Cucurbituril and Cyclodextrin Complexes of Dendrimers

  • Wei Wang
  • Angel E. Kaifer*Email author
Part of the Advances in Polymer Science book series (POLYMER, volume 222)


This chapter reviews the growing body of data on the binding interactions between dendrimers and two types of well-established molecular hosts: cyclodextrins and cucurbit[n]urils. Dendrimers are highly branched macromolecules to which functional groups can be attached in spatially defined locations. The attachment of guest functional groups to dendrimers allows the investigation of their binding interactions with freely diffusing hosts/receptors. The effect of dendrimer size on the thermodynamics of these host–guest reactions varies widely depending on factors described here. In optimum cases, it is possible to use these binding interactions to exert redox control on dendrimer self-assembly and even control the size of the resulting assemblies.


Cobaltocenium Cucurbit[n]urils Cyclodextrins Dendrimers Ferrocene Host–guest complexation Inclusion complexes Viologens 



The authors are grateful to the U.S. National Science Foundation for the sustained and generous support of this research. Wei Wang acknowledges a Maytag graduate fellowship from the University of Miami. Angel Kaifer acknowledges the contributions of many excellent graduate students and postdoctoral associates whose names are given in the list of references.


  1. 1.
    Lo S-C, Burn PL (2007) Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chem Rev 107:1097–1116CrossRefGoogle Scholar
  2. 2.
    Hwang S-H, Shreiner CD, Moorefield CN, Newkome GR (2007) Recent progress and applications for metallodendrimers. New J Chem 31:1192–1217CrossRefGoogle Scholar
  3. 3.
    Smith DK (2006) Dendritic gels – many arms make light work. Adv Mater 18:2773–2778CrossRefGoogle Scholar
  4. 4.
    Boas U, Christensen JB, Heegaard PMH (2006) Dendrimers: design, synthesis and chemical properties. J Mater Chem 16:3785–3798CrossRefGoogle Scholar
  5. 5.
    Caminade A-M, Maraval A, Majoral J-P (2006) Phosphorus-containing dendrons: synthesis, reactivity, properties, and use as building blocks for various dendritic architectures. Eur J Inorg Chem 887–901.Google Scholar
  6. 6.
    Smith DK (2006) Dendritic supermolecules–towards controllable nanomaterials. Chem Commun 35:34–44CrossRefGoogle Scholar
  7. 7.
    Kaifer AE (2007) Electron transfer and molecular recognition in metallocene-containing dendrimers. Eur J Inorg Chem 5015–5027.Google Scholar
  8. 8.
    Ong W, Gómez-Kaifer M, Kaifer AE (2004) Dendrimers as guests in molecular recognition phenomena. Chem Commun 1677–1683.Google Scholar
  9. 9.
    Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1358CrossRefGoogle Scholar
  10. 10.
    Lee JW, Samal S, Selvapalam N, Kim H-J, Kim K (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621–630CrossRefGoogle Scholar
  11. 11.
    Lagona J, Mukhopadhyay P, Chakrabartri S, Isaacs L (2005) The cucurbit[n]uril family. Angew Chem Int Ed 44:4844–4870CrossRefGoogle Scholar
  12. 12.
    Jeon WS, Moon K, Park SH, Chun H, Ko YH, Lee JY, Lee ES, Samal S, Selvapalam N, Rekharsky MV, Sindelar V, Sobransingh D, Inoue Y, Kaifer AE, Kim K (2005) Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. J Am Chem Soc 127:12984–12989CrossRefGoogle Scholar
  13. 13.
    Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1917CrossRefGoogle Scholar
  14. 14.
    Rekharsky MV, Mori T, Yang C, Ko YH, Selvapalam N, Kim H, Sobransingh D, Kaifer AE, Liu S, Isaacs L, Chen W, Moghaddam S, Gilson MK, Kim K, Inoue Y (2007) A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation. Proc Nat Acad Sci U S A 104:20737–20742CrossRefGoogle Scholar
  15. 15.
    Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 98:1997–2011CrossRefGoogle Scholar
  16. 16.
    D'Souza VT (2003) Modification of cyclodextrins for use as artificial enzymes. Supramol Chem 15:221–229CrossRefGoogle Scholar
  17. 17.
    Jon SY, Selvapalam N, Oh DH, Kang J-K, Kim S-Y, Jeon YJ, Lee JW, Kim K (2003) Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J Am Chem Soc 125:10186–10187CrossRefGoogle Scholar
  18. 18.
    Ahern C, Darcy R, O'Keeffe F, Schwinte P (1996) 6-Hydroxyalkylamino-6-deoxy-cyclodextrins: towards dendrimeric host molecules. J Incl Phenom 25:43–46CrossRefGoogle Scholar
  19. 19.
    Suh J, Hah SS, Lee SH (1997) Dendrimer poly(ethylenimine)s linked to ó-cyclodextrin. Bioorg Chem 25:63–75CrossRefGoogle Scholar
  20. 20.
    Newkome GR, Godínez LA, Moorefield CN (1998) Molecular recognition using β-cyclodextrin-modified dendrimers: novel building blocks for convergent self-assembly. Chem Commun 1821–1822.Google Scholar
  21. 21.
    Baussanne I, Benito JM, Mellet CO, Fernández JMG, Law H, Defaye J (2000) Synthesis and comparative lectin-binding affinity of mannosyl-coated β-cyclodextrin-dendrimer constructs. Chem Commun 1489–1490.Google Scholar
  22. 22.
    Ortega-Caballero F, Giménez-Martínez JJ, García-Fuentes L, Ortiz-Salmerón E, Santoyo-Gonzplez F, Vargas-Berenguel A (2001) Binding affinity Properties of dendritic glycosides based on a ó-cyclodextrin core toward guest molecules and concanavalin A. J Org Chem 66:7786–7795CrossRefGoogle Scholar
  23. 23.
    Vargas-Berenguel A, Ortega-Caballero F, Santoyo-González F, García-López JJ, Giménez-Martínez JJ, García-Fuentes L, Ortiz-Salmerón E (2002) Dendritic galactosides based on a ó-cyclodextrin core for the construction of site-specific molecular delivery systems: synthesis and molecular recognition studies. Chem Eur J 8:812–827CrossRefGoogle Scholar
  24. 24.
    Benito JM, Gómez-García M, Ortiz Mellet C, Baussanne I, Defaye J, García Fernández JM (2004) Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. J Am Chem Soc 126:10355–10363CrossRefGoogle Scholar
  25. 25.
    Gómez-García M, Benito JM, Rodríguez-Lucena D, Yu J-X, Chmurski K, Ortiz Mellet C, Gutierrez Gallego R, Maestre A, Defaye J, García Fernández JM (2005) Probing secondary carbohydrate-protein interactions with highly dense cyclodextrin-centered heteroglycoclusters: the heterocluster effect. J Am Chem Soc 127:7970–7971CrossRefGoogle Scholar
  26. 26.
    Isnin R, Salam C, Kaifer AE (1991) Bimodal cyclodextrin complexation of ferrocene derivatives containing n-alkyl chains of varying length. J Org Chem 56:35–41CrossRefGoogle Scholar
  27. 27.
    Godínez LA, Schwartz L, Criss CM, Kaifer AE (1997) Thermodynamic studies on the complexation of aromatic and aliphatic guests in water and water-urea mixtures. Experimental evidence for the interaction of urea with arene surfaces. J Phys Chem B 101:3376–3380CrossRefGoogle Scholar
  28. 28.
    Alonso B, Cuadrado I, Morán M, Losada J (1994) Organometallic silicon dendrimers. J Chem Soc Chem Commun 2575–2576.Google Scholar
  29. 29.
    Cuadrado I, Morán M, Casado CM, Alonso B, Lobete F, García B, Ibisate M, Losada J (1996) Ferrocenyl-functionalized poly(propylenimine) dendrimers. Organometallics 15:5278–5280CrossRefGoogle Scholar
  30. 30.
    Castro R, Cuadrado I, Alonso B, Casado CM, Morán M, Kaifer AE (1997) Multisite inclusion complexation of redox active dendrimer guests. J Am Chem Soc 119:5760–5761CrossRefGoogle Scholar
  31. 31.
    Valerio C, Fillaut J-L, Ruiz J, Guittard J, Blais J-C, Astruc D (1997) The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J Am Chem Soc 119:2588–2589CrossRefGoogle Scholar
  32. 32.
    Moozyckine AU, Bookham JL, Deary ME, Davies DM (2001) Structure and stability of cyclodextrin inclusion complexes with the ferrocenium cation in aq. solution: 1H NMR studies. J Chem Soc Perkin Trans 2:1858–1862Google Scholar
  33. 33.
    Wang Y, Mendoza S, Kaifer AE (1998) Electrochemical reduction of cobaltocenium in the presence of ó-cyclodextrin. Inorg Chem 37:317–320CrossRefGoogle Scholar
  34. 34.
    González B, Casado CM, Alonso B, Cuadrado I, Morán M, Wang Y, Kaifer AE (1998) Synthesis, electrochemistry and cyclodextrin binding of novel cobaltocenium-functionalized dendrimers. Chem Commun 2569–2570.Google Scholar
  35. 35.
    González, B, Cuadrado I, Alonso B, Casado CM, Morán M, Kaifer AE (2002) Mixed cobaltocenium-ferrocene heterobimetallic complexes and their binding interactions with ó-cyclodextrin. A three-state, host-guest system under redox control. Organometallics 21:3544–3551CrossRefGoogle Scholar
  36. 36.
    Casado C, González B, Cuadrado I, Alonso B, Morán M, Losada J (2000) Mixed ferrocene-cobaltocenium dendrimers: the most stable organometallic redox systems combined in a dendritic molecule. Angew Chem Int Ed 39:2135–2138CrossRefGoogle Scholar
  37. 37.
    Michels JJ, Baars MWPL, Meijer EW, Huskens J, Reinhoudt DN (2000) Well-defined assemblies of adamantyl-terminated poly(propyleneimine) dendrimers and ó-cyclodextrin in water. J Chem Soc Perkin Trans 2:1914–1918Google Scholar
  38. 38.
    Huskeens J, Deij MA, Reinhoudt DN (2002) Attachment of molecules at a molecular printboard by multiple host-guest interactions. Angew Chem Int Ed 41:4467–4471CrossRefGoogle Scholar
  39. 39.
    Ludden MJW, Reinhoudt DN, Huskens J (2006) Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chem Soc Rev 35:1122–1134CrossRefGoogle Scholar
  40. 40.
    Cameron CS, Gorman CB (2002) Effects of site encapsulation on electrochemical behavior of redox-active core dendrimers. Adv Funct Mater 12:17–20CrossRefGoogle Scholar
  41. 41.
    Cardona CM, Kaifer AE (1998) Asymmetric redox-active dendrimers containing a ferrocene subunit. Preparation, characterization, and electrochemistry. J Am Chem Soc 120:4023–4024CrossRefGoogle Scholar
  42. 42.
    Cardona CM, McCarley TD, Kaifer AE (2000) Synthesis, electrochemistry, and interactions with ó-cyclodextrin of dendrimers containing a single ferrocene subunit located “off-center”. J Org Chem 65:1857–1864CrossRefGoogle Scholar
  43. 43.
    Newkome GR, Behera RK, Moorefield CN, Baker GR (1991) Chemistry of micelles. 18. Cascade polymers: syntheses and characterization of one-directional arborols based on adamantane. J Org Chem 56:7162–7167CrossRefGoogle Scholar
  44. 44.
    Wang Y, Cardona CM, Kaifer AE (1999) Molecular orientation effects on the rates of heterogeneous electron transfer of unsymmetric dendrimers. J Am Chem Soc 121:9756–9757CrossRefGoogle Scholar
  45. 45.
    Cardona CM, Alvarez J, Kaifer AE, McCarley TD, Pandey S, Baker GA, Bonzagni NJ, Bright FV (2000) Dendrimers functionalized with a single fluorescent dansyl group attached “off center:” Synthesis and photophysical studies. J Am Chem Soc 122:6139–6144CrossRefGoogle Scholar
  46. 46.
    Ashton PR, Balzani V, Clemente-Leon M, Colonna B, Credi A, Jayaraman N, Raymo FM, Stoddart JF, Venturi M (2002) Ferrocene-containing carbohydrate dendrimers. Chem Eur J 8:673–684CrossRefGoogle Scholar
  47. 47.
    Newkome GR, Kotta KK, Moorefield CN (2006) Design, synthesis and characterization of conifer-shaped dendritic architectures. Chem Eur J 12:3726–3734CrossRefGoogle Scholar
  48. 48.
    Chechik V, Ionita G (2006) Supramolecular complexes of spin-labelled cyclodextrins. Org Biomol Chem 4:3505–3510CrossRefGoogle Scholar
  49. 49.
    Lee JW, Ko YH, Park S-H, Yamaguchi K, Kim K (2001) Novel pseudorotaxane-terminated dendrimers: supramolecular modification of dendrimer periphery. Angew Chem Int Ed 40:746–749CrossRefGoogle Scholar
  50. 50.
    Ong W, Gomez-Kaifer M, Kaifer AE (2002) Cucurbit[7]uril: a very effective host for viologens and their cation radicals. Org Lett 4:1791–1794CrossRefGoogle Scholar
  51. 51.
    Ong W, Kaifer AE (2004) Salt effects on the apparent stability of the cucurbit[7]uril-methyl viologen inclusion complex. J Org Chem 69:1383–1385CrossRefGoogle Scholar
  52. 52.
    Ong W, Kaifer AE (2002) Unusual electrochemical properties of unsymmetric viologen dendrimers. J Am Chem Soc 124:9358–9359CrossRefGoogle Scholar
  53. 53.
    Ong W, Kaifer AE (2003) Molecular encapsulation by cucurbit[7]uril of the apical 4,4′ -bipyridinium residue in Newkome-type dendrimers. Angew Chem Int Ed 42:2164–2167CrossRefGoogle Scholar
  54. 54.
    Ong W, Kaifer AE (2003) Unusual electrochemical properties of the inclusion complexes of ferrocenium and cobaltocenium with cucurbit[7]uril. Organometallics 22:4181–4183CrossRefGoogle Scholar
  55. 55.
    Sobransingh D, Kaifer AE (2006) New dendrimers containing a single cobaltocenium unit covalently attached to the apical position of newkome dendrons: electrochemistry and guest binding interactions with cucurbit[7]uril. Langmuir 22:10540–10544CrossRefGoogle Scholar
  56. 56.
    Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) The cucurbit[n]uril family: prime components for self-sorting systems. J Am Chem Soc 127:15959–15967CrossRefGoogle Scholar
  57. 57.
    Sobransingh D, Kaifer AE (2005) Binding interactions between the host cucurbit[7]uril and dendrimer guests containing a single ferrocenyl residue. Chem Commun 5071–5073.Google Scholar
  58. 58.
    Jeon WS, Kim H-J, Lee C, Kim K (2002) Control of the stoichiometry in host-guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril. Chem Commun 1828–1829.Google Scholar
  59. 59.
    Moon K, Grindstaff J, Sobransingh D, Kaifer AE (2004) Cucurbit[8]uril-mediated redox-controlled self-assembly of viologen-containing dendrimers. Angew Chem Int Ed 43:5496–5499CrossRefGoogle Scholar
  60. 60.
    Wang W, Kaifer AE (2006) Electrochemical switching and size selection in cucurbit[8]uril-mediated dendrimer self-assembly. Angew Chem Int Ed 45:7042–7046CrossRefGoogle Scholar
  61. 61.
    Ong W, Grindstaff J, Sobransingh D, Toba R, Quintela JM, Peinador C, Kaifer AE (2005) Electrochemical and guest binding properties of Fréchet- and Newkome-type dendrimers with a single viologen unit located at their apical positions. J Am Chem Soc 127:3353–3361CrossRefGoogle Scholar
  62. 62.
    Roessler BJ, Bielinska AU, Janczak K, Lee I, Baker JR (2001) Substituted ó-cyclodextrins interact with PAMAM dendrimer-DNA complexes and modify transfection efficiency. Biochem Biophys Res Commun 283:12–129CrossRefGoogle Scholar
  63. 63.
    Arima H, Kihara F, Hirayama F, Uekama K (2001) Enhancement of gene expression by polyamidoamine dendrimer conjugates with gα–, ó-, and gγ-cyclodextrins. Bioconjugate Chem 12:476–484CrossRefGoogle Scholar
  64. 64.
    Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K (2002) Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with α-cyclodextrin. Bioconjugate Chem 13:1211–1219CrossRefGoogle Scholar
  65. 65.
    Tsutumi T, Arima H, Hirayama F, Uekama K (2006) Potential use of dendrimer/a-cyclodextrin conjugate as a novel carrier for small interfering RNA (siRNA). J Incl Phenom 56:81–84CrossRefGoogle Scholar
  66. 66.
    Lim Y, Kim T, Lee JW, Kim S, Kim H-J, Kim K, Park J (2002) Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: noncovalent strategy in developing a gene delivery carrier. Bioconjugate Chem 13:1181–1185CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2009

Authors and Affiliations

  1. 1.Center for Supramolecular Science and Department of ChemistryUniversity of MiamiUSA

Personalised recommendations