Photoresponsive Polymers II pp 1-86

Part of the Advances in Polymer Science book series (POLYMER, volume 214)

Polymer Solar Cells

Abstract

Polymer solar cells, a highly innovative research area for the last decade until today, are currentlymaturing with respect to understanding of their fundamental processes of operation. The increasing interestof the scientific community is well reflected by the—every year—dynamically rising number ofpublications. This chapter presents an overview of the developments in organic photovoltaics employingconjugated polymers as active materials in the photoconversion process. Here the focus is on differentiatingbetween the various material systems applied today: polymer–fullerene, polymer–polymer, polymer–nanoparticlehybrids, and polymer–carbon nanotube combinations are reviewed comprehensively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nalwa HS (ed) (1997) Handbook of organic conductive molecules and polymers, vols 1–4. Wiley, Chichester Google Scholar
  2. 2.
    Hadziioannou G, van Hutten PF (eds) (2000) Semiconducting polymers, vol 1. Wiley-VCH, Weinheim Google Scholar
  3. 3.
    Skotheim TA, Reynolds JR (eds) (2006) Handbook of conducting polymers, vols 1–2. CRC, Boca Raton Google Scholar
  4. 4.
    McGehee MD, Miller EK, Moses D, Heeger AJ (1999) In: Bernier P, Lefrant S, Bidan G (eds) Advances in synthetic metals: twenty years of progress in science and technology. Elsevier, Lausanne, p 98 Google Scholar
  5. 5.
    Dimitrakopoulos CD, Mascaro DJ (2001) Organic thin-film transistors: a review of recent advances. IBM J Res Dev 45:11 CrossRefGoogle Scholar
  6. 6.
    Hoppe H, Arnold N, Meissner D, Sariciftci NS (2003) Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 80:105 CrossRefGoogle Scholar
  7. 7.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924 CrossRefGoogle Scholar
  8. 8.
    Montanari I, Nogueira AF, Nelson J, Durrant JR, Winder C, Loi MA, Sariciftci NS, Brabec CJ (2001) Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature. Appl Phys Lett 81:3001 CrossRefGoogle Scholar
  9. 9.
    Nogueira AF, Montari I, Nelson J, Durrant JR, Winder C, Sariciftci NS, Brabec C (2003) Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy. J Phys Chem B 107:1567 CrossRefGoogle Scholar
  10. 10.
    Nelson J (2003) Diffusion-limited recombination in polymer–fullerene blends and its influence on photocurrent collection. Phys Rev B 67:155209 CrossRefGoogle Scholar
  11. 11.
    Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685 CrossRefGoogle Scholar
  12. 12.
    Singh Th B, Marjanovic N, Matt GJ, Günes S, Sariciftci NS, Montaigne Ramil A, Andreev A, Sitter H, Schwödiauer R, Bauer S (2004) High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films. Org Electron 6:105 CrossRefGoogle Scholar
  13. 13.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15 CrossRefGoogle Scholar
  14. 14.
    Brabec CJ, Dyakonov V, Parisi J, Sariciftci NS (eds) (2003) Organic photovoltaics: concepts and realization, vol 60. Springer, Berlin Google Scholar
  15. 15.
    Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273 CrossRefGoogle Scholar
  16. 16.
    Mozer AJ, Sariciftci NS (2006) In: Skotheim TA, Reynolds JR (eds) Conjugated polymers: processing and applications, vol 2. CRC, Boca Raton, p 101 Google Scholar
  17. 17.
    Science Citation Index, polymer solar cell(s) (2007) Thompson Scientific, Web of Science Google Scholar
  18. 18.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617 CrossRefGoogle Scholar
  19. 19.
    Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl Phys Lett 87:083506 CrossRefGoogle Scholar
  20. 20.
    Reyes-Reyes M, Kim K, Dewald J, Lopez R-S, Avadhanula A, Curran S, Carroll DL (2005) Meso-structure formation for enhanced organic photovoltaic cells. Org Lett 7:5749 CrossRefGoogle Scholar
  21. 21.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864 CrossRefGoogle Scholar
  22. 22.
    Karg S, Riess W, Dyakonov V, Schwoerer M (1993) Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes. Synth Met 54:427 CrossRefGoogle Scholar
  23. 23.
    Yu G, Zhang C, Heeger AJ (1994) Dual-function semiconducting polymer devices: light-emitting and photodetecting diodes. Appl Phys Lett 64:1540 CrossRefGoogle Scholar
  24. 24.
    Yu G, Pakbaz K, Heeger AJ (1994) Semiconducting polymer diodes: large size, low cost photodetectors with excellent visible–ultraviolet sensitivity. Appl Phys Lett 64:3422 CrossRefGoogle Scholar
  25. 25.
    Marks RN, Halls JJM, Bradley DDC, Friend RH, Holmes AB (1994) The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. J Phys Condens Matter 6:1379 CrossRefGoogle Scholar
  26. 26.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474 CrossRefGoogle Scholar
  27. 27.
    Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F (1993) Semiconducting polymer–buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells. Appl Phys Lett 62:585 CrossRefGoogle Scholar
  28. 28.
    Yu G, Heeger AJ (1995) Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys 78:4510 CrossRefGoogle Scholar
  29. 29.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789 CrossRefGoogle Scholar
  30. 30.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498 CrossRefGoogle Scholar
  31. 31.
    Tada K, Hosada K, Hirohata M, Hidayat R, Kawai T, Onoda M, Teraguchi M, Masuda T, Zakhidov AA, Yoshino K (1997) Donor polymer (PAT6)–acceptor polymer (CNPPV) fractal network photocells. Synth Met 85:1305 CrossRefGoogle Scholar
  32. 32.
    Granström M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH (1998) Laminated fabrication of polymeric photovoltaic diodes. Nature 395:257 CrossRefGoogle Scholar
  33. 33.
    Jenekhe SA, Yi S (2000) Efficient photovoltaic cells from semiconducting polymer heterojunctions. Appl Phys Lett 77:2635 CrossRefGoogle Scholar
  34. 34.
    Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 25% efficient organic plastic solar cells. Appl Phys Lett 78:841 CrossRefGoogle Scholar
  35. 35.
    McNeill CR, Abrusci A, Zaumseil J, Wilson R, McKiernan MJ, Burroughes JH, Halls JJM, Greenham NC, Friend RH (2007) Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes. Appl Phys Lett 90:193506 CrossRefGoogle Scholar
  36. 36.
    Sun B, Greenham NC (2006) Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Phys Chem Chem Phys 8:3557 CrossRefGoogle Scholar
  37. 37.
    Kymakis E, Koudoumas E, Franghiadakis I, Amaratunga GAJ (2006) Post-fabrication annealing effects in polymer–nanotube photovoltaic cells. J Phys D Appl Phys 39:1058 CrossRefGoogle Scholar
  38. 38.
    de Boer B, Stalmach U, van Hutten PF, Melzer C, Krasnikov VV, Hadziioannou G (2001) Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers. Polymer 42:9097 CrossRefGoogle Scholar
  39. 39.
    Gratt JA, Cohen RE (2004) The role of ordered block copolymer morphology in the performance of organic/inorganic photovoltaic devices. J Appl Polym Sci 91:3362–3368 CrossRefGoogle Scholar
  40. 40.
    Sun S, Fan Z, Wang Y, Haliburton J (2005) Organic solar cell optimizations. J Mater Sci 40:1429 CrossRefGoogle Scholar
  41. 41.
    Heiser T, Adamopoulos G, Brinkmann M, Giovanella U, Ould-Saad S, Brochon C, van de Wetering K, Hadziioannou G (2006) Nanostructure of self-assembled rod–coil block copolymer films for photovoltaic application. Thin Solid Films 511–512:219 CrossRefGoogle Scholar
  42. 42.
    Lindner SM, Hüttner S, Chiche A, Thelakkat M, Krausch G (2006) Charge separation at self-assembled nanostructured bulk interface in block copolymers. Angew Chem Int Ed 45:3364–3368 CrossRefGoogle Scholar
  43. 43.
    Sommer M, Lindner SM, Thelakkat M (2007) Microphase-Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells. Adv Funct Mater 17:1493–1500 CrossRefGoogle Scholar
  44. 44.
    Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB (1996) Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl Phys Lett 68:3120 CrossRefGoogle Scholar
  45. 45.
    Savanije TJ, Warman JM, Goossens A (1998) Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem Phys Lett 287:148 CrossRefGoogle Scholar
  46. 46.
    Pettersson LAA, Roman LS, Inganäs O (1999) Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J Appl Phys 86:487 CrossRefGoogle Scholar
  47. 47.
    Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Scherf U, Harth E, Gügel A, Müllen K (1999) Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys Rev B 59:15346 CrossRefGoogle Scholar
  48. 48.
    Stoessel M, Wittmann G, Staudigel J, Steuber F, Blässing J, Roth W, Klausmann H, Rogler W, Simmerer J, Winnacker A, Inbasekaran M, Woo EP (2000) Cathode-induced luminescence quenching in polyfluorenes. J Appl Phys 87:4467 CrossRefGoogle Scholar
  49. 49.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New York Google Scholar
  50. 50.
    Sariciftci NS (ed) (1997) Primary photoexcitations in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore Google Scholar
  51. 51.
    Chandross M, Mazumdar S, Jeglinski S, Wei X, Vardeny ZV, Kwock EW, Miller TM (1994) Excitons in poly(para-phenylenevinylene). Phys Rev B 50:14702 CrossRefGoogle Scholar
  52. 52.
    Campbell IH, Hagler TW, Smith DL, Ferraris JP (1996) Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures. Phys Rev Lett 76:1900 CrossRefGoogle Scholar
  53. 53.
    Knupfer M (2003) Exciton binding energies in organic semiconductors. Appl Phys A 77:623 CrossRefGoogle Scholar
  54. 54.
    Brabec CJ, Zerza G, Cerullo G, Silvestri SD, Luzzati S, Hummelen JC, Sariciftci S (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340:232 CrossRefGoogle Scholar
  55. 55.
    Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene based bulk-heterojunction solar cells. Adv Funct Mater 14:1005 CrossRefGoogle Scholar
  56. 56.
    Morteani AC, Dhoot AS, Kim JS, Silva C, Greenham NC, Friend RH, Murphy C, Moons E, Ciná S, Burroughes JH (2003) Barrier-free electron–hole capture in polymer blend heterojunction light-emitting diodes. Adv Mater 15:1708 CrossRefGoogle Scholar
  57. 57.
    Morteani AC, Sreearunothai P, Herz LM, Phillips RT, Friend RH, Silva C (2004) Exciton regeneration at polymeric semiconductor heterojunctions. Phys Rev Lett 92:247240 CrossRefGoogle Scholar
  58. 58.
    Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM (2004) Photocurrent generation in polymer–fullerene bulk heterojunctions. Phys Rev Lett 93:216601 CrossRefGoogle Scholar
  59. 59.
    Koster LJA, Smiths ECP, Mihailetchi VD, Blom PWM (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72:085205 CrossRefGoogle Scholar
  60. 60.
    Hoppe H, Glatzel T, Niggemann M, Hinsch A, Lux-Steiner MC, Sariciftci NS (2005) Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Lett 5:269 CrossRefGoogle Scholar
  61. 61.
    Hoppe H, Glatzel T, Niggemann M, Schwinger W, Schaeffler F, Hinsch A, Lux-Steiner MC, Sariciftci NS (2006) Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. Thin Solid Films 511–512:587 CrossRefGoogle Scholar
  62. 62.
    Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16:45 CrossRefGoogle Scholar
  63. 63.
    Sze SM (1981) Physics of semiconductor devices. Wiley, New York Google Scholar
  64. 64.
    Parker ID (1994) Carrier tunneling and device characteristics in polymer light-emitting diodes. J Appl Phys 75:1656 CrossRefGoogle Scholar
  65. 65.
    Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183 CrossRefGoogle Scholar
  66. 66.
    Moons E (2002) Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes. J Phys Condens Matter 14:12235–12260 CrossRefGoogle Scholar
  67. 67.
    Kim J-S, Ho PKH, Murphy CE, Friend RH (2004) Phase separation in polyfluorene-based conjugated polymer blends: lateral and vertical analysis of blend spin-cast thin films. Macromolecules 37:2861 CrossRefGoogle Scholar
  68. 68.
    Yang X, van Duren JKJ, Janssen RAJ, Michels MAJ, Loos J (2004) Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37:2151 CrossRefGoogle Scholar
  69. 69.
    Coakley KM, Liu Y, McGehee MD, Frindell K, Stucky GD (2003) Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv Funct Mater 13:301 CrossRefGoogle Scholar
  70. 70.
    Coakley KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl Phys Lett 83:3380 CrossRefGoogle Scholar
  71. 71.
    Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533 CrossRefGoogle Scholar
  72. 72.
    Campbell IH, Rubin S, Zawodzinski TA, Kress JD, Martin RL, Smith DL, Barashkov NN, Ferraris JP (1996) Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys Rev B 54:14321 CrossRefGoogle Scholar
  73. 73.
    Campbell IH, Kress JD, Martin RL, Smith DL, Barashkov NN, Ferraris JP (1997) Controlling charge injection in organic electronic devices using self-assembled monolayers. Appl Phys Lett 71:3528 CrossRefGoogle Scholar
  74. 74.
    Ganzorig C, Matsuda Y, Fujihira M (2002) Chemical modification of indium-tin-oxide electrodes by surface molecular design. Presented at the Materials Research Society meeting, Warrendale. MRS Proc 708:BB3221 Google Scholar
  75. 75.
    Lee J, Jung B-J, Lee J-I, Chu HY, Do L-M, Shim H-K (2002) Modification of an ITO anode with a hole-transporting SAM for improved OLED device characteristics. J Mater Chem 12:3494 CrossRefGoogle Scholar
  76. 76.
    Scott JC, Carter SA, Karg S, Angelopoulos M (1997) Polymeric anodes for organic light-emitting diodes. Synth Met 85:1197 CrossRefGoogle Scholar
  77. 77.
    Cao Y, Yu G, Zhang C, Menon R, Heeger AJ (1997) Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode. Synth Met 87:171 CrossRefGoogle Scholar
  78. 78.
    Kugler T, Salaneck WR, Rost H, Holmes AB (1999) Polymer band alignment at the interface with indium tin oxide: consequences for light emitting devices. Chem Phys Lett 310:391 CrossRefGoogle Scholar
  79. 79.
    Greczynski G, Kugler T, Salaneck WR (2000) Energy level alignment in organic-based three-layer structures studied by photoelectron spectroscopy. J Appl Phys 88:7187 CrossRefGoogle Scholar
  80. 80.
    Hung LS, Tang CW, Mason MG (1997) Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl Phys Lett 70:152 CrossRefGoogle Scholar
  81. 81.
    Jabbour GE, Kawabe Y, Shaheen SE, Wang JF, Morrell MM, Kippelen B, Peyghambarian N (1997) Highly efficient and bright organic electroluminescent devices with an aluminum cathode. Appl Phys Lett 71:1762 CrossRefGoogle Scholar
  82. 82.
    Shaheen SE, Jabbour GE, Morrell MM, Kawabe Y, Kippelen B, Peyghambarian N, Nabor M-F, Schlaf R, Mash EA, Armstrong NR (1998) Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode. J Appl Phys 84:2324 CrossRefGoogle Scholar
  83. 83.
    Jabbour GE, Kippelen B, Armstrong NR, Peyghambarian N (1998) Aluminum based cathode structure of enhanced electron injection in electroluminescent organic devices. Appl Phys Lett 73:1185 CrossRefGoogle Scholar
  84. 84.
    Koch N, Pogantsch A, List EJW, Leising G, Blyth RIR, Ramsey MG, Netzer FP (1999) Low-onset organic blue light emitting devices obtained by better interface control. Appl Phys Lett 74:2909 CrossRefGoogle Scholar
  85. 85.
    Cao Y, Yu G, Parker ID, Heeger AJ (2000) Ultrathin layer alkaline earth metals as stable electron-injection electrodes for polymer light emitting diodes. J Appl Phys 88:3618 CrossRefGoogle Scholar
  86. 86.
    Heil H, Steiger J, Karg S, Gastel M, Ortner H, von Seggern H, Stößel M (2001) Mechanisms of injection enhancements in organic light-emitting diodes through an Al/LiF electrode. J Appl Phys 89:420 CrossRefGoogle Scholar
  87. 87.
    Li F, Feng J, Cheng G, Liu S (2002) Electron injection and electroluminescence investigation of organic light-emitting devices based on a Sn/Al cathode. Synth Met 126:347 CrossRefGoogle Scholar
  88. 88.
    Malliaras GG, Scott JC (1998) The roles of injection and mobility in organic light emitting diodes. J Appl Phys 83:5399 CrossRefGoogle Scholar
  89. 89.
    Roman LS, Mammo W, Petterson LAA, Andersson MR, Inganäs O (1998) High quantum efficiency polythiophene/C60 photodiodes. Adv Mater 10:774 CrossRefGoogle Scholar
  90. 90.
    Shaheen SE, Brabec CJ, Sariciftci NS, Jabbour GE (2001) Effects of inserting highly polar salts between the cathode and active layer of bulk heterojunction photovoltaic devices. Presented at the Materials Research Society meeting, San Francisco. MRS Proc 665:C5511 Google Scholar
  91. 91.
    Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288 CrossRefGoogle Scholar
  92. 92.
    Brown TM, Millard IS, Lacey DJ, Burroughes JH, Friend RH, Cacialli F (2001) The influence of LiF thickness on the built-in potential of blue polymer light-emitting diodes with LiF/Al cathodes. Synth Met 124:15 CrossRefGoogle Scholar
  93. 93.
    van Gennip WJH, van Duren JKJ, Thüne PC, Janssen RAJ, Niemantsverdriet JW (2002) The interfaces of poly(p-phenylene vinylene) and fullerene derivatives with Al, LiF, and Al/LiF studied by secondary ion mass spectroscopy and X-ray photoelectron spectroscopy: formation of AI/F3 disproved. J Chem Phys 117:5031 CrossRefGoogle Scholar
  94. 94.
    Deng XY, Tong SW, Hung LS, Mo YQ, Cao Y (2003) Role of ultrathin Alq3 and LiF layers in conjugated polymer light-emitting diodes. Appl Phys Lett 82:3104 CrossRefGoogle Scholar
  95. 95.
    Yokoyama T, Yoshimura D, Ito E, Ishii H, Ouchi Y, Seki K (2003) Energy level alignment at Alq3/LiF/Al interfaces studied by electron spectroscopies: island growth of LiF and size-dependence of the electronic structures. Jpn J Appl Phys 42:3666 CrossRefGoogle Scholar
  96. 96.
    Liu J, Duggal AR, Shiang JJ, Heller CM (2004) Efficient bottom cathodes for organic light-emitting devices. Appl Phys Lett 85:837 CrossRefGoogle Scholar
  97. 97.
    Jönsson SKM, Carlegrim E, Zhang F, Salaneck WR, Fahlman M (2005) Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: the role of LiF. Jpn J Appl Phys 44:3695 CrossRefGoogle Scholar
  98. 98.
    Gregg BA, Hanna MC (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93:3605 CrossRefGoogle Scholar
  99. 99.
    Kim H, Jin S-H, Suh H, Lee K (2004) Origin of the open circuit voltage in conjugated polymer–fullerene photovoltaic cells. In: Kafafi ZH, Lane PA (eds) Organic photovoltaics IV. SPIE Proc 5215:111 CrossRefGoogle Scholar
  100. 100.
    Gadisa A, Svensson M, Andersson MR, Inganäs O (2004) Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl Phys Lett 84:1609 CrossRefGoogle Scholar
  101. 101.
    Hoppe H, Egbe DAM, Mühlbacher D, Sariciftci NS (2004) Photovoltaic action of conjugated polymer/fullerene bulk heterojunction solar cells using novel PPE-PPV copolymers. J Mater Chem 14:3461 CrossRefGoogle Scholar
  102. 102.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789 CrossRefGoogle Scholar
  103. 103.
    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11:374 CrossRefGoogle Scholar
  104. 104.
    Kooistra FB, Knol J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC (2007) Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett 9:551 CrossRefGoogle Scholar
  105. 105.
    Mihailetchi VD, Blom PWM, Hummelen JC, Rispens MT (2003) Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. J Appl Phys 94:6849 CrossRefGoogle Scholar
  106. 106.
    Heller CM, Campbell IH, Smith DL, Barashkov NN, Ferraris JP (1997) Chemical potential pinning due to equilibrium electron transfer at metal/C60-doped polymer interfaces. J Appl Phys 81:3227 CrossRefGoogle Scholar
  107. 107.
    Hirose Y, Kahn A, Aristov V, Soukiassian P, Bulovic V, Forrest SR (1996) Chemistry and electronic properties of metal–organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Phys Rev B 54:13748 CrossRefGoogle Scholar
  108. 108.
    Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11:605 CrossRefGoogle Scholar
  109. 109.
    Yan L, Gao Y (2002) Interfaces in organic semiconductor devices. Thin Solid Films 417:101 CrossRefGoogle Scholar
  110. 110.
    Koch N, Kahn A, Ghijsen J, Pireaux J-J, Schwartz J, Johnson RL, Elschner A (2003) Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism. Appl Phys Lett 82:70 CrossRefGoogle Scholar
  111. 111.
    Cahen D, Kahn A (2003) Electron energetics at surfaces and interfaces: concepts and experiments. Adv Mater 15:271 CrossRefGoogle Scholar
  112. 112.
    Veenstra SC, Jonkman HT (2003) Energy-level alignment at metal–organic and organic–organic interfaces. J Polym Sci Polym Phys 41:2549 CrossRefGoogle Scholar
  113. 113.
    Veenstra SC, Heeres A, Hadziioannou G, Sawatzky GA, Jonkman HT (2002) On interface dipole layers between C60 and Ag or Au. Appl Phys A 75:661 CrossRefGoogle Scholar
  114. 114.
    Melzer C, Krasnikov VV, Hadziioannou G (2003) Organic donor/acceptor photovoltaics: the role of C60/metal interfaces. Appl Phys Lett 82:3101 CrossRefGoogle Scholar
  115. 115.
    van Duren JKJ, Loos J, Morrissey F, Leewis CM, Kivits KPH, van IJzendoorn LJ, Rispens MT, Hummelen JC, Janssen RAJ (2002) In-situ compositional and structural analysis of plastic solar cells. Adv Funct Mater 12:665 CrossRefGoogle Scholar
  116. 116.
    Bulle-Lieuwma CWT, van Gennip WJH, van Duren JKJ, Jonkheijm P, Janssen RAJ, Niemantsverdriet JW (2003) Characterization of polymer solar cells by TOF-SIMS depth profiling. Appl Surf Sci 203–204:547 CrossRefGoogle Scholar
  117. 117.
    Gao J, Hide F, Wang H (1997) Efficient photodetectors and photovoltaic cells from composites of fullerenes and conjugated polymers: photoinduced electron transfer. Synth Met 84:979 CrossRefGoogle Scholar
  118. 118.
    Liu J, Shi Y, Yang Y (2001) Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Adv Funct Mater 11:420 CrossRefGoogle Scholar
  119. 119.
    Scharber MC, Schulz NA, Sariciftci NS, Brabec CJ (2003) Optical- and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene composites. Phys Rev B 67:085202 CrossRefGoogle Scholar
  120. 120.
    van Duren JKJ, Yang X, Loos J, Bulle-Lieuwma CWT, Sieval AB, Hummelen JC, Janssen RAJ (2004) Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv Funct Mater 14:425 CrossRefGoogle Scholar
  121. 121.
    Riedel I, von Hauff E, Parisi J, Martin N, Giacalone F, Dyakonov V (2005) Dimethanofullerenes: new and efficient acceptors in bulk-heterojunction solar cells. Adv Funct Mater 15:1979 CrossRefGoogle Scholar
  122. 122.
    Katz EA, Faiman D, Tuladhar SM, Kroon JM, Wienk MM, Fromherz T, Padinger F, Brabec CJ, Sariciftci NS (2001) Temperature dependence for the photovoltaic device parameters of polymer–fullerene solar cells under operating conditions. J Appl Phys 90:5343 CrossRefGoogle Scholar
  123. 123.
    Dyakonov V (2002) The polymer–fullerene interpenetrating network: one route to a solar cell approach. Physica E 14:53 CrossRefGoogle Scholar
  124. 124.
    Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen JC (2004) Effect of temperature and illumination on the electrical characteristics of polymer–fullerene bulk-heterojunction solar cells. Adv Funct Mater 14:38 CrossRefGoogle Scholar
  125. 125.
    Ramsdale CM, Barker JA, Arias AC, MacKenzie JD, Friend RH, Greenham NC (2002) The origin of the open circuit voltage in polyfluorene-based photovoltaic devices. J Appl Phys 92:4266 CrossRefGoogle Scholar
  126. 126.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693 CrossRefGoogle Scholar
  127. 127.
    Schilinsky P, Waldauf C, Hauch J, Brabec CJ (2004) Simulation of light intensity dependent current characteristics of polymer solar cells. J Appl Phys 95:2816 CrossRefGoogle Scholar
  128. 128.
    Frohne H, Shaheen SE, Brabec CJ, Müller DC, Sariciftci NS, Meerholz K (2002) Influence of the anodic work function on the performance of organic solar cells. ChemPhysChem 9:795 CrossRefGoogle Scholar
  129. 129.
    Barker JA, Ramsdale CM, Greenham NC (2003) Modeling the current–voltage characteristics of bilayer polymer photovoltaic devices. Phys Rev B 67:075205 CrossRefGoogle Scholar
  130. 130.
    Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532 CrossRefGoogle Scholar
  131. 131.
    Yang CY, Heeger AJ (1996) Morphology of composites of semiconducting polymers mixed with C60. Synth Met 83:85 CrossRefGoogle Scholar
  132. 132.
    Drees M, Premaratne K, Graupner W, Heflin JR, Davis RM, Marciu D, Miller M (2002) Creation of a gradient polymer–fullerene interface in photovoltaic devices by thermally controlled interdiffusion. Appl Phys Lett 81:1 CrossRefGoogle Scholar
  133. 133.
    Drees M, Davis RM, Heflin JR (2005) Improved morphology of polymer–fullerene photovoltaic devices with thermally induced concentration gradients. J Appl Phys 97:036103 CrossRefGoogle Scholar
  134. 134.
    Martens T, D'Haen J, Munters T, Goris L, Beelen Z, Manca J, D'Olieslaeger M, Vanderzande D, Schepper LD, Andriessen R (2002) The influence of the microstructure upon the photovoltaic performance of MDMOPPV:PCBM bulk hetero-junction organic solar cells. Presented at the Materials Research Society Spring Meeting, San Francisco. MRS Proc 725:P7111 Google Scholar
  135. 135.
    Martens T, D'Haen J, Munters T, Beelen Z, Goris L, Manca J, D'Olieslaeger M, Vanderzande D, Schepper LD, Andriessen R (2003) Disclosure of the nanostructure of MDMO-PPV:PCBM bulk heterojunction organic solar cells by a combination of SPM and TEM. Synth Met 138:243 CrossRefGoogle Scholar
  136. 136.
    Martens T, Beelen Z, D'Haen J, Munters T, Goris L, Manca J, D'Olieslaeger M, Vanderzande D, Schepper LD, Andriessen R (2003) Morphology of MDMO-PPV:PCBM bulk hetero-junction organic solar cells studied by AFM, KFM and TEM. In: Kafafi Z H, Fichou D (eds) Organic photovoltaics III. SPIE Proc 4801:40 CrossRefGoogle Scholar
  137. 137.
    Hoppe H, Drees M, Schwinger W, Schäffler F, Sariciftci NS (2005) Nano-crystalline fullerene phases in polymer/fullerene bulk-heterojunction solar cells: a transmission electron microscopy study. Synth Met 152:117 CrossRefGoogle Scholar
  138. 138.
    McNeill CR, Frohne H, Holdsworth JL, Dastoor PC (2004) Direct influence of morphology on current generation in conjugated polymer:methanofullerene solar cells measured by near-field scanning photocurrent microscopy. Synth Met 147:101 CrossRefGoogle Scholar
  139. 139.
    Geens W, Shaheen SE, Brabec CJ, Poortmans J, Sariciftci NS (2000) Field-effect mobility measurements of conjugated polymer/fullerene photovoltaic blends. Presented at the electronic properties of novel materials—molecular nanostructures, 14th international winter school/Euroconference (American Institute of Physics), Kirchberg Google Scholar
  140. 140.
    Geens W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS (2002) Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Org Electron 3:105 CrossRefGoogle Scholar
  141. 141.
    Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R (2003) The influence of the donor/acceptor ratio on the performance of organic bulk heterojunction solar cells. Presented at the E-MRS spring meeting, Strasbourg Google Scholar
  142. 142.
    Pacios R, Nelson J, Bradley DDC, Brabec CJ (2003) Composition dependence of electron and hole transport in polyfluorene:[6,6]-phenyl C61-butyric acid methyl ester blend films. Appl Phys Lett 83:4764 CrossRefGoogle Scholar
  143. 143.
    Melzer C, Koop EJ, Mihailetchi VD, Blom PWM (2004) Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv Funct Mater 14:865 CrossRefGoogle Scholar
  144. 144.
    Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, de Boer B, van Duren JKJ, Janssen RAJ (2005) Compositional dependence of the performance of poly(p-phenylene vinylene):methanofullerene bulk-heterojunction solar cells. Adv Funct Mater 15:795 CrossRefGoogle Scholar
  145. 145.
    Dennler G, Mozer AJ, Juska G, Pivrikas A, Österbacka R, Fuchsbauer A, Sariciftci NS (2006) Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells. Org Electron 7:229 CrossRefGoogle Scholar
  146. 146.
    Gadisa A, Wang X, Admassie S, Perzon E, Oswald F, Langa F, Andersson MR, Inganäs O (2006) Stoichiometry dependence of charge transport in polymer/methanofullerene and polymer/C70 derivative based solar cells. Org Electron 7:195 CrossRefGoogle Scholar
  147. 147.
    Andersson LM, Inganäs O (2006) Acceptor influence on hole mobility in fullerene blends with alternating copolymers of fluorene. Appl Phys Lett 88:082103 CrossRefGoogle Scholar
  148. 148.
    Mihailetchi VD, Wildeman J, Blom PWM (2005) Space-charge limited photocurrent. Phys Rev Lett 94:126602 CrossRefGoogle Scholar
  149. 149.
    Bässler H (1993) Charge transport in disordered organic photoconductors. Phys Status Solidi B 175:15 CrossRefGoogle Scholar
  150. 150.
    Dyakonov V (2004) Mechanisms controlling the efficiency of polymer solar cells. Appl Phys A 79:21 CrossRefGoogle Scholar
  151. 151.
    Riedel I, Dyakonov V (2004) Influence of electronic transport properties of polymer–fullerene blends on the performance of bulk heterojunction photovoltaic devices. Phys Status Solidi A 201:1332 CrossRefGoogle Scholar
  152. 152.
    Onsager L (1934) Deviations from Ohm's law in weak electrolytes. J Chem Phys 2:599 CrossRefGoogle Scholar
  153. 153.
    Braun CL (1984) Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J Chem Phys 80:4157 CrossRefGoogle Scholar
  154. 154.
    Gommans HHP, Kemerink M, Kramer JM, Janssen RAJ (2005) Field and temperature dependence of the photocurrent in polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 87:122104 CrossRefGoogle Scholar
  155. 155.
    Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM (2005) Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl Phys Lett 86:123509 CrossRefGoogle Scholar
  156. 156.
    Koster LJA, Mihailetchi VD, Xie H, Blom PWM (2005) Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl Phys Lett 87:203502 CrossRefGoogle Scholar
  157. 157.
    Waldauf C, Schilinsky P, Hauch J, Brabec CJ (2004) Material and device concepts for organic photovoltaics: towards competitive efficiencies. Thin Solid Films 451–452:503 CrossRefGoogle Scholar
  158. 158.
    Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ (2006) Physics of organic bulk heterojunction devices for photovoltaic applications. J Appl Phys 99:104503 CrossRefGoogle Scholar
  159. 159.
    Harbecke B (1986) Coherent and incoherent reflection and transmission of multilayer systems. Appl Phys B 39:165 CrossRefGoogle Scholar
  160. 160.
    Rostalski J, Meissner D (2000) Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol Energy Mater Sol Cells 63:37 CrossRefGoogle Scholar
  161. 161.
    Gruber DP, Meinhardt G, Papousek W (2005) Modelling the light absorption in organic photovoltaic devices. Sol Energy Mater Sol Cells 87:215 CrossRefGoogle Scholar
  162. 162.
    Niggemann M, Bläsi B, Gombert A, Hinsch A, Hoppe H, Lalanne P, Meissner D, Wittwer V (2002) Trapping light in organic plastic solar cells with integrated diffraction gratings. Presented at the 17th European photovoltaic solar energy conference, Munich, 22–26 October 2001 Google Scholar
  163. 163.
    Hoppe H, Arnold N, Meissner D, Sariciftci NS (2004) Modeling of optical absorption in conjugated polymer/fullerene bulk-heterojunction plastic solar cells. Thin Solid Films 451–452:589 CrossRefGoogle Scholar
  164. 164.
    Persson N-K, Schubert M, Inganäs O (2004) Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer. Sol Energy Mater Sol Cells 83:169 CrossRefGoogle Scholar
  165. 165.
    Hoppe H, Shokhovets S, Gobsch G (2007) Inverse relation between photocurrent and absorption layer thickness in polymer solar cells. Phys Status Solidi RRL 1:R40 CrossRefGoogle Scholar
  166. 166.
    Slooff LH, Veenstra SC, Kroon JM, Moet DJD, Sweelssen J, Koetse MM (2007) Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Appl Phys Lett 90:143506 CrossRefGoogle Scholar
  167. 167.
    Lutsen L, Adriaensens P, Becker H, van Breemen AJ, Vanderzande D, Gelan J (1999) New synthesis of a soluble high molecular weight poly(arylene vinylene): poly[2-methoxy-5-(3,7-dimethyloctyloxy)-p-phenylene vinylene] polymerization and device properties. Macromolecules 32:6517 CrossRefGoogle Scholar
  168. 168.
    Munters T, Martens T, Goris L, Vrindts V, Manca J, Lutsen L, Ceunick WD, Vanderzande D, Schepper LD, Gelan J, Sariciftci NS, Brabec CJ (2002) A comparison between state-of-the-art gilch and sulphinyl synthesised MDMO-PPV/PCBM bulk hetero-junction solar cells. Thin Solid Films 403–404:247 CrossRefGoogle Scholar
  169. 169.
    Mozer A, Denk P, Scharber M, Neugebauer H, Sariciftci NS, Wagner P, Lutsen L, Vanderzande D (2004) Novel regiospecific MDMO-PPV copolymer with improved charge transport for bulk heterojunction solar cells. J Phys Chem B 108:5235 CrossRefGoogle Scholar
  170. 170.
    Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hall PA, Janssen RAJ (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371 CrossRefGoogle Scholar
  171. 171.
    Camaioni N, Ridolfi G, Casalbore-Miceli G, Possamai G, Maggini M (2002) The effect of a mild thermal treatment on the performance of poly(3-alkylthiophene)/fullerene solar cells. Adv Mater 14:1735 CrossRefGoogle Scholar
  172. 172.
    Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:1 CrossRefGoogle Scholar
  173. 173.
    Zhao Y, Yuan GX, Roche P, Leclerc M (1995) A calorimetric study of the phase transitions in poly(3-hexylthiophene). Polymer 36:2211 CrossRefGoogle Scholar
  174. 174.
    Berggren M, Gustafsson G, Inganäs O, Andersson MR, Wennerström O, Hjertberg T (1994) Thermal control of near-infrared and visible electroluminescence in alkyl-phenyl substituted polythiophenes. Appl Phys Lett 65:1489 CrossRefGoogle Scholar
  175. 175.
    Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15:1317 CrossRefGoogle Scholar
  176. 176.
    Brown PJ, Thomas DS, Köhler A, Wilson J, Kim JS, Ramsdale C, Sirringhaus H, Friend RH (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67:064203 CrossRefGoogle Scholar
  177. 177.
    Ahn T, Lee H, Han S-H (2002) Effect of annealing of polythiophene derivative for polymer light-emitting diodes. Appl Phys Lett 80:392 CrossRefGoogle Scholar
  178. 178.
    Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl Phys Lett 86:063502 CrossRefGoogle Scholar
  179. 179.
    Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579 CrossRefGoogle Scholar
  180. 180.
    Ihn KJ, Moulton J, Smith P (1993) Whiskers of poly(3-alkylthiophene)s. J Polym Sci B Polym Phys 31:735 CrossRefGoogle Scholar
  181. 181.
    Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer films for organic solar cells. Adv Funct Mater 15:1193 CrossRefGoogle Scholar
  182. 182.
    Erb T, Zhokhavets U, Hoppe H, Gobsch G, Al-Ibrahim M, Ambacher O (2006) Absorption and crystallinity of poly(3-hexylthiophene)/fullerene blends in dependence on annealing temperature. Thin Solid Films 511–512:483 CrossRefGoogle Scholar
  183. 183.
    Zhokhavets U, Erb T, Gobsch G, Al-Ibrahim M, Ambacher O (2006) Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells. Chem Phys Lett 418:343 CrossRefGoogle Scholar
  184. 184.
    Yang X, van Duren JKJ, Rispens MT, Hummelen JC, Janssen RAJ, Michels MAJ, Loos J (2004) Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater 16:802 CrossRefGoogle Scholar
  185. 185.
    Schuller S, Schilinsky P, Hauch J, Brabec CJ (2004) Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl Phys A Mater Sci Proc 79:37 CrossRefGoogle Scholar
  186. 186.
    Drees M, Hoppe H, Winder C, Neugebauer H, Sariciftci NS, Schwinger W, Schäffler F, Topf C, Scharber MC, Zhu Z, Gaudiana R (2005) Stabilization of the nanomorphology of polymer/fullerene bulk heterojunction blends using a novel polymerizable fullerene derivative. J Mater Chem 15:5158 CrossRefGoogle Scholar
  187. 187.
    Sivula K, Ball ZT, Watanabe N, Fréchet JMJ (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv Mater 18:206 CrossRefGoogle Scholar
  188. 188.
    Brabec CJ, Hauch JA, Schilinsky P, Waldauf C (2005) Production aspects of organic photovoltaics and their impact on the commercialization of devices. MRS Bull 30:50 CrossRefGoogle Scholar
  189. 189.
    Huang J, Li G, Yang Y (2005) Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends. Appl Phys Lett 87:112105 CrossRefGoogle Scholar
  190. 190.
    Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Ree M (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater 5:197 CrossRefGoogle Scholar
  191. 191.
    Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98:043704 CrossRefGoogle Scholar
  192. 192.
    Moulé AJ, Bonekamp JB, Meerholz K (2006) The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J Appl Phys 100:094503 CrossRefGoogle Scholar
  193. 193.
    Schilinsky P, Asawapirom U, Scherf U, Biele M, Brabec CJ (2005) Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chem Mater 17:2175 CrossRefGoogle Scholar
  194. 194.
    Schilinsky P, Waldauf C, Brabec CJ (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81:3885 CrossRefGoogle Scholar
  195. 195.
    Svensson M, Zhang F, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganäs O, Andersson MR (2003) High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater 15:988 CrossRefGoogle Scholar
  196. 196.
    Yohannes T, Zhang F, Svensson M, Hummelen JC, Andersson MR, Inganäs O (2004) Polyfluorene copolymer based bulk heterojunction solar cells. Thin Solid Films 449:152 CrossRefGoogle Scholar
  197. 197.
    Zhang F, Jespersen KG, Björström C, Svensson M, Andersson MR, Sundström V, Magnusson K, Moons E, Yartsev A, Inganäs O (2006) Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv Funct Mater 16:667 CrossRefGoogle Scholar
  198. 198.
    Roncali J (1997) Synthetic principles for band gap control in linear π-conjugated systems. Chem Rev 97:173 CrossRefGoogle Scholar
  199. 199.
    Winder C, Sariciftci NS (2004) Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J Mater Chem 14:1077 CrossRefGoogle Scholar
  200. 200.
    Thompson BC, Kim Y-G, Reynolds JR (2005) Spectral broadening in MEH-PPV:PCBM-based photovoltaic devices via blending with narrow band gap cyanovinylene-dioxythiophene polymer. Macromolecules 38:5359 CrossRefGoogle Scholar
  201. 201.
    Dhanabalan A, Knol J, Hummelen JC, Janssen RAJ (2001) Design and synthesis of new processible donor–acceptor dyad and triads. Synth Met 119:519 CrossRefGoogle Scholar
  202. 202.
    van Duren JKJ, Dhanabalan A, van Hal PA, Janssen RAJ (2001) Low-bandgap polymer photovoltaic cells. Synth Met 121:1587 CrossRefGoogle Scholar
  203. 203.
    Brabec CJ, Winder C, Sariciftci NS, Hummelen JC, Dhanabalan A, van Hal PA, Janssen RAJ (2002) A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv Funct Mater 12:709 CrossRefGoogle Scholar
  204. 204.
    Colladet K, Nicolas M, Goris L, Lutsen L, Vanderzande D (2004) Low-band gap polymers for photovoltaic applications. Thin Solid Films 451–452:7 CrossRefGoogle Scholar
  205. 205.
    Zhou Q, Hou Q, Zheng L, Deng X, Yu G, Cao Y (2004) Fluorene-based low band-gap copolymers for high performance. Appl Phys Lett 84:1653 CrossRefGoogle Scholar
  206. 206.
    Campos LM, Tontcheva A, Günes S, Sonmez G, Neugebauer H, Sariciftci NS, Wudl F (2005) Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell. Chem Mater 17:4031 CrossRefGoogle Scholar
  207. 207.
    Wang X, Perzon E, Delgado JL, de la Cruz P, Zhang F, Langa F, Andersson M, Inganäs O (2004) Infrared photocurrent spectral response from plastic solar cell with low-bandgap polyfluorene and fullerene derivative. Appl Phys Lett 85:5081 CrossRefGoogle Scholar
  208. 208.
    Wang X, Perzon E, Oswald F, Langa F, Admassie S, Andersson MR, Inganäs O (2005) Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-derivative-based solar cells. Adv Funct Mater 15:1665 CrossRefGoogle Scholar
  209. 209.
    Perzon E, Wang X, Zhang F, Mammo W, Delgado JL, de la Cruz P, Inganäs O, Langa F, Andersson MR (2005) Design, synthesis and properties of low-bandgap polyfluorenes for photovoltaic devices. Synth Met 154:53 CrossRefGoogle Scholar
  210. 210.
    Wang X, Perzon E, Mammo W, Oswald F, Admassie S, Persson N-K, Langa F, Andersson MR, Inganäs O (2006) Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 μm. Thin Solid Films 511–512:576 CrossRefGoogle Scholar
  211. 211.
    Perzon E, Wang X, Admassie S, Inganäs O, Andersson MR (2006) An alternating low band-gap polyfluorene for optoelectronic devices. Polymer 47:4261 CrossRefGoogle Scholar
  212. 212.
    Zhang F, Perzon E, Wang X, Mammo W, Andersson MR, Inganäs O (2005) Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm. Adv Funct Mater 15:745 CrossRefGoogle Scholar
  213. 213.
    Zhang F, Mammo W, Andersson LM, Admassie S, Andersson MR, Inganäs O (2006) Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells. Adv Mater 18:2169 CrossRefGoogle Scholar
  214. 214.
    Lee SK, Cho NS, Kwak JH, Lim KS, Shim H-K, Hwang D-H, Brabec CJ (2006) New low band-gap alternating polyfluorene derivatives for photovoltaic cells. Thin Solid Films 511–512:157 CrossRefGoogle Scholar
  215. 215.
    Wienk M, Struijk MP, Janssen RAJ (2006) Low bandgap polymer bulk heterojunction solar cells. Chem Phys Lett 422:488 CrossRefGoogle Scholar
  216. 216.
    Iou J, Hou Q, Chen J, Cao Y (2006) Luminescence and photovoltaic cells of benzoselenadiazole-containing polyfluorenes. Synth Met 156:470 CrossRefGoogle Scholar
  217. 217.
    Wienk MM, Turbiez MGR, Struijk MP, Fonrodona M, Janssen RAJ (2006) Low-band gap poly(di-2-thienylthienopyrazine):fullerene solar cells. Appl Phys Lett 88:153511 CrossRefGoogle Scholar
  218. 218.
    Halls JJM, Friend RH (1997) The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction. Synth Met 85:1307 CrossRefGoogle Scholar
  219. 219.
    Dittmer JJ, Lazzaroni R, Leclere P, Moretti P, Granström M, Petritsch K, Marseglia EA, Friend RH, Bredas JL, Rost H, Holmes AB (2000) Crystal network formation in organic solar cells. Sol Energy Mater Sol Cells 61:53 CrossRefGoogle Scholar
  220. 220.
    Deng X, Zheng L, Yang C, Li Y, Yu G, Cao Y (2004) Polymer photovoltaic devices fabricated with blend MEHPPV and organic small molecules. J Phys Chem B 108:3451 CrossRefGoogle Scholar
  221. 221.
    Halls JJM, Cornil J, de Santos DA, Silbey R, Hwang D-H, Holmes AB, Brédas JL, Friend RH (1999) Charge- and energy-transfer processes at polymer/polymer interfaces: a joint experimental and theoretical study. Phys Rev B 60:5721 CrossRefGoogle Scholar
  222. 222.
    Alam MM, Jenekhe SA (2004) Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chem Mater 16:4647 CrossRefGoogle Scholar
  223. 223.
    Breeze AJ, Schlesinger Z, Carter SA, Tillmann H, Hörhold H-H (2004) Improving power efficiencies in polymer–polymer blend photovoltaics. Sol Energy Mater Sol Cells 83:263 CrossRefGoogle Scholar
  224. 224.
    Chasteen SV, Härter JO, Rumbles G, Scott JC, Nakazawa Y, Jones M, Hörhold H-H, Tillman H, Carter SA (2006) Comparison of blended versus layered structures for poly(p-phenylene vinylene)-based polymer photovoltaics. J Appl Phys 99:033709 CrossRefGoogle Scholar
  225. 225.
    Kietzke T, Egbe DAM, Hörhold H-H, Neher D (2006) Comparative study of M3EH-PPV-based bilayer photovoltaic devices. Macromolecules 39:4018 CrossRefGoogle Scholar
  226. 226.
    Kietzke T, Hörhold H-H, Neher D (2005) Efficient polymer solar cells based on M3EH-PPV. Chem Mater 17:6532 CrossRefGoogle Scholar
  227. 227.
    Veenstra SC, Verhees WJH, Kroon JM, Koetse MM, Sweelssen J, Bastiaansen JJAM, Schoo HFM, Yang X, Alexeev A, Loos J, Schubert US, Wienk MM (2004) Photovoltaic properties of a conjugated polymer blend of MDMO-PPV and PCNEPV. Chem Mater 16:2503 CrossRefGoogle Scholar
  228. 228.
    Quist PAC, Savenije TJ, Koetse MM, Veenstra SC, Kroon JM, Siebbeles LDA (2005) The effect of annealing on the charge-carrier dynamics in a polymer/polymer bulk heterojunction for photovoltaic applications. Adv Funct Mater 15:469 CrossRefGoogle Scholar
  229. 229.
    Offermans T, van Hal PA, Meskers SCJ, Koetse MM, Janssen RAJ (2005) Exciplex dynamics in a blend of p-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV. Phys Rev B 72:045213 CrossRefGoogle Scholar
  230. 230.
    Veldman D, Offermans T, Sweelssen J, Koetse MM, Meskers SCJ, Janssen RAJ (2006) Triplet formation from the charge-separated state in blends of MDMO-PPV with cyano-containing acceptor polymers. Thin Solid Films 511–512:333 CrossRefGoogle Scholar
  231. 231.
    Russell DM, Arias AC, Friend RH, Silva C, Ego C, Grimsdale AC, Müllen K (2002) Efficient light harvesting in a photovoltaic diode composed of a semiconductor conjugated copolymer blend. Appl Phys Lett 80:2204 CrossRefGoogle Scholar
  232. 232.
    Kim Y, Cook S, Choulis SA, Nelson J, Durrant JR, Bradley DDC (2004) Organic photovoltaic devices based on blends of regioregular poly(3-hexylthiophene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Chem Mater 16:4812 CrossRefGoogle Scholar
  233. 233.
    Ridolfi G, Camainoni N, Samori P, Gazzano M, Accorsi G, Armaroli N, Favaretto L, Barbarella G (2005) All-thiophene donor–acceptor blends: photophysics, morphology and photoresponse. J Mater Chem 15:895 CrossRefGoogle Scholar
  234. 234.
    Koetse MM, Sweelssen J, Hoekerd KT, Schoo HFM, Veenstra SC, Kroon JM, Yang X, Loos J (2006) Efficient polymer:polymer bulk heterojunction solar cells. Appl Phys Lett 88:083504 CrossRefGoogle Scholar
  235. 235.
    Halls JJM, Arias AC, MacKenzie JD, Wu W, Inbasekaran M, Woo EP, Friend RH (2000) Photodiodes based on polyfluorene composites: influence of morphology. Adv Mater 12:498 CrossRefGoogle Scholar
  236. 236.
    Arias AC, MacKenzie JD, Stevenson R, Halls JJM, Inbasekaran M, Woo EP, Richards D, Friend RH (2001) Photovoltaic performance and morphology of polyfluorene blends: a combined microscopic and photovoltaic investigation. Macromolecules 34:6005 CrossRefGoogle Scholar
  237. 237.
    Snaith HJ, Arias AC, Morteani AC, Silva C, Friend RH (2002) Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett 2:1353 CrossRefGoogle Scholar
  238. 238.
    Xia Y, Friend RH (2005) Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules 38:6466 CrossRefGoogle Scholar
  239. 239.
    Kietzke T, Neher D, Landfester K, Montenegro R, Güntner R, Scherf U (2003) Novel approaches to polymer blends based on polymer nanoparticles. Nat Mater 2:408 CrossRefGoogle Scholar
  240. 240.
    Kietzke T, Neher D, Kumke M, Montenegro R, Landfester K, Scherf U (2004) A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices. Macromolecules 37:4882 CrossRefGoogle Scholar
  241. 241.
    Arias AC, Corcoran N, Banach M, Friend RH, MacKenzie JD, Huck WTS (2002) Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing. Appl Phys Lett 80:1695 CrossRefGoogle Scholar
  242. 242.
    Pacios R, Bradley DDC (2002) Charge separation in polyfluorene composites with internal donor/acceptor heterojunctions. Synth Met 127:261 CrossRefGoogle Scholar
  243. 243.
    Chiesa M, Bürgi L, Kim J-S, Shikler R, Friend RH, Sirringhaus H (2005) Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes. Nano Lett 5:559 CrossRefGoogle Scholar
  244. 244.
    Glatzel T, Hoppe H, Sariciftci NS, Lux-Steiner MC, Komiyama M (2005) Kelvin probe force microscopy study on conjugated polymer/fullerene organic solar cells. Jpn J Appl Phys 44:5370 CrossRefGoogle Scholar
  245. 245.
    Park Y, Choong V, Gao Y, Hsieh BR, Tang CW (1996) Work funtion of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl Phys Lett 68:2699 CrossRefGoogle Scholar
  246. 246.
    Snaith HJ, Greenham NC, Friend RH (2004) The origin of collected charge and open-circuit voltage in blended polyfluorene photovoltaic devices. Adv Mater 16:1640 CrossRefGoogle Scholar
  247. 247.
    Onsager L (1938) Initial recombination of ions. Phys Rev 54:554 CrossRefGoogle Scholar
  248. 248.
    Dhoot AS, Hogan JA, Morteani AC, Greenham NC (2004) Electromodulation of photoinduced charge transfer in polyfluorene bilayer devices. Appl Phys Lett 85:2256 CrossRefGoogle Scholar
  249. 249.
    Greenham NC, Peng X, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54:17628 CrossRefGoogle Scholar
  250. 250.
    Huynh WU, Dittmer JJ, Alivisato AP (2002) Hybrid nanorod–polymer solar cells. Science 295:2425 CrossRefGoogle Scholar
  251. 251.
    Huynh WU, Dittmer JJ, Libby WC, Whiting GL, Alivisato AP (2003) Controlling the morphology of nanocrystal–polymer composites for solar cells. Adv Funct Mater 13:73 CrossRefGoogle Scholar
  252. 252.
    Pientka M, Dyakonov V, Meissner D, Rogach A, Talapin D, Weller H, Lutsen L, Vanderzande D (2004) Photoinduced charge transfer in composites of conjugated polymers and semiconductor nanocrystals. Nanotechnology 15:163 CrossRefGoogle Scholar
  253. 253.
    Pientka M, Wisch J, Böger S, Parisi J, Dyakonov V, Rogach A, Talapin D, Weller H (2004) Photogeneration of charge carriers in blends of conjugated polymers and semiconducting nanoparticles. Thin Solid Films 451–452:48 CrossRefGoogle Scholar
  254. 254.
    Sun B, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3:961 CrossRefGoogle Scholar
  255. 255.
    Sun B, Snaith HJ, Dhoot AS, Westenhoff S, Greenham NC (2005) Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J Appl Phys 97:014914 CrossRefGoogle Scholar
  256. 256.
    Snaith HJ, Whiting GL, Sun B, Greenham NC, Huck WTS, Friend RH (2005) Self-organization of nanocrystals in polymer brushes: application in heterojunction photovoltaic diodes. Nano Lett 5:1653 CrossRefGoogle Scholar
  257. 257.
    Lin Y, Böker A, He J, Sill K, Xiang H, Abetz C, Li X, Wang J, Emrick T, Long S, Wang Q, Balazs A, Russell TP (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434:55 CrossRefGoogle Scholar
  258. 258.
    Firth AV, Tao Y, Wang D, Ding J, Bensebaa F (2005) Microwave assisted synthesis of CdSe nanocrystals for straightforward integration into composite photovoltaic devices. J Mater Chem 15:4367 CrossRefGoogle Scholar
  259. 259.
    Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) CdSe quantum dot–single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87:733 CrossRefGoogle Scholar
  260. 260.
    Liang Z, Dzienis KL, Xu J, Wang Q (2006) Covalent layer-by-layer assembly of conjugated polymers and CdSe nanoparticles: multilayer structure and photovoltaic properties. Adv Funct Mater 16:542 CrossRefGoogle Scholar
  261. 261.
    Kang Y, Kim D (2006) Well-aligned CdS nanorod/conjugated polymer solar cells. Sol Energy Mater Sol Cells 90:166 CrossRefGoogle Scholar
  262. 262.
    Kannan B, Castelino K, Majumdar A (2003) Design of nanostructured heterojunction polymer photovoltaic devices. Nano Lett 3:1729 CrossRefGoogle Scholar
  263. 263.
    Arici E, Sariciftci NS, Meissner D (2002) Photovoltaic properties of nanocrystalline CuInS2/methanofullerene solar cells. Mol Cryst Liq Cryst 385:129 CrossRefGoogle Scholar
  264. 264.
    Arici E, Hoppe H, Reuning A, Sariciftci NS, Meissner D (2002) CIS plastic solar cells. Presented at the 17th European photovoltaic solar energy conference, Munich, 22–26 October 2001, p 61 Google Scholar
  265. 265.
    Arici E, Sariciftci NS, Meissner D (2003) Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv Funct Mater 13:165 CrossRefGoogle Scholar
  266. 266.
    Arici E, Hoppe H, Schäffler F, Meissner D, Malik MA, Sariciftci NS (2004) Hybrid solar cells based on inorganic nanoclusters and semiconductive polymers. Thin Solid Films 451–452:612 CrossRefGoogle Scholar
  267. 267.
    Arici E, Hoppe H, Schäffler F, Meissner D, Malik MA, Sariciftci NS (2004) Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Appl Phys A 79:59 CrossRefGoogle Scholar
  268. 268.
    Kang Y, Park N-G, Kim D (2005) Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer. Appl Phys Lett 86:113101 CrossRefGoogle Scholar
  269. 269.
    Watt AAR, Blake D, Warner JH, Thomson EA, Tavenner EL, Rubinsztein-Dunlop H, Meredith P (2005) Lead sulfide nanocrystal:conducting polymer solar cells. J Phys D Appl Phys 38:2006 CrossRefGoogle Scholar
  270. 270.
    Zhang S, Cyr PW, McDonald SA, Konstantatos G, Sargent EH (2005) Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Appl Phys Lett 87:233101 CrossRefGoogle Scholar
  271. 271.
    Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M (2006) Harvest of near infrared light in PbSe nanocrystal–polymer hybrid photovoltaic cells. Appl Phys Lett 88:183111 CrossRefGoogle Scholar
  272. 272.
    Günes S, Neugebauer H, Sariciftci NS, Roither J, Kovalenko M, Pillwein G, Heiss W (2006) Hybrid solar cells using HgTe nanocrystals and nanoporous TiO2 electrodes. Adv Funct Mater 16:1095 CrossRefGoogle Scholar
  273. 273.
    Beek WJE, Wienk MM, Janssen RAJ (2004) Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv Mater 16:1009 CrossRefGoogle Scholar
  274. 274.
    Beek WJE, Slooff LH, Wienk MM, Kroon JM, Janssen RAJ (2005) Hybrid solar cells using a zinc oxide precursor and a conjugated polymer. Adv Funct Mater 15:1703 CrossRefGoogle Scholar
  275. 275.
    Beek WJE, Wienk MM, Kemerink M, Yang X, Janssen RAJ (2005) Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J Phys Chem B 109:9505 CrossRefGoogle Scholar
  276. 276.
    Beek WJE, Wienk MM, Janssen RAJ (2005) Hybrid polymer solar cells based on zinc oxide. J Mater Chem 15:2985 CrossRefGoogle Scholar
  277. 277.
    Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater 16:1112 CrossRefGoogle Scholar
  278. 278.
    Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5:1231 CrossRefGoogle Scholar
  279. 279.
    Quist PAC, Slooff LH, Donker H, Kroon JM, Savanije TJ, Siebbeles LDA (2005) Formation and decay of charge carriers in hybrid MDMO-PPV:ZnO bulk heterojunctions produced from a ZnO precursor. Superlattices Microstruct 38:308 CrossRefGoogle Scholar
  280. 280.
    Olson DC, Piris J, Collins RT, Shaheen SE, Ginley DS (2006) Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496:26 CrossRefGoogle Scholar
  281. 281.
    Peiro AM, Ravirajan P, Govender K, Boyle DS, O'Brien P, Bradley DDC, Nelson J, Durrant JR (2006) Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J Mater Chem 16:2088 CrossRefGoogle Scholar
  282. 282.
    Ravirajan P, Peiro AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J (2006) Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J Phys Chem B 110:7635 CrossRefGoogle Scholar
  283. 283.
    O'Regan B, Grätzel M (1991) A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737 CrossRefGoogle Scholar
  284. 284.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338 CrossRefGoogle Scholar
  285. 285.
    Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583 CrossRefGoogle Scholar
  286. 286.
    Krüger J, Bach U, Grätzel M (2000) Modification of TiO2 heterojunctions with benzoic acid derivatives in hybrid molecular solid-state devices. Adv Mater 12:447 CrossRefGoogle Scholar
  287. 287.
    Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U (2001) High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl Phys Lett 79:2085 CrossRefGoogle Scholar
  288. 288.
    Krüger J, Plass R, Grätzel M, Matthieu H-J (2002) Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4-dicarboxy-2,2-bipyridine)-bis(isothiocyanato)ruthenium(II). Appl Phys Lett 81:367 CrossRefGoogle Scholar
  289. 289.
    Kim Y-G, Walker J, Samuelson LA, Kumar J (2003) Efficient light harvesting polymers for nanocrystalline TiO2 photovoltaic cells. Nano Lett 3:523 CrossRefGoogle Scholar
  290. 290.
    Senadeera GKR, Nakamura K, Kitamura T, Wada Y, Yanagida S (2003) Fabrication of highly efficient polythiophene-sensitized metal oxide photovoltaic cells. Appl Phys Lett 83:5470 CrossRefGoogle Scholar
  291. 291.
    Nogueira AF, Longo C, De Paoli M-A (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Rev 248:1455 CrossRefGoogle Scholar
  292. 292.
    Arango AC, Carter SA, Brock PJ (1999) Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Appl Phys Lett 74:1698 CrossRefGoogle Scholar
  293. 293.
    Arango AC, Johnson LR, Bliznyuk VN, Schlesinger Z, Carter SA, Hörhold H-H (2000) Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion. Adv Mater 12:1689 CrossRefGoogle Scholar
  294. 294.
    Salafsky JS (1999) Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer–TiO2 nanocrystal intermixed composites. Phys Rev B 59:10885 CrossRefGoogle Scholar
  295. 295.
    Breeze AJ, Schlesinger Z, Carter SA (2001) Charge transport in TiO2/MEH-PPV polymer photovoltaics. Phys Rev B 64:125205 CrossRefGoogle Scholar
  296. 296.
    Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Spiekermann S, Vlachopoulos N, Kienberger F, Schindler H, Sariciftci NS (2001) Solid state dye-sensitized TiO2 solar cells with poly(3-octylthiophene) as hole transport layer. Synth Met 121:1549 CrossRefGoogle Scholar
  297. 297.
    Kaneko M, Takayama K, Pandey SS, Takashima W, Endo T, Rikukawa M, Kaneto K (2001) Photovoltaic cell using high mobility poly(alkylthiophene)s and TiO2. Synth Met 121:1537 CrossRefGoogle Scholar
  298. 298.
    Fan Q, McQuillin B, Bradley DDC, Whitelegg S, Seddon AB (2001) A solid-state solar cell using sol–gel processed material and a polymer. Chem Phys Lett 347:325 CrossRefGoogle Scholar
  299. 299.
    Qiao Q, McLeskey JJT (2005) Water-soluble polythiophene/nanocrystalline TiO2 solar cells. Appl Phys Lett 86:153501 CrossRefGoogle Scholar
  300. 300.
    Coakley KM, Srinivasan BS, Ziebarth JM, Goh C, Liu Y, McGehee MD (2005) Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv Funct Mater 15:1927 CrossRefGoogle Scholar
  301. 301.
    Bartholomew GP, Heeger AJ (2005) Infiltration of regioregular poly[2,2′-(3-hexylthiophene)] into random nanocrystalline TiO2 networks. Adv Funct Mater 15:677 CrossRefGoogle Scholar
  302. 302.
    Ravirajan R, Bradley DDC, Nelson J, Haque SA, Durrant JR, Smit HJP, Kroon JM (2005) Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector. Appl Phys Lett 86:143101 CrossRefGoogle Scholar
  303. 303.
    Oey CC, Djurisic AB, Wang H, Man KKY, Chan WK, Xie MH, Leung YH, Pandey A, Nunzi J-M, Chui PC (2006) Polymer–TiO2 solar cells: TiO2 interconnected network for improved cell performance. Nanotechnology 17:706 CrossRefGoogle Scholar
  304. 304.
    van Hal PA, Wienk MM, Kroon JM, Verhees WJH, Slooff LH, van Gennip WJH, Jonkheijm P, Janssen RAJ (2003) Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk heterojunction. Adv Mater 15:118 CrossRefGoogle Scholar
  305. 305.
    Slooff LH, Kroon JM, Loos J, Koetse MM, Sweelssen J (2005) Influence of the relative humidity on the performance of polymer/TiO2 photovoltaic cells. Adv Funct Mater 15:689 CrossRefGoogle Scholar
  306. 306.
    Feng W, Feng Y, Wu Z (2005) Ultrasonic-assisted synthesis of poly(3-hexylthiophene)/ TiO2 nanocomposite and its photovoltaic characteristics. Jpn J Appl Phys 44:7494 Google Scholar
  307. 307.
    Iijima S (1991) Helical microtubes of graphitic carbon. Nature 354:56 CrossRefGoogle Scholar
  308. 308.
    de Heer WA, Châtelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179 CrossRefGoogle Scholar
  309. 309.
    Romero DB, Carrard M, De Heer W, Zuppiroli L (1996) A carbon nanotube/organic semiconducting polymer heterojunction. Adv Mater 8:899 CrossRefGoogle Scholar
  310. 310.
    Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv Mater 10:1091 CrossRefGoogle Scholar
  311. 311.
    Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11:1281 CrossRefGoogle Scholar
  312. 312.
    Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116 CrossRefGoogle Scholar
  313. 313.
    Ago H, Shaffer MSP, Ginger DS, Windle AH, Friend RH (2000) Electronic interaction between photoexcited poly(p-phenylene vinylene) and carbon nanotubes. Phys Rev B 61:2286 CrossRefGoogle Scholar
  314. 314.
    Kymakis E, Amaratunga GAJ (2002) Single-wall carbon nanotube/polymer photovoltaic devices. Appl Phys Lett 80:112 CrossRefGoogle Scholar
  315. 315.
    Kymakis E, Alexandrou I, Amaratunga GAJ (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube–polymer composites. J Appl Phys 93:1764 CrossRefGoogle Scholar
  316. 316.
    Bhattacharyya S, Kymakis E, Amaratunga GAJ (2004) Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem Mater 16:4819 CrossRefGoogle Scholar
  317. 317.
    Kymakis E, Amaratunga GAJ (2005) Carbon nanotubes as electron acceptors in polymeric photovoltaics. Rev Adv Mater Sci 10:300 Google Scholar
  318. 318.
    Kazaoui S, Minami N, Nalini B, Kim Y, Hara K (2005) Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J Appl Phys 98:084314 CrossRefGoogle Scholar
  319. 319.
    Rahman GMA, Guldi DM, Cagnoli R, Mucci A, Schenetti L, Vaccari L, Prato M (2005) Combining single-wall carbon nanotubes and photoactive polymers for photoconversion. J Am Chem Soc 127:10051 CrossRefGoogle Scholar
  320. 320.
    Guldi DM, Rahman GMA, Prato M, Jux N, Qin S, Ford W (2005) Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew Chem Int Ed 44:2015 CrossRefGoogle Scholar
  321. 321.
    Landi BJ, Raffaelle RP, Castro SL, Bailey SG (2005) Single-wall carbon nanotube-polymer solar cells. Prog Photovoltaics Res Appl 13:165 CrossRefGoogle Scholar
  322. 322.
    Itoh E, Suzuki I, Miyairi K (2005) Field emission from carbon-nanotube-dispersed conducting polymer thin film and its application to photovoltaic devices. Jpn J Appl Phys 44:636 CrossRefGoogle Scholar
  323. 323.
    Rud JA, Lovell LS, Senn JW, Qiao Q, McLeskey JJT (2005) Water soluble polymer/carbon nanotube bulk heterojunction solar cells. J Mater Sci 40:1455 CrossRefGoogle Scholar
  324. 324.
    Kimura T, Ago H, Tobita M, Ohshima S, Kyotani M, Yumura M (2002) Polymer composites of carbon nanotubes aligned by a magnetic field. Adv Mater 14:1380 CrossRefGoogle Scholar
  325. 325.
    Cao J, Sun J-Z, Hong J, Li H-Y, Chen H-Z, Wang M (2004) Carbon nanotube/CdS core–shell nanowires prepared by a simple room-temperature chemical reduction method. Adv Mater 16:84 CrossRefGoogle Scholar
  326. 326.
    Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interaction. Adv Mater 17:2458 CrossRefGoogle Scholar
  327. 327.
    Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett 88:093106 CrossRefGoogle Scholar
  328. 328.
    Patyk RL, Lomba BS, Nogueira AF, Furtado CA, Santos AP, Mello RMQ, Micaroni L, Hümmelgen IA (2007) Carbon nanotube–polybithiophene photovoltaic devices with high open-circuit voltage. Phys Status Solidi RRL 1:43 CrossRefGoogle Scholar
  329. 329.
    Xu Z, Wu Y, Hu B, Ivanov IN, Geohegan DB (2005) Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers. Appl Phys Lett 87:263118 CrossRefGoogle Scholar
  330. 330.
    Pasquier AD, Unalan HE, Kanwal A, Miller S, Chhowalla M (2005) Conducting and transparent single-wall carbon nanotube electrodes for polymer–fullerene solar cells. Appl Phys Lett 87:203511 CrossRefGoogle Scholar
  331. 331.
    Ulbricht R, Jiang X, Lee S, Inoue K, Zhang M, Fang S, Baughman R, Zakhidov A (2006) Polymeric solar cell with oriented and strong transparent carbon nanotube anode. Phys Status Solidi B 243:3528 CrossRefGoogle Scholar
  332. 332.
    van de Lagemaat J, Barnes TM, Rumbles G, Shaheen SE, Coutts TJ, Weeks C, Levitsky I, Peltola J, Glatkowski P (2006) Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl Phys Lett 88:233503 CrossRefGoogle Scholar
  333. 333.
    Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88:233506 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute of Physics, Experimental Physics ITechnical University of IlmenauIlmenauGermany
  2. 2.Linz Institute for Organic Solar Cells (LIOS), Physical ChemistryJohannes Kepler University LinzLinzAustria

Personalised recommendations