Interphases and Mesophases in Polymer Crystallization III pp 187-240

Part of the Advances in Polymer Science book series (POLYMER, volume 191)

| Cite as

Spinodal Crystallization of Polymers: Crystallization from the Unstable Melt

  • Keisuke Kaji
  • Koji Nishida
  • Toshiji Kanaya
  • Go Matsuba
  • Takashi Konishi
  • Masayuki Imai
Chapter

Abstract

This paper reviews the authors' investigation into polymer crystallization, especially involving a spinodal decomposition (SD) type phase separation due to the orientation fluctuation of stiff segments prior to crystal nucleation. Evidences for SD obtained from small-angle X-ray and neutron scattering (SAXS and SANS), depolarized light scattering (DPLS), Fourier-transform infrared spectroscopy (FT-IR) are discussed in detail in the case of the glass crystallization of poly(ethylene terephthalate) (PET) just above Tg. SD-like optical micrographs are also shown as a function of crystallization temperature for the melt crystallization of PET; their characteristic wavelengths Λ, which are of the order of μm above 120 °C, follow a van Aartsen equation derived from the Cahn–Hilliard theory for SD. By fitting the equation to the observed characteristic wavelengths the spinodal temperature Ts was determined to be Ts = 213 ± 5 °Cfor the PET melt, above which the SD pattern suddenly changed to the usual spherulite pattern. On the basis of a theory by Olmsted et al. [4], the general mechanisms of polymer crystallization are also discussed; the crystallization from the metastable melt causes the nucleation and growth (N&G) of dense (nematic) domains while that from the unstable melt causes SD into the dense (nematic) and less dense (isotropic) domains. Furthermore, the secondary phase separation of the SD-type phase separation into smectic and amorphous domains subsequently occurs inside the nematic domain for both these cases.

Induction period Melt and glass crystallization Nucleation and growth Optical microscopy Scattering techniques Spinodal decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassett DC (1981) Principles of Polymer Morphology. Cambridge Univ Press, Cambridge Google Scholar
  2. 2.
    Lauritzen Jr JI, Hoffman JD (1973) J Appl Phys 44:4340–4352 Google Scholar
  3. 3.
    Hoffman JD, Thomas Davis G, Lauritzen Jr JI (1976) In: Hannay NB (ed) Treatise on Solid State Chemistry, vol 3. Plenum Press, New York, p 497–614 Google Scholar
  4. 4.
    Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ (1998) Phys Rev Lett 81:373–376 CrossRefGoogle Scholar
  5. 5.
    ten Wolde PR, Frenkel D (1997) Science 277:1975–1978 CrossRefGoogle Scholar
  6. 6.
    Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Polymer 33:4451–4456 Google Scholar
  7. 7.
    Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Polymer 33:4457–4462 Google Scholar
  8. 8.
    Imai M, Kaji K, Kanaya T (1993) Phys Rev Lett 71:4162–4165 Google Scholar
  9. 9.
    Imai M, Kaji K, Kanaya T (1994) Macromolecules 27:7103–7108 CrossRefGoogle Scholar
  10. 10.
    Imai M, Kaji K, Kanaya T, Sakai Y (1995) Physica B 213/214:718–720 Google Scholar
  11. 11.
    Imai M, Kaji K, Kanaya T, Sakai Y (1995) Phys Rev B 52:12696–12704 CrossRefGoogle Scholar
  12. 12.
    Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M (1999) Macromolecules 32:8932–8937 CrossRefGoogle Scholar
  13. 13.
    Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M (1999) Polymer J 31:722–727 Google Scholar
  14. 14.
    Matsuba G, Kanaya T, Saito M, Kaji K, Nishida K (2000) Phys Rev E 62:R1497–R1500 CrossRefGoogle Scholar
  15. 15.
    Matsuba G, Kaji K, Kanaya T, Nishida K (2002) Phys Rev E 65:061801–1∼7 Google Scholar
  16. 16.
    Nishida K, Kaji K, Kanaya T, Matsuba G, Konishi T (2004) J Polym Sci B Polym Phys 42:1817–1822 Google Scholar
  17. 17.
    Nishida K, Konishi T, Kanaya T, Kaji K (2004) Polymer 45:1417–1421 CrossRefGoogle Scholar
  18. 18.
    Kaji K, Imai M (1998) In: Yonezawa F, Tsuji K, Kaji K, Doi M, Fujiwara T (eds) The Physics of Complex Liquids. World Scientific, Singapore, p 258–273 Google Scholar
  19. 19.
    Kaji K (2002) In: Fakirov S (ed) Handbook of Thermoplastic Polyesters, vol 1. Wiley, Weinheim, p 225–251 Google Scholar
  20. 20.
    Kaji K, Nishida K, Matsuba G, Kanaya T, Imai M (2003) J Macromol Sci B42:709–715 Google Scholar
  21. 21.
    van Krevelen DW (1990) Properties of Polymers. Elsevier, Amsterdam, p 585–623 Google Scholar
  22. 22.
    van Aartsen JJ (1970) Eur Polym J 6:919–924 Google Scholar
  23. 23.
    Smolders CA, van Aartsen JJ, Steenberger A (1971) Kolloid-Z u Z Polymere 243:14–20 Google Scholar
  24. 24.
    Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Oxford University Press, Oxford, Chapters 9, 10, p 350–380 Google Scholar
  25. 25.
    Shimada T, Doi M, Okano K (1988) J Chem Phys 88:7181–7186 Google Scholar
  26. 26.
    Strobl G (2000) Eur Phys J E3:165–183 CrossRefGoogle Scholar
  27. 27.
    Wang Z-G, Hsiao BS, Sirota EB, Agarwal P, Srinivas S (2000) Macromolecules 33:978–989 Google Scholar
  28. 28.
    Wang Z-G, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Chen SZD, Stein RS (2001) Polymer 42:7561–7566 Google Scholar
  29. 29.
    Ryan AJ, Fairclough JPA, Terrill NJ, Olmsted PD, Poon WCK (1999) Faraday Disccus 112:13–29 Google Scholar
  30. 30.
    Heeley EL, Kit Poh C, Li W, Maidens A, Bras W, Dolbnya IP, Gleeson AJ, Terrill NJ, Fairclough JPA, Olmsted PD, Ristic RI, Hounslow MJ, Ryan AJ (2002) Faraday Discuss 122:343–361 Google Scholar
  31. 31.
    Heeley EL, Maidens AV, Olmsted PD, Bras W, Dolbnya IP, Fairclough JPA, Terrill NJ, Ryan AJ (2003) Macromolecules 36:3656–3665 CrossRefGoogle Scholar
  32. 32.
    Muthukumar M, Welch P (2000) Polymer 41:8833–8837 CrossRefGoogle Scholar
  33. 33.
    Muthukumar M (2003) Phil Trans R Soc London A 361:539–556 Google Scholar
  34. 34.
    Li L, de Jeu WH (2003) Macromolecules 36:4862–4867 Google Scholar
  35. 35.
    Li L, de Jeu WH (2004) Phys Rev Lett 92:075506-1–075506-3 Google Scholar
  36. 36.
    Imai M (1993) PhD Thesis, Kyoto University; Imai M, Kaji K, Polymer (in press) Google Scholar
  37. 37.
    Yeh GSY, Geil PH (1967) J Macromol Sci Phys B1:235–249 Google Scholar
  38. 38.
    Yeh GSY (1972) J Macromol Sci Phys B6:465–478 Google Scholar
  39. 39.
    Uhlmann DR (1979) Faraday Disc Chem Soc 68:87–95 CrossRefGoogle Scholar
  40. 40.
    Geil PH (1979) Faraday Disc Chem Soc 68:141–144 CrossRefGoogle Scholar
  41. 41.
    Flory PJ (1956) Proc Roy Soc A 234:60–73 Google Scholar
  42. 42.
    See for example, Kaji K (2000) In: Gabrys BJ (ed) Applications of Neutron Scattering to Soft Condensed Matter. Gordon and Breach Science Publisher, Amsterdam, p 107–161 Google Scholar
  43. 43.
    Geil PH (2002) In: Fakirov S (ed) Handbook of Thermoplastic Polyesters. Wiley, Weinheim p 105–224 Google Scholar
  44. 44.
    Lee S, Miyaji H, Geil PH (1983) J Macromol Sci Phys B22:489–496 Google Scholar
  45. 45.
    Fischer EW (1990) In: Colmenero J, Alegra A (eds) Basic Features of the Glassy State. World Scientific, Singapore p 172–191 Google Scholar
  46. 46.
    Fischer EW (1993) Physica A 201:183–206 CrossRefGoogle Scholar
  47. 47.
    Cahn J, Hilliard JE (1958) J Chem Phys 28:258–267 CrossRefGoogle Scholar
  48. 48.
    Binder K (1974) Phys Rev B 15:4425–4447 Google Scholar
  49. 49.
    Furukawa H (1984) Physica 123A:497–515 Google Scholar
  50. 50.
    Debye P, Bueche AM (1949) J Appl Phys 20:518–525 CrossRefGoogle Scholar
  51. 51.
    Komura S, Osamura K, Fujii H, Takeda T (1985) Phys Rev B31:1278–1301 Google Scholar
  52. 52.
    Strobl GR, Schneider M (1980) J Polym Sci Polym Phys Ed 18:1348–1359 Google Scholar
  53. 53.
    Flory PJ (1969) Statistical Mechanics of Chain Molecules. Interscience, New York, Chapter, 1, p 1–29 Google Scholar
  54. 54.
    Stein RS, Wilson PR (1962) J Appl Phys 33:1914–1922 CrossRefGoogle Scholar
  55. 55.
    Koberstein J, Russel TP, Stein RS (1979) J Polym Sci Polym Phys Ed 17:1719–1730 Google Scholar
  56. 56.
    Kobayashi M, Nakaoki T, Ishihara N (1989) Macromolecules 22:4377–4382 Google Scholar
  57. 57.
    Greis O, Xu Y, Asano T, Petermann J (1989) Polymer 30:590–594 CrossRefGoogle Scholar
  58. 58.
    Natta G, Corradini P, Bassi IW (1960) Nuovo Simmento, Suppl 15:68–70 Google Scholar
  59. 59.
    Kobayashi M, Akita K, Tadokoro (1968) Makromol Chem 118:324 CrossRefGoogle Scholar
  60. 60.
    Einaga Y, Koyama H, Konishi T, Yamakawa H (1989) Macromolecules 22:3419–3424 CrossRefGoogle Scholar
  61. 61.
    Ediger MD, Angell CA, Nagel SR (1996) J Chem Phys 100:13200–13212 Google Scholar
  62. 62.
    Matsuoka S and Quan X (1991) Macromolecules 24:2770–2779 Google Scholar
  63. 63.
    Kanaya T, Patkowski A, Fischer EW, Seils J, Glaeser H, Kaji K (1994) Acta Polymer 45:137–142 CrossRefGoogle Scholar
  64. 64.
    Gehrke R, Riekel C, Zachmann HG (1989) Polymer 30:1582–1590 CrossRefGoogle Scholar
  65. 65.
    Donth E (2001) The Glass Transition: relaxation dynamics in liquids and disordered materials. Springer, Berlin, p 1–418 Google Scholar
  66. 66.
    Kanaya T, Kaji K (2001) Adv Polym Sci 154:87–141 Google Scholar
  67. 67.
    Goetze W (1991) In: Hansen JP, Levesque D, Zinn-Justin (eds) Liquids, Freezing and Glass Transition. Elsevier Science Publishers BV, Amsterdam, p 287–503 Google Scholar
  68. 68.
    Perez J (1998) Physics and Mechanics of Amorphous Polymers. AA Balkema Publishers, Rotterdam, p 280–285 Google Scholar
  69. 69.
    Kanig G (1983) Colloid Polym Sci 261:373–374 Google Scholar
  70. 70.
    Bonart R (1966) Kolloid-Z Z Polym 213:1–11 Google Scholar
  71. 71.
    Asano T, Balta-Calleja FJ, Flores A, Tanigami M, Mini MN, Sawatari C, Itagaki H, Takahashi H, Hatta I (1999) Polymer 40:6475–6484 CrossRefGoogle Scholar
  72. 72.
    Mahendrasingam A, Martin C, Fuller W, Blundell DJ, Oldham RJ, MacKerron DH, Harvie JL, Riekel C (2000) Polymer 41:1217–1221 Google Scholar
  73. 73.
    Fukao K (2003) Macromol Sci-Phys 42:717–731 Google Scholar
  74. 74.
    Kelton KF (1991) Crystal Nucleation in Liquids and Glasses. Solid State Physics, vol 45. Academic Press, New York Google Scholar

Copyright information

Authors and Affiliations

  • Keisuke Kaji
    • 1
    • 2
  • Koji Nishida
    • 1
  • Toshiji Kanaya
    • 1
  • Go Matsuba
    • 1
  • Takashi Konishi
    • 1
  • Masayuki Imai
    • 3
  1. 1.Institute for Chemical ResearchKyoto UniversityKyoto-fuJapan
  2. 2.OsakaJapan
  3. 3.Department of PhysicsFaculty of Science, Ochanomizu UniversityTokyoJapan

Personalised recommendations