Advertisement

New Class Materials of Organic–Inorganic Hybridized Nanocrystals/Nanoparticles, and Their Assembled Micro- and Nano-Structure Toward Photonics

  • Hidetoshi OikawaEmail author
  • Tsunenobu Onodera
  • Akito Masuhara
  • Hitoshi Kasai
  • Hachiro Nakanishi
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 231)

Abstract

A π-conjugated organic and polymer nanocrystal (NC) is an intermediate state between a single molecule and the corresponding bulk crystals, the size of which is usually in the range of several tens of nanometers to sub-micrometer. According to the development of so-called “reprecipitation method,” well-defined organic and polymer NCs could be fabricated conveniently, and are expected to exhibit peculiar optoelectronic and photonic properties, depending on size and shape. Actually, linear optical properties such as visible (VIS) absorption (or extinction) and fluorescence emission spectra were found to be remarkably dependent on crystal size, due to thermal softening of crystal lattice in NCs, being different from so-called quantum confinement effect in semiconductor nanoparticles (NPs). Polydiacetylene (PDA) noted in the present research is well known to be one of the most promising candidate organic materials for nonlinear optics (NLO). The apparent enhancement of NLO was confirmed in the layered thin film of PDA NCs. Hybridization of π-conjugated polymer NCs with noble metals on a nanometer scale, i.e., core/shell type hybridized NCs, would open a novel scientific paradigm in optoelectronics, photonics, and so on. In the present chapter, the fabrication techniques of core/shell type hybridized NCs, their characterization, and the evaluation of physical properties are first described, and subsequently ordered array structure of polymer microspheres and spherically encapsulated PDA NCs on a patterned substrate are introduced toward photonic device application. Finally, the future scope in the relevant field will be discussed.

Keywords

Hetero nano-interface Localized surface plasmon Ordered array structure Organic core/shell type hybridized nanocrystals Reprecipitation method 

Abbreviations

ADA

10,12-Heptacosadiynoic acid

Ag

Silver

AgNO3

Silver nitrate

AIST

National Institute of Advanced Industrial Science and Technology, Japan

Au

Gold

BL15XU

Beam line of NIMS in SPring-8

CB

Conduction band

ccp

Cubic-closest packed

CdS

Cadmium sulfide

D

Diameter of PSMS

DA

Diacetylene

DAST

4 -Dimethylamino-N-methylstilbazolum p-toluenesulfonate

DCHD

1,6-Di(N-carbazoylyl)-2,4-hexadiyne

DOS

Density of state

DTMAC

n-Dodecyltrimetylammonium chloride

DVB

Divinylbenzene, crosslink agent

EAP

Excitonic absorption peak

EB

Electron beam

ED

Electron diffraction

EDTA

Ethylenediaminetetraacetic acid

EL

Electroluminescence

EPMA

Electron probe microanalysis

fcc

Face-centered cubic

HAuCl4

Tetrachloroauric acid

HCHO

Formaldehyde

HSt

1-(4-Vinylphenyl)ethane-1,2-diol, hydrophilic styrene derivative

K2PtCl4

Potassium tetrachloroplatinate

KPS

Potassium peroxodisulfide, initiator

L

Size of dimple

LSP

Localized surface plasmon

MC

Microcrystal

mL

Milliliter

mM

Millimolar

MP

Microparticle

MS

Microsphere

Na2PdCl4

Sodium tetrachloropalladate

NaBH4

Sodium borohydride

NC

Nanocrystal

NH2OH

Hydroxylamine

NIMS

National Institute for Materials Science, Japan

NLO

Nonlinear optics

NP

Nanoparticle

P

Pitch between dimples

PAT

Poly(3-alkylthiophene)

PAT-4

Poly(3-butylthiophene)

PAT-6

Poly(3-hexylthiophene)

PAT-8

Poly(3-octylthiophene)

PCP

Polymer colloidal particle

Pd

Palladium

PDA

Polydiacetylene

PS

Polystyrene

PSMS

Polystyrene microsphere

Pt

Platinum

PVP

Poly(vinylpyrrolidone)

SDS

Sodium dodecylsulfate

SEM

Scanning electron microscopy

SERS

Surface enhanced Raman scattering

SHE

Standard hydrogen electrode

Si

Silicon

SPring-8

Super Photon ring-8 GeV in Japan

SR

Synchrotron radiation

St

Styrene monomer

TEM

Transmission electron microscopy

TFT

Thin film transistor

THF

Tetrahydrofuran

TPB

1,1,4,4-Tetraphenylbutadiene

UV

Ultraviolet

VB

Valence band

VIS

Visible

WF

Work function

XANES

X-ray absorption near-edge structure

XPS

X-ray photoelectron spectroscopy

XRD

X-ray diffraction

ZnS

Zinc sulfide

Notes

Acknowledgements

The authors are greatly indebted to the following many research collaborators for their kind supports and valuable discussion in the promotion of the present research projects: Prof. S. Okada (Graduate School of Science and Engineering, Yamagata University, Japan), Emeritus Prof. H. Masuhara and Associate Prof. T. Asahi (Graduate School of Engineering, Osaka University, Japan), Associate Prof. N. Nemoto (Faculty of Engineering, Nihon University, Japan), Drs. T. Sekiguchi, S. Tanuma, H. Yoshikawa, Y. Wakayama, T. Mitsui, and K. Miyazawa (National Institute for Materials Science (NIMS), Japan), Drs. H. Matsuda, K. Yase, T. Fukuda, S. Shimada, and T. Kimura (National Institute of Advanced Industrial Science and Technology (AIST), Japan), Emeritus Profs. O. Ito and K. Arai (Tohoku University, Japan), Prof. T. Miyashita (IMRAM, Tohoku University, Japan), the late Prof. S. K. Tripathy (University. Massachusetts Lowell, USA), Prof. B. S. Wherrett (Heriot-Watt University, UK), Prof. Z.-F. Liu (Peking University, China), and all Ph. D. students in the laboratory.

References

  1. 1.
    Oikawa H, Kasai H, Nakanishi H (2001) Fabrication of organic microcrystals and their optical properties (Chapter 11); Some applications of organic microcrystals (Chapter 12). In: Glaser R, Kaszynski P (eds) Anisotropic organic materials –approaches to polar order. ACS symposium series 798. ACS, Washington, pp 158, 169Google Scholar
  2. 2.
    Oikawa H, Nakanishi H (2003) Reprecipitation method for organic nanocrystals (Chapter 2); Optical properties of polymer nanocrystals (Chapter 14); Particle-based optical devices (Chapter 29). In: Masuhara H, Nakanishi H, Sasaki K (eds) Nano science and technology − single organic nanoparticles. Springer, Berlin, pp 17, 169, 382Google Scholar
  3. 3.
    Oikawa H, Masuhara A, Kasai H, Mitsui T, Sekiguchi T, Nakanishi H (2004) Organic and polymer nanocrystals: their optical properties and function (Chapter 13). In: Masuhara H, Kawata S (eds) Handai nanophotonics –nanophotonics: integrating photochemistry, optics and nano/bio materials studies. Elsevier, Amsterdam, p 205CrossRefGoogle Scholar
  4. 4.
    Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1992) Jpn J Appl Phys 31:L1132CrossRefGoogle Scholar
  5. 5.
    Kamatani H, Kasai H, Okada S, Matsuda H, Oikawa H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1994) Mol Cryst Liq Cryst 252:233CrossRefGoogle Scholar
  6. 6.
    Katagi H, Kasai H, Okada S, Oikawa H, Matsuda H, Liu ZF, Nakanishi H (1996) Jpn J Appl Phys 35:L1364CrossRefGoogle Scholar
  7. 7.
    Kasai H, Kamatani H, Okada, S, Oikawa H, Matsuda H, Nakanishi H (1996) Jpn J Appl Phys 35:L1221Google Scholar
  8. 8.
    Katagi H, Kasai H, Kamatani H, Okada S, Oikawa H, Matsuda H, Nakanishi H (1997) J Macromol Sci Pure Appl Chem A34:2013CrossRefGoogle Scholar
  9. 9.
    Matsuda H, Yamada S, Keuren EV, Katagi H, Kasai H, Kamatani H, Okada S, Oikawa H, Nakanishi H, Smith EC, Kar AK, Wherrett S (1997) SPIE Proc 2998:241CrossRefGoogle Scholar
  10. 10.
    Kasai H, Yoshikawa Y, Seko T, Okada S, Oikawa H, Matsuda H, Watanabe A, Ito O, Toyotama H, Nakanishi H (1997) Mol Cryst Liq Cryst 294:173CrossRefGoogle Scholar
  11. 11.
    Fujitsuka M, Kasai H, Masuhara A, Okada S, Oikawa H, Nakanishi H, Watanabe A, Ito O (1997) Chem Lett 1211Google Scholar
  12. 12.
    Kasai H, Oikawa H, Okada S, Nakanishi H (1998) Bull Chem Soc Jpn 71:2597CrossRefGoogle Scholar
  13. 13.
    Oikawa H, Oshikiri T, Kasai H, Okada S, Tripathy SK, Nakanishi H (2000) Polym Adv Technol 11:783CrossRefGoogle Scholar
  14. 14.
    Onodera T, Oshikiri T, Katagi H, Kasai H, Okada S, Oikawa H, Terauchi M, Tanaka M, Nakanishi H (2001) J Cryst Growth 229:586CrossRefGoogle Scholar
  15. 15.
    Alargova RG, Deguchi S, Tdujii K (2001) J Am Chem Soc 123:10460CrossRefGoogle Scholar
  16. 16.
    Takahashi S, Miura H, Kasai H, Okada S, Oikawa H, Nakanishi H (2002) J Am Chem Soc 124:10944CrossRefGoogle Scholar
  17. 17.
    An BK, Kwon SK, Jung SD, Park SY (2002) J Am Chem Soc 124:14410CrossRefGoogle Scholar
  18. 18.
    Xiao D, Xi L, Yang W, Fu H, Shuai Z, Fang Y, Yao J (2003) J Am Chem Soc 125:6740CrossRefGoogle Scholar
  19. 19.
    Oikawa H, Mitsui T, Onodera T, Kasai H, Nakanishi H, Sekiguchi T (2003) Jpn J Appl Phys 42:111CrossRefGoogle Scholar
  20. 20.
    Volkov VV, Asahi T, Masuhara H, Masuhara A, Kasai H, Oikawa H, Nakanishi H (2004) J Chem Phys B 108:7674CrossRefGoogle Scholar
  21. 21.
    Kaneko Y, Shimada S, Fukuda T, Kimura T, Yokoi H, Matsuda H, Onodera T, Kasai H, Okada S, Oikawa H, Nakanishi H (2005) Adv Mater 17:160CrossRefGoogle Scholar
  22. 22.
    Asahi T, Sugiyama T, Masuhara H (2008) Acc Chem Res 41:1790 and references cited thereinGoogle Scholar
  23. 23.
    Wegner G, Bässler H, Sixl H, Enkelmann V (1984) Polydiacetylene. In: Cantow HJ (ed) Advances in polymer science, vol 63, Springer, BerlinGoogle Scholar
  24. 24.
    Bloembergen N (1996) Nonlinear optics. World Science, SingaporeCrossRefGoogle Scholar
  25. 25.
    Charra F, Agranovich VM, Kajzar F (eds) (2003) Organic nanophotonics. Kluwer Academic, LondonGoogle Scholar
  26. 26.
    Prasad PN (2004) Nanophotonics. Willey, HobokenCrossRefGoogle Scholar
  27. 27.
    Nakanishi H, Kasai H (1997) ACS Symp Ser 672:183CrossRefGoogle Scholar
  28. 28.
    Komai Y, Kasai H, Hirakoso H, Hakuta Y, Okada S, Oikawa H, Adschiri T, Inomata H, Arai K, Nakanishi H (1998) Mol Cryst Liq Cryst 322:167CrossRefGoogle Scholar
  29. 29.
    Komai Y, Kasai H, Hirakoso H, Hakuta Y, Okada S, Oikawa H, Adschiri T, Inomata H, Arai K, Nakanishi H (1999) Jpn J Appl Phys 38:L81CrossRefGoogle Scholar
  30. 30.
    Baba K, Kasai H, Okada S, Oikawa H, Nakanishi H (2000) Jpn J Appl Phys 39:L1256CrossRefGoogle Scholar
  31. 31.
    Baba K, Kasai H, Okada S, Nakanishi H, Oikawa H (2006) Mol Cryst Liq Cryst 445:161CrossRefGoogle Scholar
  32. 32.
    Ishii KU, Baba K, Wei Z, Kasai H, Nakanishi H, Okada S, Oikawa H (2006) Mol Cryst Liq Cryst 445:177Google Scholar
  33. 33.
    Baba K, Kasai H, Masuhara A, Okada S, Oikawa H, Nakanishi H (2007) Jpn J Appl Phys 46:7558CrossRefGoogle Scholar
  34. 34.
    Baba K, Kasai H, Shinohara Y, Okada S, Oikawa H, Nakanishi H (2008) Jpn J Appl Phys 47:3769CrossRefGoogle Scholar
  35. 35.
    Ishii KU, Kwon E, Kasai H, Nakanishi H, Oikawa H (2008) Cryst Growth Des 8:369CrossRefGoogle Scholar
  36. 36.
    Chung HR, Kwon E, Oikawa H, Kasai H, Nakanishi H (2006) J Cryst Growth 294:459CrossRefGoogle Scholar
  37. 37.
    Tachikawa T, Chung HR, Masuhara A, Kasai H, Oikawa H, Nakanishi H, Fujitsuka M, Majima T (2006) J Am Chem Soc 128:15944CrossRefGoogle Scholar
  38. 38.
    Tripathy SK, Katagi H, Kasai H, Balasubramanian S, Oshikiri T, Kumar T, Oikawa H, Okada S, Nakanishi H (1998) Jpn J Appl Phys 37:L343CrossRefGoogle Scholar
  39. 39.
    He JA, Yang K, Kumar J, Tripathy SK, Samuelson LA, Oshikiri T, Katagi H, Kasai H, Okada S, Oikawa H, Nakanishi H (1999) J Phys Chem B 103:11050CrossRefGoogle Scholar
  40. 40.
    Yang K, He JA, Samuelson LA, Oshikiri T, Katagi H, Kasai H, Okada S, Oikawa H, Nakanishi H, Tripathy SK (2005) J Opt Soc Am B Opt Phys 22:623CrossRefGoogle Scholar
  41. 41.
    Fujita S, Kasai, H, Okada S, Oikawa H, Fukuda T, Matsuda H, Tripathy SK, Nakanishi H (1999) Jpn J Appl Phys 38:L659Google Scholar
  42. 42.
    Oikawa H, Fujita S, Kasai H, Okada S, Tripathy SK, Nakanishi H (2000) Colloids Surf A169:251Google Scholar
  43. 43.
    Okazoe S, Fujita S, Kasai H, Okada S, Oikawa H, Nakanishi H (2001) Mol Cryst Liq Cryst 367:11CrossRefGoogle Scholar
  44. 44.
    Katagi H, Kasai H, Okada S, Oikawa H, Matsuda H, Nakanishi H (2000) Adv Polym Tech 11:778CrossRefGoogle Scholar
  45. 45.
    Masuhara A, Kasai H, Okada S, Oikawa H, Terauchi M, Tanaka M, Nakanishi H (2001) Jpn J Appl Phys 40:L1129CrossRefGoogle Scholar
  46. 46.
    Masuhara A, Oshikiri S, Kasai H, Okada S, Oikawa H, Nakanishi H (2004) J Nonlinear Opt Phys Mater 13:587CrossRefGoogle Scholar
  47. 47.
    Oikawa H, Vlaicu AM, Kimura M, Yoshikawa H, Tanuma S, Masuhara A, Kasai H, Nakanishi H (2005) Nonlinear Opt Quantum Opt 34:275Google Scholar
  48. 48.
    Matsumoto A, Ishikawa T, Odani T, Oikawa H, Okada S, Nakanishi H, (2006) Macromol Chem Phys 207:361CrossRefGoogle Scholar
  49. 49.
    Yoshikawa H, Vlaicu AM, Kimura M, Masuhara A, Tanuma S, Nakanishi H, Oikawa H (2009) J Surf Sci 7:711Google Scholar
  50. 50.
    Yokoyama T, Masuhara A, Onodera T, Kasai H, Oikawa H (2009) Synth Met 159:897Google Scholar
  51. 51.
    Onodera T, Oikawa H, Kasai H, Nakanishi H, Sekiguchi T (2005) Mater Res Soc Symp Proc 846:257Google Scholar
  52. 52.
    Onodera T, Tan Z, Masuhara A, Oikawa H, Kasai H, Nakanishi H, Sekiguchi T (2006) Jpn J Appl Phys 45:379CrossRefGoogle Scholar
  53. 53.
    Onodera T, Oikawa H, Masuhara A, Kasai H, Sekiguchi T, Nakanishi H (2007) Jpn J Appl Phys 46:L336CrossRefGoogle Scholar
  54. 54.
    Onodera T, Ujita J, Ishikawa D, Masuhara A, Kasai H, Oikawa H (2009) ECS Trans 16:1Google Scholar
  55. 55.
    Wakayama Y, Mitsui T, Onodera T, Oikawa H, Nakanishi H (2005) Chem Phys Lett 417:503Google Scholar
  56. 56.
    Wakayama Y, Mitsui T, Onodera T, Oikawa H, Nakanishi H (2006) J Surf Sci Nanotech 4:69Google Scholar
  57. 57.
    Mitsui T, Wakayama Y, Onodera T, Takaya Y, Oikawa H (2008) Nano Lett 8:853Google Scholar
  58. 58.
    Mitsui T, Wakayama Y, Onodera T, Takaya Y, Oikawa H (2008) Opt Lett 33:1189Google Scholar
  59. 59.
    Onodera T, Takaya Y, Mitsui T, Wakayama Y, Oikawa H (2008) Jpn J Appl Phys 47:1404Google Scholar
  60. 60.
    Wei Z, Ishii KU, Masuhara A, Kasai H, Okada S, Matsune H, Asahi T, Masuhara H, Nakanishi H (2005) J Nanosci Nanotech 5:937Google Scholar
  61. 61.
    Onodera T, Nakamura M, Takaya Y, Masuhara A, Wakayama Y, Nemoto N, Nakanishi H, Oikawa H (2009) J Phys Chem 113:11647Google Scholar
  62. 62.
    Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) J Am Chem Soc 199:7019CrossRefGoogle Scholar
  63. 63.
    Valden M, Lai X, Goodman DW (1998) Science 281:1674CrossRefGoogle Scholar
  64. 64.
    Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Nature 404:59CrossRefGoogle Scholar
  65. 65.
    Lu Y, Yang Y, Selinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Nature 410:913CrossRefGoogle Scholar
  66. 66.
    Liz-Marzán LM (2006) Langmuir 22:32 and references cited thereinGoogle Scholar
  67. 67.
    Mai YW, Yu ZZ (eds) (2006) Polymer nanocomposites. Woodhead, CambridgeGoogle Scholar
  68. 68.
    Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:4317CrossRefGoogle Scholar
  69. 69.
    Sellinger A, Weiss PM, Nguyen A, Lu Y, Assink RA, Gong W, Brinker CJ (1998) Nature 394:256CrossRefGoogle Scholar
  70. 70.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Chem Phys 288:243Google Scholar
  71. 71.
    Caruso F (2001) Adv Mater 13:11CrossRefGoogle Scholar
  72. 72.
    Thomas KG, Kamat PV (2003) Acc Chem Res 36:888CrossRefGoogle Scholar
  73. 73.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419CrossRefGoogle Scholar
  74. 74.
    Wiederrecht GP, Wurtz GA, Hranisaljevic J (2004) Nano Lett 4:2121CrossRefGoogle Scholar
  75. 75.
    Wurtz GA, Evans PR, Hendren W, Atkinson R, Dickson W, Pollard RJ, Zayats AV (2007) Nano Lett 7:1297CrossRefGoogle Scholar
  76. 76.
    Ni W, Yang Z, Chen H, Li L, Wang J (2008) J Am Chem Soc 130:6692CrossRefGoogle Scholar
  77. 77.
    Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901CrossRefGoogle Scholar
  78. 78.
    Murphy CJ, Jana NR (2002) Adv Mater 14:80CrossRefGoogle Scholar
  79. 79.
    Loo C, Lowert A, Halas NJ, West J, Drezek R (2005) Nano Lett 5:709CrossRefGoogle Scholar
  80. 80.
    Yoshida A, Yonezawa Y, Kometani N (2009) Langmuir DOI:10.1021/la901431nGoogle Scholar
  81. 81.
    Sugawara Y, Kelf TA, Baumberg JJ, Abdelsalam ME, Bartlett PN (2006) Phys Rev Lett 97:266808CrossRefGoogle Scholar
  82. 82.
    Bonnand C, Bellessa J, Plénet JC (2006) J Non-Cryst Solids 352:1683CrossRefGoogle Scholar
  83. 83.
    Bellessa J, Bonnand C, Plénet JC (2004) Phys Rev Lett 93:036404–1CrossRefGoogle Scholar
  84. 84.
    Fofang NT, Park TH, Neumann O, Mirin NA, Nordlander P, Halas NJ (2008) Nano Lett 8:3481CrossRefGoogle Scholar
  85. 85.
    Hranisavljevic J, Dimitrijevic NM, Wurtz GA, Wiederrecht GP (2002) J Am Chem Soc 124:4536CrossRefGoogle Scholar
  86. 86.
    Ishii H, Seki K (2002) Energy level alignment at organic-metal interfaces (Chapter 10). In: Salaneck WR, Seki K, Kahn A, Pireaux JJ (eds) Conjugated polymer and molecular interfaces. Marcel Dekker, New York, p 293Google Scholar
  87. 87.
    Caruso F (ed) (2004) Colloids and colloid assemblies. Wiley-VCH Verlag GmbH & KGaA, WeinheimGoogle Scholar
  88. 88.
    Leonard D, Krishnamurthy M, Reaves CM, Denbaars SP, Petroff PM (1993) Appl Phys Lett 63:3203Google Scholar
  89. 89.
    Toyotama H (1987) Kinozairyo (Funct Mater) 6:44 (in Japanese)Google Scholar
  90. 90.
    Yase K, Inoue T, Okada M, Funada T, Hirano J (1898) Hyomen Kagaku (Surf Sci) 8:434 (in Japanese)Google Scholar
  91. 91.
    Yee KC, Chance RR (1978) J Polym Sci 16:431Google Scholar
  92. 92.
    Enkelmann V, Leyrer R, Schleier G, Wegner G (1980) J Mater Sci 15:168CrossRefGoogle Scholar
  93. 93.
    Enkelmann V, Werz G, Müller MA, Schmidt M, Wegner G (1984) Mol Cryst Liq Cryst 105:11CrossRefGoogle Scholar
  94. 94.
    Watanabe K, Kinoshita A, Hirasa N, Itami A (1990) Konica Tech Rept 3:108Google Scholar
  95. 95.
    Nakanishi H, Matsuda H, Okada S, Kato M (1989) MRS Int Mtg Adv Mater 1:97Google Scholar
  96. 96.
    Yee KC, Chance RR (1978) J Polym Sci Polym Phys Ed 16:431CrossRefGoogle Scholar
  97. 97.
    Vlckova B, Matejka P, Simonova J, Cemakova K, Pancoska P, Baumruk V (1993) J Phys Chem 97:9719CrossRefGoogle Scholar
  98. 98.
    Kreibig U, Gartz M, Hilger A (1997) Ber Bunsenges Phys Chem 101:1593CrossRefGoogle Scholar
  99. 99.
    Hirakawa K, Toshima N (2003) Chem Lett 32:78CrossRefGoogle Scholar
  100. 100.
    Czyzyk MT, de Groot RA, Dalba G, Fornasini P, Kisiel A, Rocca F, Burattini E (1989) Phys Rev B39:9831Google Scholar
  101. 101.
    Wertheim GK, DiCenzo SB, Buchanan DNE (1986) Phys Rev B33:5384Google Scholar
  102. 102.
    Tanaka A, Takeda Y, Nagasawa T, Sasaki H, Kuriyama Y, Suzuki S, Sato S (2003) Surf Sci 532/535:281Google Scholar
  103. 103.
    Mulvaney P (1996) Langmuir 12:788CrossRefGoogle Scholar
  104. 104.
    Dilks A (1981) X-ray photoelectron spectroscopy for the investigation of polymeric materials. In: Brundle CR, Baker AD (eds) Electron spectroscopy –theory, techniques and application, vol 4, Academic, London, p 277Google Scholar
  105. 105.
    Louie SG, Chelikowsky JR, Cohen ML (1977) Phys Rev B15:2154Google Scholar
  106. 106.
    Pyatenko A, Yamaguchi M, Suzuki M (2005) J Phys Chem B 109:21608CrossRefGoogle Scholar
  107. 107.
    Matsuda Y (2008) Studies on hybridization between conjugated polymers and metal nanoparticles. Master ThesisGoogle Scholar
  108. 108.
    Kerker M (1985) J Colloid Interface Sci 105:297Google Scholar
  109. 109.
    Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1999) J Chem Phys Lett 300:651CrossRefGoogle Scholar
  110. 110.
    Peceros KE, Xu X, Bulcock SR, Cortie MB (2005) J Phys Chem B 109:21516CrossRefGoogle Scholar
  111. 111.
    Pileni MP, Taleb A, Petit C (1998) J Dispersion Sci Technol 19:185 and references cited thereinGoogle Scholar
  112. 112.
    Kuriyama K, Kikuchi H, Oishi Y, Kajiyama T (1995) Langmuir 11:3536CrossRefGoogle Scholar
  113. 113.
    Van de Hulst HC (1981) Light scattering by small particles. Dover Pub, New YorkGoogle Scholar
  114. 114.
    Huo Q, Russell KC, Leblanc RM (1999) Langmuir 15:3536CrossRefGoogle Scholar
  115. 115.
    Itoh K, Nishizawa T, Yamagata J, Fujii M, Osaka N, Kudryashov I (2005) J Phys Chem B 109:264CrossRefGoogle Scholar
  116. 116.
    Spannring W, Bässler H (1981) Chem Phys Lett 84:54CrossRefGoogle Scholar
  117. 117.
    Hoare JP (1985) Oxygen. In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solution. Marcel Dekker, New YorkGoogle Scholar
  118. 118.
    Brown KR, Natan MJ (1998) Langmuir 14:726CrossRefGoogle Scholar
  119. 119.
    Neeves AE, Birnboim MH (1989) J Opt Soc Am B 6:787CrossRefGoogle Scholar
  120. 120.
    Ishikawa A, Tanaka T (2006) Opt Commun 258:300CrossRefGoogle Scholar
  121. 121.
    Ishikawa D (2008) Studies on hybridized nanostructure of polymer/metal fabricated by photocatalytic reduction method and its properties. Master ThesisGoogle Scholar
  122. 122.
    Link S, Wang ZL, El-Sayed MA (1999) J Chem Phys B 103:3529CrossRefGoogle Scholar
  123. 123.
    Hodak JH, Henglein A, Giersig M, Hartland GV (2000) J Phys Chem B 104:11708CrossRefGoogle Scholar
  124. 124.
    Patel K, Kapoor S, Dave DP, Mukherjee T (2005) J Chem Sci 117:311CrossRefGoogle Scholar
  125. 125.
    Vasan HN, Rao CNR (1995) J Mater Chem 5:1755CrossRefGoogle Scholar
  126. 126.
    Torigoe K, Nakajima Y, Esumi K (1993) J Phys Chem 97:8304CrossRefGoogle Scholar
  127. 127.
    Klig HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York, p 687Google Scholar
  128. 128.
    Salaneck WR, Seki K, Kahn A, Pireaux JJ (eds) (2002) Energy level alignment at organic-metal interfaces (Chapter 10). In: Conjugated polymer and molecular interfaces. Marcel Dekker, New YorkGoogle Scholar
  129. 129.
    Ujita J (2006) Studies on hybridized nanocrystals of conjugated polymer and metal. Master ThesisGoogle Scholar
  130. 130.
    Kurokawa N, Yoshikawa H, Hirota N, Hyodo K, Masuhara H (2004) Chem Phys Chem 5:1609CrossRefGoogle Scholar
  131. 131.
    Kymakis E, Alexandrou I, Amaratunga GAJ (2003) J Appl Phys 93:1764CrossRefGoogle Scholar
  132. 132.
    Van Blaaderen A, Ruel R, Wiltzius P (1997) Nature 385:321CrossRefGoogle Scholar
  133. 133.
    Ozin GA, Yang SM (2001) Adv Func Mater 11:95CrossRefGoogle Scholar
  134. 134.
    Botzung-Appert E, Zaccaro J, Gourgon C, Usson Y, Baldeck PL, Ibanez A (2005) J Cryst Growth 283:444CrossRefGoogle Scholar
  135. 135.
    Matsuo S, Fujine T, Fukuda K, Juodkazis S, Misawa H (2003) Appl Phys Lett 82:4283CrossRefGoogle Scholar
  136. 136.
    Yin Y, Li ZY, Xia Y (2003) Langmuir 19:622CrossRefGoogle Scholar
  137. 137.
    Everett DH (1988) Basic principles of colloid science. Royal Society of Chemistry, LondonGoogle Scholar
  138. 138.
    Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Langmuir 8:3183CrossRefGoogle Scholar
  139. 139.
    Karthaus O, Mikami S, Hashimoto Y (2006) J Colloid Interface Sci 301:703CrossRefGoogle Scholar
  140. 140.
    Yamasaki T, Tsutsui T (1999) Jpn J Appl Phys 38:5916CrossRefGoogle Scholar
  141. 141.
    Yin Y, Lu Y, Gates B, Via Y (2001) J Am Chem Soc 123:8718CrossRefGoogle Scholar
  142. 142.
    Nielsen JB, Søndergaard T, Barkou SE, Bjarklev A, Broeng J, Nielsen MB (1999) Electron Lett 35:1736CrossRefGoogle Scholar
  143. 143.
    Shiraishi K, Tamura H, Takayanagi H (2001) Appl Phys Lett 78:3702CrossRefGoogle Scholar
  144. 144.
    Takeda H, Takashima T, Yoshino K (2004) J Phys Condens Mater 16:6317CrossRefGoogle Scholar
  145. 145.
    Gaji’c R, Meisels R, Kuchar F, Hingerl K (2006) Phys Rev B 73:165310CrossRefGoogle Scholar
  146. 146.
    Grego S, Jarvis TW, Stoner BR Lewis JS (2005) Langmuir 21:4971Google Scholar
  147. 147.
    Mitsui T, Onodera T, Takaya Y, Wakayama Y, Oikawa H Manuscript in preparationGoogle Scholar
  148. 148.
    Sugimoto T, Dirige GE, Muramatsu A (1996) J Colloid Interface Sci 180:305, 182:444Google Scholar
  149. 149.
    Takaya Y (2007) Studies on polymer-encapsulation of photo-functional microparticles and their arrangement. Master ThesisGoogle Scholar
  150. 150.
    Wei Z, Ishii KU, Masuhara A, Kasai H, Okasa S, Matsune H, Asahi T, Masuhara H, Nakanishi H (2005) J Nanosci Nanotech 5:937CrossRefGoogle Scholar
  151. 151.
    Zou D, Derlich V, Grandhei K, Park M, Sun L, Kriz D, Lee YD, Kim G, Aklonis J (1990) J Polym Sci A 28:1909CrossRefGoogle Scholar
  152. 152.
    Yaguchi Y (2006) Studies on hybridization of phthalocyanine nanocrystals with metal nanoparticles. Master ThesisGoogle Scholar
  153. 153.
    Masuhara A, Tan Z, Kasai H, Nakanishi H, Oikawa H (2008) Mol Cryst Liq Cryst 492:262CrossRefGoogle Scholar
  154. 154.
    Masuhara A, Ohashi S, Kasai H, Okada S, Oikawa H, Nakanishi H (2004) J Nonlinear Opt Phys Mater 13:587CrossRefGoogle Scholar
  155. 155.
    Horn D, Rieger J (2001) Angew Chem Int Ed 40:4330CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Hidetoshi Oikawa
    • 1
    Email author
  • Tsunenobu Onodera
    • 1
  • Akito Masuhara
    • 1
  • Hitoshi Kasai
    • 1
  • Hachiro Nakanishi
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversityAoba-kuJapan

Personalised recommendations