Polymer Libraries: Preparation and Applications

  • Dean C. WebsterEmail author
  • Michael A. R. Meier
Part of the Advances in Polymer Science book series (POLYMER, volume 225)


Polymer libraries offer straightforward opportunities for the investigation of structure–property relationships and for a more thorough understanding of certain research problems. Furthermore, if combined with high-throughput methods for their preparation as well as screening, they offer the additional advantage of time savings and/or the reduction of experimental efforts. Thus, the herein discussed methods of polymer library preparation and selected literature examples of polymer libraries describe efficient and state-of-the-art methods to tackle difficult research challenges in polymer and materials science.


Combinatorial materials research High-throughput screening Library preparation Polymer library Property screening 


  1. 1.
    Webster DC (2008) Combinatorial and high-throughput methods in macromolecular materials research and development. Macromol Chem Phys 209:237–246CrossRefGoogle Scholar
  2. 2.
    Hoogenboom R, Meier MAR, Schubert US (2003) Combinatorial methods, automated synthesis and high-throughput screening in polymer research: past and present. Macromol Rapid Commun 24:15–32CrossRefGoogle Scholar
  3. 3.
    Meier MAR, Hoogenboom R, Schubert US (2004) Combinatorial methods, automated synthesis and high-throughput screening in polymer research: the evolution continues. Macromol Rapid Commun 25:21–33CrossRefGoogle Scholar
  4. 4.
    Schmatloch S, Meier MAR, Schubert US (2003) Instrumentation for combinatorial and high-throughput polymer research: a short overview. Macromol Rapid Commun 24:33–46CrossRefGoogle Scholar
  5. 5.
    Cawse JN (2001) Experimental strategies for combinatorial and high-throughput materials development. Acc Chem Res 34:213–221CrossRefGoogle Scholar
  6. 6.
    Harmon L (2003) Experiment planning for combinatorial materials discovery. J Mater Sci 38:4479–4485CrossRefGoogle Scholar
  7. 7.
    Meredith JC, Karim A, Amis EJ (2000) High-throughput measurement of polymer blend phase behavior. Macromolecules 33:5760–5762CrossRefGoogle Scholar
  8. 8.
    Meredith JC, Smith AP, Karim A, Amis EJ (2000) Combinatorial materials science for polymer thin-film dewetting. Macromolecules 33:9747–9756CrossRefGoogle Scholar
  9. 9.
    Wu T, Efimenko K, Vlcek P, Subr V, Genzer J (2003) Formation and properties of anchored polymers with a gradual variation of grafting densities on flat substrates. Macromolecules 36:2448–2453CrossRefGoogle Scholar
  10. 10.
    Wu T, Tomlinson M, Efimenko K, Genzer J (2003) A combinatorial approach to surface anchored polymers. J Mater Sci 38:4471–4477CrossRefGoogle Scholar
  11. 11.
    Wu T, Efimenko K, Genzer J (2002) Combinatorial study of the mushroom-to-brush crossover in surface anchored polyacrylamide. J Am Chem Soc 124:9394–9395CrossRefGoogle Scholar
  12. 12.
    Tomlinson MR, Genzer J (2003) Formation of grafted macromolecular assemblies with a gradual variation of molecular weight on solid substrates. Macromolecules 36:3449–3451CrossRefGoogle Scholar
  13. 13.
    Bhat RR, Tomlinson MR, Genzer J (2005) Orthogonal surface-grafted polymer gradients: a versatile combinatorial platform. J Polym Sci Part B Polym Phys 43:3384–3394CrossRefGoogle Scholar
  14. 14.
    Tomlinson MR, Genzer J (2005) Evolution of surface morphologies in multivariant assemblies of surface-tethered diblock copolymers after selective solvent treatment. Langmuir 21:11552–11555CrossRefGoogle Scholar
  15. 15.
    Xu C, Barnes SE, Wu T, Fischer DA, DeLongchamp DM, Batteas JD, Beers KL (2006) Solution and surface composition gradients via microfluidic confinement: fabrication of a statistical-copolymer-brush composition gradient. Adv Mater 18:1427–1430CrossRefGoogle Scholar
  16. 16.
    Xu C, Wu T, Batteas JD, Drain CM, Beers KL, Fasolka MJ (2006) Surface-grafted block copolymer gradients: effect of block length on solvent response. Appl Surf Sci 252:2529–2534CrossRefGoogle Scholar
  17. 17.
    Johnson PM, Reynolds TB, Stansbury JW, Bowman CN (2005) High throughput kinetic analysis of photopolymer conversion using composition and exposure time gradients. Polymer 46:3300–3306CrossRefGoogle Scholar
  18. 18.
    Johnson PM, Stansbury JW, Bowman CN (2008) High-throughput kinetic analysis of acrylate and thiol-ene photopolymerization using temperature and exposure time gradients. J Polym Sci Part A Polym Chem 46:1502–1509CrossRefGoogle Scholar
  19. 19.
    Johnson PM, Stansbury JW, Bowman CN (2007) Photopolymer kinetics using light intensity gradients in high-throughput conversion analysis. Polymer 48:6319–6324CrossRefGoogle Scholar
  20. 20.
    Johnson PM, Stansbury JW, Bowman CN (2007) Alkyl chain length effects on copolymerization kinetics of a monoacrylate with hexanediol diacrylate. J Comb Chem 9:1149–1156CrossRefGoogle Scholar
  21. 21.
    Johnson PM, Stansbury JW, Bowman CN (2008) Kinetic modeling of a comonomer photopolymerization system using high-throughput conversion data. Macromolecules 41:230–237CrossRefGoogle Scholar
  22. 22.
    Brocchini S, James K, Tangpasuthadol V, Kohn J (1997) A combinatorial approach for polymer design. J Am Chem Soc 119:4553–4554CrossRefGoogle Scholar
  23. 23.
    Akinc A, Anderson Daniel G, Lynn David M, Langer R (2003) Synthesis of poly(β-amino ester)s optimized for highly effective gene delivery. Bioconjug Chem 14:979–988CrossRefGoogle Scholar
  24. 24.
    Anderson DG, Lynn DM, Langer R (2003) Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem, Int Ed 42:3153–3158CrossRefGoogle Scholar
  25. 25.
    Becer CR, Paulus RM, Hoogenboom R, Schubert US (2006) Optimization of the nitroxide-mediated radical polymerization conditions for styrene and tert-butyl acrylate in an automated parallel synthesizer. J Polym Sci Part A Polym Chem 44:6202–6213CrossRefGoogle Scholar
  26. 26.
    Eggenhuisen TM, Becer CR, Fijten MWM, Eckardt R, Hoogenboom R, Schubert US (2008) Libraries of statistical hydroxypropyl acrylate containing copolymers with LCST properties prepared by NMP. Macromolecules 41:5132–5140CrossRefGoogle Scholar
  27. 27.
    Fijten MWM, Meier MAR, Hoogenboom R, Schubert US (2004) Automated parallel investigations/optimizations of the reversible addition-fragmentation chain transfer polymerization of methyl methacrylate. J Polym Sci Part A Polym Chem 42:5775–5783CrossRefGoogle Scholar
  28. 28.
    Fijten MWM, Paulus RM, Schubert US (2005) Systematic parallel investigation of RAFT polymerizations for eight different (meth)acrylates: a basis for the designed synthesis of block and random copolymers. J Polym Sci Part A Polym Chem 43:3831–3839CrossRefGoogle Scholar
  29. 29.
    Paulus RM, Fijten MWM, de la Mar MJ, Hoogenboom R, Schubert US (2005) Reversible addition-fragmentation chain transfer polymerization on different synthesizer platforms. QSAR Comb Sci 24:863–867CrossRefGoogle Scholar
  30. 30.
    Zhang H, Abeln CH, Fijten MWM, Schubert US (2006) High-throughput experimentation applied to atom-transfer radical polymerization: automated optimization of the copper catalysts removal from polymers. e-PolymersGoogle Scholar
  31. 31.
    Zhang H, Fijten MWM, Hoogenboom R, Reinierkens R, Schubert US (2003) Application of a parallel synthetic approach in atom-transfer radical polymerization: set-up and feasibility demonstration. Macromol Rapid Commun 24:81–86CrossRefGoogle Scholar
  32. 32.
    Zhang H, Fijten MWM, Hoogenboom R, Schubert US (2003) Atom-transfer radical polymerization of methyl methacrylate utilizing an automated synthesizer. ACS Symp Ser 854:193–205CrossRefGoogle Scholar
  33. 33.
    Zhang H, Marin V, Fijten MWM, Schubert US (2004) High-throughput experimentation in atom-transfer radical polymerization: a general approach toward a directed design and understanding of optimal catalytic systems. J Polym Sci Part A Polym Chem 42:1876–1885CrossRefGoogle Scholar
  34. 34.
    Adams N, Gans B-JD, Kozodaev D, Sanchez C, Bastiaansen CWM, Broer DJ, Schubert US (2006) High-throughput screening and optimization of photoembossed relief structures. J Comb Chem 8:184–191CrossRefGoogle Scholar
  35. 35.
    Hoogenboom R, Fijten MWM, Schubert US (2004) Parallel kinetic investigation of 2-oxazoline polymerizations with different initiators as basis for designed copolymer synthesis. J Polym Sci Part A Polym Chem 42:1830–1840CrossRefGoogle Scholar
  36. 36.
    Hoogenboom R, Fijten MWM, Schubert US (2004) The effect of temperature on the living cationic polymerization of 2-phenyl-2-oxazoline explored utilizing an automated synthesizer. Macromol Rapid Commun 25:339–343CrossRefGoogle Scholar
  37. 37.
    Hoogenboom R, Fijten MWM, Wijnans S, Van den Berg AMJ, Thijs HML, Schubert US (2006) High-throughput synthesis and screening of a library of random and gradient copoly(2-oxazoline)s. J Comb Chem 8:145–148CrossRefGoogle Scholar
  38. 38.
    Hoogenboom R, Thijs HML, Fijten MWM, Schubert US (2007) Synthesis, characterization, and cross-linking of a library of statistical copolymers based on 2-“soy alkyl”-2-oxazoline and 2-ethyl-2-oxazoline. J Polym Sci Part A Polym Chem 45:5371–5379CrossRefGoogle Scholar
  39. 39.
    Guerrero-Sanchez C, Abeln C, Schubert US (2005) Automated parallel anionic polymerizations: enhancing the possibilities of a widely used technique in polymer synthesis. J Polym Sci Part A Polym Chem 43:4151–4160CrossRefGoogle Scholar
  40. 40.
    Guerrero-Sanchez C, Schubert US (2004) Towards automated parallel anionic polymerizations. Polymeric Mater Sci Eng 90:647–648Google Scholar
  41. 41.
    Becer CR, Hahn S, Fijten MWM, Thijs HML, Hoogenboom R, Schubert US (2008) Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. J Polym Sci Part A Polym Chem 46:7138–7147CrossRefGoogle Scholar
  42. 42.
    Fijten MWM, Kranenburg JM, Thijs HML, Paulus RM, Van Lankvelt BM, D Hullu J, Springintveld M, Thielen DJG, Tweedie CA, Hoogenboom R, VanVliet KJ, Schubert US (2007) Synthesis and structure–property relationships of random and block copolymers: a direct comparison for copoly(2-oxazoline)s. Macromolecules 40:5879–5886CrossRefGoogle Scholar
  43. 43.
    Hoeppener S, Wiesbrock F, Hoogenboom R, Thijs HML, Schubert US (2006) Morphologies of spin-coated films of a library of diblock copoly(2-oxazoline)s and their correlation to the corresponding surface energies. Macromol Rapid Commun 27:405–411CrossRefGoogle Scholar
  44. 44.
    Meier MAR, Aerts SNH, Staal BBP, Rasa M, Schubert US (2005) PEO-b-PCL block copolymers: synthesis, detailed characterization, and selected micellar drug encapsulation behavior. Macromol Rapid Commun 26:1918–1924CrossRefGoogle Scholar
  45. 45.
    Meier MAR, Gohy J-F, Fustin C-A, Schubert US (2004) Combinatorial synthesis of star-shaped block copolymers: host-guest chemistry of unimolecular reversed micelles. J Am Chem Soc 126:11517–11521CrossRefGoogle Scholar
  46. 46.
    Meier MAR, Schubert US (2005) Combinatorial evaluation of the host-guest chemistry of star-shaped block copolymers. J Comb Chem 7:356–359CrossRefGoogle Scholar
  47. 47.
    Lohmeijer BGG, Wouters D, Yin Z, Schubert US (2004) Block copolymer libraries using supramolecular strategies. Polym Mater Sci Eng 90:723–724Google Scholar
  48. 48.
    Schmatloch S, Van den Berg AMJ, Fijten MMW, Schubert US (2004) Automated parallel synthesis of metallo-supramolecular polymers. Polym Mater Sci Eng 90:645–646Google Scholar
  49. 49.
    Schmatloch S, van den Berg AMJ, Fijten MWM, Schubert US (2004) A high-throughput approach towards tailor-made water-soluble metallo-supramolecular polymers. Macromol Rapid Commun 25:321–325CrossRefGoogle Scholar
  50. 50.
    Ekin A, Webster DC (2006) Library synthesis and characterization of 3-aminopropyl-terminated poly(dimethylsiloxane)s and poly(e-caprolactone)-b-poly(dimethylsiloxane)s. J Polym Sci Part A Polym Chem 44:4880–4894CrossRefGoogle Scholar
  51. 51.
    Ekin A, Webster DC. (2006) Synthesis and characterization of novel hydroxyalkyl carbamate and dihydroxyalkyl carbamate terminated poly(dimethylsiloxane) oligomers and their block copolymers with poly(e-caprolactone). Macromolecules 39:8659–8668CrossRefGoogle Scholar
  52. 52.
    Pieper R, Ekin A, Webster DC, Casse F, Callow JA, Callow M, E. (2007) A combinatorial approach to study the effect of acrylic polyol composition on the pProperties of crosslinked siloxane-polyurethane fouling-release coatings. J Coatings Techn Res 4:453–461CrossRefGoogle Scholar
  53. 53.
    Webster DC, Bennett J, Kuebler S, Kossuth MB, Jonasdottir S (2004) High throughput workflow for the development of coatings. J Coatings Tech 1:34–39Google Scholar
  54. 54.
    Nasrullah MJ, Webster DC (2006) Polymerization of styrene and t-butyl acrylate by atom-transfer radical polymerization – high throughput approach. Polymer Prepr 47:217–218Google Scholar
  55. 55.
    Nastrullah MJ, Ekin A, Bahr JA, Gallagher-Lein C, Webster DC (2006) Practical and automated high throughput approach: atom-transfer radical polymerization of styrene and t-butyl acrylate. PMSE Prepr 95:10–12Google Scholar
  56. 56.
    Rojas R, Harris NK, Piotrowska K, Kohn J (2009) Evaluation of automated synthesis for chain and step-growth polymerizations: can robots replace the chemists? J Poly Sci Part A Polym Chem 47:48–58CrossRefGoogle Scholar
  57. 57.
    Kamau SD, Hodge P, Williams RT, Stagnaro P, Conzatti L (2008) High throughput synthesis of polyesters using entropically-driven ring-opening polymerizations. J Comb Chem 10:644–654CrossRefGoogle Scholar
  58. 58.
    Nasrullah MJ, Bahr JA, Gallagher-Lein C, Webster DC, Roesler RR, Schmitt P (2009) Automated parallel polyurethane dispersion synthesis and characterization J Coatings Tech Res 6:1–10CrossRefGoogle Scholar
  59. 59.
    Hoogenboom R, Fijten MWM, Abeln CH, Schubert US (2004) High-throughput investigation of polymerization kinetics by online monitoring of GPC and GC. Macromol Rapid Commun 25:237–242CrossRefGoogle Scholar
  60. 60.
    Cawse JN, Olson D, Chisholm BJ, Brennan M, Sun T, Flanagan W, Akhave J, Mehrabi A, Saunders D (2003) Combinatorial chemistry methods for coating development V: generating a combinatorial array of uniform coatings samples. Prog Org Coatings 47:128–135CrossRefGoogle Scholar
  61. 61.
    Chisholm B, Potyrailo R, Cawse J, Shaffer R, Brennan M, Molaison C, Whisenhunt D, Flanagan B, Olson D, Akhave J, Saunders D, Mehrabi A, Licon M (2002) The development of combinatorial chemistry methods for coating development I. Overview of the experimental factory. Prog Org Coatings 45:313–321CrossRefGoogle Scholar
  62. 62.
    de Gans B-J, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state-of-the-art and future developments. Adv Mater 16:203–213CrossRefGoogle Scholar
  63. 63.
    de Gans B-J, Kazancioglu E, Meyer W, Schubert US (2004) Ink-jet printing polymers and polymer libraries using micropipettes. Macromol Rapid Commun 25:292–296CrossRefGoogle Scholar
  64. 64.
    de Gans B-J, Schubert US (2003) Inkjet printing of polymer micro-arrays and libraries: instrumentation, requirements, and perspectives. Macromol Rapid Commun 24:659–666CrossRefGoogle Scholar
  65. 65.
    Tekin E, de Gans B-J, Schubert US (2004) Ink-jet printing of polymers – from single dots to thin film libraries. J Mater Chem 14:2627–2632CrossRefGoogle Scholar
  66. 66.
    Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotech 22:863–866CrossRefGoogle Scholar
  67. 67.
    Diaz-Mochon JJ, Bialy L, Keinicke L, Bradley M (2005) Combinatorial libraries – from solution to 2D microarrays. Chem Commun 1384–1386Google Scholar
  68. 68.
    Tourniaire G, Collins J, Campbell S, Mizomoto H, Ogawa S, Thaburet J-F, Bradley M (2006) Polymer microarrays for cellular adhesion. Chemical Commun 2118–2120Google Scholar
  69. 69.
    Schmatloch S, Bach H, van Benthem RATM, Schubert US (2004) High-throughput experimentation in organic coating and thin film research: state-of-the-art and future perspectives. Macromol Rapid Commun 25:95–107CrossRefGoogle Scholar
  70. 70.
    Iden R, Schrof W, Hadeler J, Lehmann S (2003) Combinatorial materials research in the polymer industry: speed versus flexibility. Macromol Rapid Commun 24:63–72CrossRefGoogle Scholar
  71. 71.
    Majumdar P, Christianson DA, Roesler RR, Webster DC (2006) Optimization of coating film deposition when using an automated high throughput coating application unit. Prog Org Coatings 56:169–177CrossRefGoogle Scholar
  72. 72.
    Smith JR, Kholodovych V, Knight D, Welsh WJ, Kohn J (2005) QSAR models for the analysis of bioresponse data from combinatorial libraries of biomaterials. QSAR Comb Sci 24:99–113CrossRefGoogle Scholar
  73. 73.
    Weber N, Bolikal D, Bourke SL, Kohn J (2004) Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: validation of a new rapid screening technique. J Biomed Mater Res Part A 68A:496–503CrossRefGoogle Scholar
  74. 74.
    Smith JR, Seyda A, Weber N, Knight D, Abramson S, Kohn J (2004) Integration of combinatorial synthesis, rapid screening, and computational modeling in biomaterials development. Macromol Rapid Commun 25:127–140CrossRefGoogle Scholar
  75. 75.
    Abramson SD, Alexe G, Hammer PL, Kohn J (2005) A computational approach to predicting cell growth on polymeric biomaterials. J Biomed Mater Res Part A 73A:116–124CrossRefGoogle Scholar
  76. 76.
    Meier MAR, Schubert US (2006) Selected successful approaches in combinatorial materials research. Soft Matter 2:371–376. This paragraph was partially reproduced by permission of The Royal Society of Chemistry: Google Scholar
  77. 77.
    Vogel BM, Cabral JT, Eidelman N, Narasimhan B, Mallapragada SK (2005) Parallel synthesis and high throughput dissolution testing of biodegradable polyanhydride copolymers. J Comb Chem 7:921–928CrossRefGoogle Scholar
  78. 78.
    Reynolds CH (1999) Designing diverse and focused combinatorial libraries of synthetic polymers. J Comb Chem 1:297–306CrossRefGoogle Scholar
  79. 79.
    Kim D-Y, Dordick JS (2001) Combinatorial array-based enzymatic polyester synthesis. Biotechnol Bioeng 76:200–206CrossRefGoogle Scholar
  80. 80.
    Lynn DM, Anderson DG, Putnam D, Langer R (2001) Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J Am Chem Soc 123:8155–8156CrossRefGoogle Scholar
  81. 81.
    Akinc A, Lynn DM, Anderson DG, Langer R (2003) Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J Am Chem Soc 125:5316–5323CrossRefGoogle Scholar
  82. 82.
    Anderson DG, Peng W, Akinc A, Hossain N, Kohn A, Padera R, Langer R, Sawicki JA (2004) A polymer library approach to suicide gene therapy for cancer. Proc Natl Acad Sci U S A 101:16028–16033CrossRefGoogle Scholar
  83. 83.
    Lavastre O, Illitchev I, Jegou G, Dixneuf PH (2002) Discovery of new fluorescent materials from fast synthesis and screening of conjugated polymers. J Am Chem Soc 124:5278–5279CrossRefGoogle Scholar
  84. 84.
    Bosman AW, Heumann A, Klaerner G, Benoit D, Frechet JMJ, Hawker CJ (2001) High-throughput synthesis of nanoscale materials: structural optimization of fFunctionalized one-step star polymers. J Am Chem Soc 123:6461–6462CrossRefGoogle Scholar
  85. 85.
    Connal LA, Vestberg R, Hawker CJ, Qiao GG (2007) Synthesis of dendron functionalized core cross-linked star polymers. Macromolecules 40:7855–7863CrossRefGoogle Scholar
  86. 86.
    Malkoch M, Schleicher K, Drockenmuller E, Hawker CJ, Russell TP, Wu P, Fokin VV (2005) Structurally diverse dendritic libraries: a highly efficient functionalization approach using click-chemistry. Macromolecules 38:3663–3678CrossRefGoogle Scholar
  87. 87.
    Percec V, Mitchell CM, Cho W-D, Uchida S, Glodde M, Ungar G, Zeng X, Liu Y, Balagurusamy VSK, Heiney PA (2004) Designing libraries of first generation AB3 and AB2 self-assembling dendrons via the primary structure generated from combinations of (AB)y-AB3 and (AB)y-AB2 building blocks. J Am Chem Soc 126:6078–6094CrossRefGoogle Scholar
  88. 88.
    Meier MAR, Filali M, Gohy J-F, Schubert US (2006) Star-shaped block copolymer stabilized palladium nanoparticles for efficient catalytic Heck cross-coupling reactions. J Mater Chem 16:3001–3006CrossRefGoogle Scholar
  89. 89.
    Rasa M, Meier MAR, Schubert US (2007) Transport of guest molecules by unimolecular micelles evidenced in analytical ultracentrifugation experiments. Macromol Rapid Commun 28:1429–1433CrossRefGoogle Scholar
  90. 90.
    Webster DC, Chisholm BJ, Stafslien SJ (2007) Mini-review: combinatorial approaches for the design of novel coating systems. Biofouling 23:179–192CrossRefGoogle Scholar
  91. 91.
    Potyrailo RA, Chisholm BJ, Olson DR, Brennan MJ, Molaison CA (2002) Development of combinatorial chemistry methods for coatings: high-throughput screening of abrasion resistance of coatings libraries. Anal Chem 74:5105–5111CrossRefGoogle Scholar
  92. 92.
    Ribeiro E, Stafslien SJ, Casse F, Callow JA, Callow ME, Pieper RJ, Daniels JW, Bahr JA, Webster DC (2008) Automated image-based method for laboratory screening of coating libraries for adhesion of algae and bacterial biofilms. J Comb Chem 10:586–594CrossRefGoogle Scholar
  93. 93.
    Casse F, Ribeiro E, Ekin A, Webster DC, Callow JA, Callow ME (2007) Laboratory screening of coating libraries for algal adhesion. Biofouling 23:267–276CrossRefGoogle Scholar
  94. 94.
    Becer CR, Schubert US (2009) Parallel optimization and high-throughput preparation of well-defined copolymer libraries using controlled/“living” polymerization methods. Adv Polym Sci DOI 10.1007/12_2009_16Google Scholar
  95. 95.
    Fasolka MJ, Stafford CM, Beers KL (2009) Gradient and microfluidic library approaches to polymer interfaces. Adv Polym Sci DOI 10.1007/12_2009_17Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Coatings and Polymeric Materials, North Dakota State UniversityFargoUSA
  2. 2.Institute of ChemistryUniversity of PotsdamGolmGermany

Personalised recommendations