar
  159. 159.
    Ahn T, Ko SW, Lee J, Shim HK (2002) Novel cyclohexylsilyl- or phenylsilyl-substituted poly(p-phenylene vinylene)s via the halogen precursor route and gilch polymerization. Macromolecules 35:3495–3505CrossRefGoogle Scholar
  160. 160.
    Hwang DH, Kang IN, Lee JI, Do LM, Chu HY, Zyung T, Shim HK (1998) Synthesis and properties of silyl-substituted PPV derivative through two different precursor polymers. Polymer Bull 41:275–283CrossRefGoogle Scholar
  161. 161.
    Chen ZK, Wang LH, Kang ET, Huang W (1999) Intense green light from a silyl-substituted poly(p-phenylenevinylene)-based light-emitting diode with air-stable cathode. Phys Chem Chem Phys 1:3789–3792CrossRefGoogle Scholar
  162. 162.
    Chen ZK, Huang W, Wang LH, Kang ET, Chen BJ, Lee CS, Lee ST (2000) Family of electroluminescent silyl-substituted poly(p-phenylenevinylene)s: synthesis, characterization, and structure-property relationships. Macromolecules 33:9015–9025CrossRefGoogle Scholar
  163. 163.
    Chu HY, Hwang DH, Do LM, Chang JH, Shim HK, Holmes AB, Zyung T (1999) Electroluminescence from silyl-disubstitutd PPV derivative. Synth Met 101:216–217CrossRefGoogle Scholar
  164. 164.
    Wang LH, Chen ZK, Kang ET, Meng H, Huang W (1999) Synthesis, spectroscopy and electrochemistry study on a novel di-silyl substituted poly(p-phenylenevinylene). Synth Met 105:85–89CrossRefGoogle Scholar
  165. 165.
    Geneste F, Fischmeister C, Martin RE, Holmes AB (2001) Ortho-methallation as a key step to the synthesis of silyl-substituted poly(p-phenylenevinylene). Synth Met 121:1709–1710CrossRefGoogle Scholar
  166. 166.
    Rost H, Chuah BS, Hwang DH, Moratti SC, Holmes AB, Wilson J, Morgado J, Halls JJM, de Mello JC, Friend RH (1999) Novel luminescent polymers. Synth Met 102:937–938CrossRefGoogle Scholar
  167. 167.
    Martin RE, Geneste F, Riehn R, Chuah BS, Cacialli F, Holmes AB, Friend RH (2001) Efficient electroluminescent poly(p-phenylenevinylene) copolymers for application in LEDs. Synth Met 119:43–44CrossRefGoogle Scholar
  168. 168.
    Martin RE, Geneste F, Chuah BS, Fischmeister C, Ma Y, Holmes AB, Riehn R, Cacialli F, Friend RH (2001) Versatile synthesis of various conjugated aromatic homo- and copolymers. Synth Met 122:1–5CrossRefGoogle Scholar
  169. 169.
    Ahn T, Jang MS, Shim HK, Hwang DH, Zyung T (1999) Blue electroluminescent polymers: control of conjugation length by kink linkages and substituents in the poly(p-phenylenevinylene)-related copolymers. Macromolecules 32:3279–3285CrossRefGoogle Scholar
  170. 170.
    Shim HK, Song SY, Ahn T (2000) Efficient and blue light-emitting polymers composed of conjugated main chain. Synth Met 111/112:409–412CrossRefGoogle Scholar
  171. 171.
    Ahn T, Song SY, Shim HK (2000) Highly photoluminescent and blue-green electroluminescent polymers: new silyl- and alkoxy-substituted poly(p-phenylenevinylene) related copolymers containing carbazole or fluorene groups. Macromolecules 33:6764–6771CrossRefGoogle Scholar
  172. 172.
    Lee JH, Yu HS, Kim W, Gal YS, Park JH, Jin SH (2000) Synthesis and characterization of a new green-emitting poly(phenylenevinylene) derivative containing alkylsilylphenyl pendant. J Polym Sci A Polym Chem 38:4185–4193CrossRefGoogle Scholar
  173. 173.
    Jin SH, Jang MS, Suh HS, Cho HN, Lee JH, Gal YS (2002) Synthesis and characterization of highly luminescent asymmetric poly(p-phenylene vinylene) derivatives for light-emitting diodes. Chem Mater 14:643–665CrossRefGoogle Scholar
  174. 174.
    Jin SH, Jung HH, Hwang CK, Koo DS, Shin WS, Kim YI, Lee JW, Gal YS (2005) High electroluminescent properties of conjugated copolymers from poly[9,9-dioctylfluorenyl-2,7-vinylene]-co-(2-(3-dimethyldodecylsilylphenyl)-1,4-phenylene vinylene)] for light-emitting diode applications. J Polym Sci A Polym Chem 43:5062–5071CrossRefGoogle Scholar
  175. 175.
    Ko SW, Jung BJ, Ahn T, Shim HK (2002) Novel poly(p-phenylenevinylene)s with an electron-withdrawing cyanophenyl group. Macromolecules 35:6217–6223CrossRefGoogle Scholar
  176. 176.
    Ishikawa M, Ohshita J (1997) Silicon and germanium containing conductive polymers. In: Nalwa NS (ed) Conductive polymers. Handbook of organic conductive molecules and polymers vol 2. Wiley, New YorkGoogle Scholar
  177. 177.
    Ohshita J, Kunai A (1998) Polymers with alternating organosilicon and π-conjugated units. Acta Polym 49:379–403CrossRefGoogle Scholar
  178. 178.
    Nate K, Ishikawa M, Ni H, Watanabe H, Saheki Y (1987) Photolysis of polymeric organosilicon systems. 4. Photochemical behavior of poly[p-(disilanylene)phenylene]. Organometallics 6:1673–1679CrossRefGoogle Scholar
  179. 179.
    Ohshita J, Kanaya D, Ishikawa M, Koike T, Yamanaka T (1991) Polymeric organosilicon systems. 10. Synthesis and conducting properties of poly[2,5-(disilanylene)thienylenes]. Macromolecules 24:2106–2107CrossRefGoogle Scholar
  180. 180.
    Chichart P, Corriu RJP, Moreau JJE, Garnier F, Yassar A (1991) Selective synthetic routes to electroconductive organosilicon polymers containing thiophene units. Chem Mater 3:8–10CrossRefGoogle Scholar
  181. 181.
    Yi SH, Nagase J, Sato H (1993) Synthesis and characterization of soluble organosilicon polymers containing regularly repeated thiophene or terthiophene units. Synth Met 58:353–365CrossRefGoogle Scholar
  182. 182.
    Ohshita J, Watanabe T, Kanaya D, Ohsaki H, Ishikawa M, Ago H, Tanaka K, Yamabe T (1994) Polymeric organosilicon systems. 22. Synthesis and photochemical properties of poly[(disilanylene)oligophenylylenes] and poly[(silylene)biphenylylenes]. Organometallics 13:5002–5012CrossRefGoogle Scholar
  183. 183.
    Kunai A, Ueda T, Horata K, Toyoda E, Nagamoto I, Ohshita J, Ishikawa M, Tanaka K (1996) Polymeric organosilicon systems. 26. Synthesis and photochemical and conducting properties of poly[(tetraethyldisilanylene)oligo(2,5-thienylenes)]. Organometallics 15:2000–2008CrossRefGoogle Scholar
  184. 184.
    Yi SH, Ohashi S, Sato H, Nomori H (1993) Syntheses and electrical properties of organosilicon polymers containing thiophene and anthraquinone units bull. Chem Soc Jpn 66:1244–1247CrossRefGoogle Scholar
  185. 185.
    Ohshita J, Kim DH, Kunugi Y, Kunai A (2005) Synthesis of organosilanylene-oligothienylene alternate polymers and their applications to EL and FET materials. Organometallics 24:4494–4496CrossRefGoogle Scholar
  186. 186.
    Ohshita J, Sugimoto K, Kunai A, Harima Y, Yamashita K (1999) Electrochemical and optical properties of poly[(disilanylene)oligophenylenes], peculiar behavior in the solid state. J Organomet Chem 580:77–81CrossRefGoogle Scholar
  187. 187.
    Adachi A, Manhart SA, Okita K, Kido J, Ohshita J, Kunai A (1997) Multilayer electroluminescent device using organosilicon polymer as hole transport layer. Synth Met 91:333–334CrossRefGoogle Scholar
  188. 188.
    He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R, Salbeck J (2004) High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers. Appl Phys Lett 85:3911–3913CrossRefGoogle Scholar
  189. 189.
    Manhart SA, Adachi A, Sakamaki K, Okita K, Ohshita J, Ohno T, Hamaguchi T, Kunai A, Kido J (1999) Synthesis and properties of organosilicon polymers containing 9,10-diethynylanthracene units with highly hole-transporting properties. J Organomet Chem 592:52–60CrossRefGoogle Scholar
  190. 190.
    Suzuki H, Satoh S, Kimata Y, Kuriyama A (1995) Synthesis and properties of poly(methylphenylsilane) containing anthracene units. Chem Lett 451–452Google Scholar
  191. 191.
    Ohshita J, Takata A, Kai H, Kunai A, Komaguchi K, Shiotani M, Adachi A, Sakamaki K, Okita K, Harima Y, Kunugi Y, Yamashita K, Ishikawa M (2000) Synthesis of polymers with alternating organosilanylene and oligothienylene units and their optical, conducting, and hole-transporting properties. Organometallics 19:4492–4498CrossRefGoogle Scholar
  192. 192.
    Kunugi Y, Harima Y, Yamashita K, Ohshita J, Kunai A, Ishikawa M (1996) Electrochemical anion doping of poly[(tetraethyldisilanylene) oligo(2,5-thienylene)] derivatives and their p-type semiconducting properties. J Electroanal Chem 414:135–139Google Scholar
  193. 193.
    Malliaras GG, Hadziioannou G, Herrema JK, Wildeman J, Wieringa RH, Gill RE, Lampoura SS (1993) Tuning of the photo- and electroluminescence in multi-block copolymers of poly[(silanylene)thiophene]s via exciton confinement. Adv Mater 5:721–723CrossRefGoogle Scholar
  194. 194.
    Ohshita J, Yoshimoto K, Hashimoto M, Hamamoto D, Kunai A, Harima Y, Kunugi Y, Yamashita K, Kakimoto M, Ishikawa M (2003) Synthesis of organosilanylene–pentathienylene alternating polymers and their application to the hole-transporting materials in double-layer electroluminescent devices. J Organomet Chem 665:29–32CrossRefGoogle Scholar
  195. 195.
    Tang H, Zhu L, Harima Y, Kunugi Y, Yamashita K, Ohshita J, Kunai A (2000) Optical study on electrochemical and chemical doping of polymers of oligothienyls bridged by monosilyl. Electrochim Acta 45:2771–2780CrossRefGoogle Scholar
  196. 196.
    Kunugi Y, Harima Y, Yamashita K, Ohshita J, Kunai A, Ishikawa M (1996) Electrochemical anion doping of poly[(tetraethyldisilanylene) oligo(2,5-thienylene)] derivatives and their p-type semiconducting properties. J Electroanal Chem 414:135–139Google Scholar
  197. 197.
    Harima Y, Zhu L, Tang H, Yamashita K, Takata A, Ohshita J, Kunai A, Ishikawa M (1998) Electrochemical cleavage of a Si–Si bond in poly[(tetraethyldisilanylene) oligo(2,5-thienylene)] films. Synth Met 98:79–81CrossRefGoogle Scholar
  198. 198.
    Tang H, Zhu L, Harima Y, Yamashita K, Ohshita J, Kunai A, Ishikawa M (1999) Electrochemistry and spectroelectrochemistry of poly[(tetraethyldisilanylene)quinque (2,5-thienylene)]. Electrochim Acta 44:2579–2587CrossRefGoogle Scholar
  199. 199.
    Bokria JG, Kumar A, Seshadri V, Tran A, Sotzing GA (2008) Solid-state conversion of processable 3,4-ethylenedioxythiophene (EDOT) containing poly(arylsilane) precursors to π-conjugated conducting polymers. Adv Mater 20:1175–1178CrossRefGoogle Scholar
  200. 200.
    Sotzing GA (2007) Conductive polymers from precursor polymers, method of making, and use thereof. US Patent Application US20070191576Google Scholar
  201. 201.
    Ohshita J, Nodono M, Watanabe T, Ueno Y, Kunai A, Harima Y, Yamashita K, Ishikawa M (1998) Synthesis and properties of dithienosiloles. J Organomet Chem 55:487–491CrossRefGoogle Scholar
  202. 202.
    Ohshita J, Nodono M, Takata A, Kai H, Adachi A, Sakamaki K, Okita K, Kunai A (2000) Synthesis and properties of alternating polymers containing 2,6-diaryldithienosilole and organosilicon units. Macromol Chem Phys 201:851–857CrossRefGoogle Scholar
  203. 203.
    Usta H, Lu G, Facchetti A, Marks TJ (2006) Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. J Am Chem Soc 128:9034–9035CrossRefGoogle Scholar
  204. 204.
    Lu G, Usta H, Risko C, Wang L, Facchetti A, Ratner MA, Marks TJ (2008) Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. experiment and theory. J Am Chem Soc 130:7670–7685CrossRefGoogle Scholar
  205. 205.
    Ohshita J, Kimura K, Lee KH, Kunai A, Kwak YW, Son EC, Kunugi Y (2007) Synthesis of silicon-bridged polythiophene derivatives and their applications to EL device materials. J Polym Sci A Polym Chem 45:4588–4596CrossRefGoogle Scholar
  206. 206.
    Chan KL, McKiernan MJ, Towns CR, Holmes AB (2005) Poly(2,7-dibenzosilole): a blue light emitting polymer. J Am Chem Soc 127:7662–7663CrossRefGoogle Scholar
  207. 207.
    Liu MS, Luo J, Jen AKY (2003) Efficient green-light-emitting diodes from silole-containing copolymers. Chem Mater 15:3496–3500CrossRefGoogle Scholar
  208. 208.
    Mo Y, Tian R, Shi W, Cao Y (2005) Ultraviolet-emitting conjugated polymer poly(9,9-alkyl-3,6-silafluorene) with a wide band gap of 4.0 eV. Chem Commun 4925–4926Google Scholar
  209. 209.
    Yang W, Hou Q, Liu C, Niu Y, Huang J, Yang R, Cao Y (2003) Improvement of color purity in blue-emitting polyfluorene by copolymerization with dibenzothiophene. J Mater Chem 13:1351–1355CrossRefGoogle Scholar
  210. 210.
    Janietz S, Bradley DDC, Grell M, Giebeler C, Inbasekaran M, Woo EP (1998) Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene). Appl Phys Lett 73:2453CrossRefGoogle Scholar
  211. 211.
    Chan KL, Watkins SE, Mak CSK, McKiernan MJ, Towns CR, Pascu SI, Holmes AB (2005) Poly(9,9-dialkyl-3,6-dibenzosilole): a high energy gap host for phosphorescent light emitting devices. Chem Commun 5766–5768Google Scholar
  212. 212.
    Scherf U, List EJW (2002) Semiconducting polyfluorenes: towards reliable structure-property relationships. Adv Mater 14:477–487CrossRefGoogle Scholar
  213. 213.
    van Dijken A, Bastiaansen JJAM, Kiggen NMM, Langeveld BMW, Rothe C, Monkman A, Bach I, Stössel P, Brunner K (2004) Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes. J Am Chem Soc 126:7718–7727CrossRefGoogle Scholar
  214. 214.
    S Yamaguchi, T Endo, M Uchida, T Izumizawa, K Furukawa, K Tamao (2000) Toward new materials for organic electroluminescent devices: synthesis, structures, and properties of a series of 2, 5-diaryl-3,4-diphenylsiloles. Chem Eur J 6:1683–1692CrossRefGoogle Scholar
  215. 215.
    Kawamura Y, Yanagida S, Forrest SR (2002) Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. J Appl Phys 92:87CrossRefGoogle Scholar
  216. 216.
    Wang E, Li C, Mo Y, Zhang Y, Ma G, Shi W, Peng J, Yang W, Cao Y (2006) Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability. J Mater Chem 16:4133–4140, Doi: http://dx.doi.org/10.1039/b609250kGoogle Scholar
  217. 217.
    Wang E, Li C, Peng J, Cao Y (2007) High-efficiency blue light-emitting polymers based on 3,6-silafluorene and 2,7-silafluorene. J Polym Sci A Polym Chem 45:4941–4949CrossRefGoogle Scholar
  218. 218.
    Wang F, Luo J, Yang K, Chen J, Huang F, Cao Y (2005) Conjugated fluorene and silole copolymers: synthesis, characterization, electronic transition, light emission, photovoltaic cell, and field effect hole mobility. Macromolecules 38:2253–2260CrossRefGoogle Scholar
  219. 219.
    Wang Y, Hou L, Yang K, Chen J, Wang F, Cao Y (2005) Conjugated silole and carbazole copolymers: synthesis, characterization, single-layer light-emitting diode, and field effect carrier mobility. Macromol Chem Phys 206:2190–2198CrossRefGoogle Scholar
  220. 220.
    Wang E, Li C, Zhuang W, Peng J, Cao Y (2008) High-efficiency red and green light-emitting polymers based on a novel wide bandgap poly(2,7-silafluorene). J Mater Chem 18:797–801CrossRefGoogle Scholar
  221. 221.
    Horst S, Evans NR, Bronstein HA, Williams CK (2009) Synthesis of fluoro-substituted silole-containing conjugated materials. J Polym Sci A Polym Chem 47:5116–5125CrossRefGoogle Scholar
  222. 222.
    Wang E, Wang L, Lan L, Luo C, Zhuang W, Peng J, Cao Y (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett 92:033307CrossRefGoogle Scholar
  223. 223.
    Liao L, Dai L, Smith A, Durstock M, Lu J, Ding J, Tao Y (2007) Photovoltaic-active dithienosilole-containing polymers. Macromolecules 40:9406–9412CrossRefGoogle Scholar
  224. 224.
    Hou J, Chen HY, Zhang S, Li G, Yang Y (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc 130:16144–16145CrossRefGoogle Scholar
  225. 225.
    Huo L, Chen HY, Hou J, Chen TL, Yang Y (2009) Low band gap dithieno[3,2-b:2, 3-d]silole-containing polymers, synthesis, characterization and photovoltaic application. Chem Commun 5570–5572Google Scholar
  226. 226.
    Ohshita J, Nodono M, Watanabe T, Ueno Y, Kunai A, Harima Y, Yamashita K, Ishikawa M (1998) Synthesis and properties of dithienosiloles. J Organomet Chem 553:487–491CrossRefGoogle Scholar
  227. 227.
    Zhu Z, Waller D, Gaudiana R, Morana M, Mühlbacher D, Scharber M, Brabec C (2007) Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules 40:1981–1986CrossRefGoogle Scholar
  228. 228.
    Beaujuge PM, Pisula W, Tsao HN, Ellinger S, Müllen K, Reynolds JR (2009) Tailoring structure-property relationships in dithienosilole-benzothiadiazole donor-acceptor copolymers. J Am Chem Soc 131:7514–7515CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS)MoscowRussia
  2. 2.H.C. Starck Clevios GmbHChempark LeverkusenLeverkusenGermany

Personalised recommendations