Advertisement

Advanced and In Situ Analytical Methods for Solar Fuel Materials

  • Candace K. Chan
  • Harun Tüysüz
  • Artur Braun
  • Chinmoy Ranjan
  • Fabio La Mantia
  • Benjamin K. Miller
  • Liuxian Zhang
  • Peter A. CrozierEmail author
  • Joel A. Haber
  • John M. GregoireEmail author
  • Hyun S. Park
  • Adam S. Batchellor
  • Lena Trotochaud
  • Shannon W. BoettcherEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 371)

Abstract

In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

Keywords

Electrocatalysis In operando In situ Photocatalysis Solar fuels 

References

  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Chen Z et al (2010) J Mater Res 25:3–16CrossRefGoogle Scholar
  3. 3.
    Chen Z, Dinh H, Miller E (2013) Photoelectrochemical water splitting: standards, experimental methods, and protocols. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Kanimura J, Bogdanoff P, Lähnemann J, Hauswald C, Geelhaar L, Fiechter S, Riechert H (2013) J Am Chem Soc 135:10242–10245CrossRefGoogle Scholar
  5. 5.
    Hill JC, Choi K-S (2012) J Phys Chem C 116(14):7612–7620CrossRefGoogle Scholar
  6. 6.
    Mi Q, Zhanaidarova A, Brunschwig BS, Gray HB, Lewis NS (2012) Energy Environ Sci 5:5694–5700CrossRefGoogle Scholar
  7. 7.
    Mi Q, Coridan RH, Brunschwig BS, Gray HB, Lewis NS (2013) Energy Environ Sci 6:2646–2653CrossRefGoogle Scholar
  8. 8.
    Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589–16605CrossRefGoogle Scholar
  9. 9.
    Weinhardt L, Blum M, Fuchs O, Pookpanratana S, George K, Cole B, Marsen B, Gaillard N, Miller E, Ahn K-S, Shet S, Yan Y, Al-Jassim MM, Denlinger JD, Yang W, Bär M, Heske C (2013) J Electron Spectrosc 190:106–112CrossRefGoogle Scholar
  10. 10.
    Arrigo R, Havecker M, Schuster ME, Ranjan C, Stotz E, Knop-Gericke A, Schlögl R (2013) Angew Chem Int Ed 52:11660CrossRefGoogle Scholar
  11. 11.
    Axnanda S, Crumlin EJ, Mao B, Rani S, Chang R, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross P, Hussain Z, Liu Z (2015) Sci Rep 5:9788CrossRefGoogle Scholar
  12. 12.
    Casalongue HGS, Benck JD, Tsai C, Karlsson RKB, Kaya S, Ng ML, Pettersson LGM, Abild-Pedersen F, Norskov JK, Ogasawara H, Jaramillo TF, Nilsson A (2014) J Phys Chem C 118:29252CrossRefGoogle Scholar
  13. 13.
    Bora DK, Braun A, Erat S, Löhnert R, Ariffin AK, Manzke R, Sivula K, Graule T, Grätzel M, Constable E (2011) J Phys Chem C 115(13):5619–5625CrossRefGoogle Scholar
  14. 14.
    Kanan MW, Nocera DG (2008) Science 321:1072–1075CrossRefGoogle Scholar
  15. 15.
    Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG (2010) J Am Chem Soc 132(39):13692–13701CrossRefGoogle Scholar
  16. 16.
    Yoshida M, Yomogida T, Mineo T, Nitta K, Kato K, Masuda T, Nitani H, Abe H, Takakusagi S, Uruga T, Asakura K, Uosaki K, Kondoh H (2014) J Phys Chem C 118:24302–24309CrossRefGoogle Scholar
  17. 17.
    Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W (2014) Science 345:804CrossRefGoogle Scholar
  18. 18.
    Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545CrossRefGoogle Scholar
  19. 19.
    McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) J Am Chem Soc 132:6882CrossRefGoogle Scholar
  20. 20.
    Huang Z, Lin Y, Xiang X, Rodriguez-Cordoba W, McDonald KJ, Hagen KS, Choi KS, Brunschwig BS, Musaev DG, Hill CL, Wang D, Lian T (2012) Energy Environ Sci 5:8923CrossRefGoogle Scholar
  21. 21.
    Waegele MM, Chen X, Herlihy DH, Cuk T (2014) J Am Chem Soc 136:10632–10639CrossRefGoogle Scholar
  22. 22.
    Cooper JK, Ling Y, Longo C, Li Y, Zhang JZ (2012) J Phys Chem C 116:17360–17368CrossRefGoogle Scholar
  23. 23.
    Sivasankar N, Weare WW, Frei H (2011) J Am Chem Soc 133:12976CrossRefGoogle Scholar
  24. 24.
    Zhang M, de Respinis M, Frei H (2014) Nat Chem 6:362CrossRefGoogle Scholar
  25. 25.
    Andrews E, Ren MM, Wang F, Zhang FZY, Sprunger P, Kurtz R, Flake J (2013) J Electrochem Soc 160:H841CrossRefGoogle Scholar
  26. 26.
    Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012) J Am Chem Soc 134(9):4294–4302CrossRefGoogle Scholar
  27. 27.
    Tan SJ, Feng H, Ji YF, Wang Y, Zhao J, Zhao AD, Wang B, Luo Y, Yang JL, Hou JG (2012) J Am Chem Soc 134:9978CrossRefGoogle Scholar
  28. 28.
    Lee J, Sorescu DC, Deng XY, Jordan KD (2013) J Phys Chem Lett 4:53CrossRefGoogle Scholar
  29. 29.
    Tan SJ, Zhao Y, Zhao J, Wang Z, Ma CX, Zhao AD, Wang B, Luo Y, Yang JL, Hou JG (2011) Phys Rev B 84:155418CrossRefGoogle Scholar
  30. 30.
    Liu C, Hwang YJ, Jeong HE, Yang P (2011) Nano Lett 11:3755CrossRefGoogle Scholar
  31. 31.
    Baker RTK, Harris PS (1972) J Phys E 5(8):793–797CrossRefGoogle Scholar
  32. 32.
    Parkinson GM (1989) Catal Lett 2:303–307CrossRefGoogle Scholar
  33. 33.
    Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) Science 336:61–64CrossRefGoogle Scholar
  34. 34.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669CrossRefGoogle Scholar
  35. 35.
    Wang C-M (2015) J Mater Res 30(3):326–339CrossRefGoogle Scholar
  36. 36.
    Zhang LX, Miller BK, Crozier PA (2013) Nano Lett 13(2):679–684CrossRefGoogle Scholar
  37. 37.
    Liu Q, Zhang L, Crozier PA (2015) Appl Catal B Environ 172–173:58–64CrossRefGoogle Scholar
  38. 38.
    Zhang L, Liu Q, Aoki T, Crozier PA (2015) J Phys Chem C 119:7207–7214CrossRefGoogle Scholar
  39. 39.
    Liu Y, Dillon SJ (2014) Chem Commun 50:1761–1763CrossRefGoogle Scholar
  40. 40.
    Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Phys Rev Lett 102:096101CrossRefGoogle Scholar
  41. 41.
    Krivanek OL et al (2014) Nature 514:209–212CrossRefGoogle Scholar
  42. 42.
    Crozier PA, Chenna S (2011) Ultramicroscopy 111:177–185CrossRefGoogle Scholar
  43. 43.
    Chenna S, Crozier PA (2012) ACS Catal 2(11):2395–2402CrossRefGoogle Scholar
  44. 44.
    Miller BK, Crozier PA (2014) Microsc Microanal 20:815–824CrossRefGoogle Scholar
  45. 45.
    Woodhouse M, Parkinson BA (2009) Chem Soc Rev 38:197–210CrossRefGoogle Scholar
  46. 46.
    Drews J (2000) Science 287:1960–1964CrossRefGoogle Scholar
  47. 47.
    Sliozberg K, Stein HS, Khare C, Parkinson BA, Ludwig A, Schuhmann W (2015) ACS Appl Mater Interfaces 7(8):4883–4889CrossRefGoogle Scholar
  48. 48.
    Smith JL, Hendrickson WA, Terwilliger TC, Berendzen J (2006) MAD and MIR. In: International tables for crystallography, vol F, pp 299–309 (Chapter 14.2)Google Scholar
  49. 49.
    Krishna Murthy HM (1996) Use of multiple-wavelength anomalous diffraction measurements in ab initio phase determination for macromolecular structures. In: Jones C, Mulloy B, Sanderson MR (eds) Crystallographic methods and protocols, vol 56, Methods in Molecular Biology™. Humana, Totowa, pp 127–151. doi: 10.1385/0-89603-259-0:127, Print ISBN 978-0-89603-259-0, Online ISBN 978-1-59259-543-3CrossRefGoogle Scholar
  50. 50.
    Koningsberger DC, Prins R (eds) (1988) X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York. ISBN 978-0471875475Google Scholar
  51. 51.
    Gu W, Jacquamet L, Patil DS, Wang H-X, Evans DJ, Smith MC, Millar M, Koch S, Eichhorn DM, Latimer M, Cramer SP (2003) J Inorg Biochem 93:41–51CrossRefGoogle Scholar
  52. 52.
    Gu W (2003) Study of active sites in Ni enzymes using X-ray absorption spectroscopy. PhD thesis, UC DavisGoogle Scholar
  53. 53.
    Richter J, Braun A, Harvey AS, Holtappels P, Graule T, Gauckler LJ (2008) Physica B 403(1):87–94CrossRefGoogle Scholar
  54. 54.
    Braun A, Wang H, Bergmann U, Tucker MC, Gu W, Cramer SP, Cairns EJ (2003) J Power Sources 112(1):231–235CrossRefGoogle Scholar
  55. 55.
    Bergmann U, Grush MM, Horne CR, DeMarois P, Penner-Hahn JE, Yocum CF, Wright DW, Dube CE, Armstrong WH, Christou G, Eppley HJ, Cramer SP (1998) J Phys Chem B 102(42):8350–8352CrossRefGoogle Scholar
  56. 56.
    Wang H, Ralston CY, Patil DS, Jones RM, Gu W, Verhagen M, Adams M, Ge P, Riordan C, Marganian CA, Mascharak P, Kovacs J, Miller CG, Collins TJ, Brooker S, Croucher PD, Wang K, Stiefel EI, Cramer SP (2000) J Am Chem Soc 122:10544–10552CrossRefGoogle Scholar
  57. 57.
    Weigand W, Schollhammer P (2014) Bioinspired catalysis: metal-sulfur complexes. Wiley-VCH, Weinheim, 440 pages. ISBN 978-3-527-33308-0CrossRefGoogle Scholar
  58. 58.
    de Groot FMF, Kotani A (2008) Core level spectroscopy of solids. CRC, New YorkCrossRefGoogle Scholar
  59. 59.
    Wang H, Ge P, Riordan CG, Brooker S, Woomer CG, Collins T, Melendres CA, Graudejus O, Bartlett N, Cramer SP (1998) J Phys Chem B 102(42):8343–8346CrossRefGoogle Scholar
  60. 60.
    Braun A, Bayraktar D, Harvey AS, Beckel D, Purton JA, Holtappels P, Gauckler LJ, Graule T (2009) Appl Phys Lett 94:202102CrossRefGoogle Scholar
  61. 61.
    Braun A, Erat S, Bayraktar D, Harvey A, Graule T (2012) Chem Mater 24(8):1529–1535CrossRefGoogle Scholar
  62. 62.
    Jiang P, Chen J-L, Borondics F, Glans P-A, West MW, Chang C-L, Salmeron M, Guo J (2010) Electrochem Commun 12(6):820–822CrossRefGoogle Scholar
  63. 63.
    Myneni S, Luo Y, Näslund LÅ, Cavalleri M, Ojamäe L, Ogasawara H, Pelmenschikov A, Wernet P, Väterlein P, Heske C, Hussain Z, Pettersson LGM, Nilsson A (2002) J Phys Condens Matter 14:L213–L219CrossRefGoogle Scholar
  64. 64.
    Hetényi B, De Angelis F, Giannozzi P, Car R (2004) J Chem Phys 120(18):8632–8637CrossRefGoogle Scholar
  65. 65.
    Braun A, Sivula K, Bora DK, Zhu J, Zhang L, Grätzel M, Guo J, Constable EC (2012) Direct observation of two electron holes in hematite during photo-electrochemical water splitting. J Phys Chem C 116(23):16870–16875CrossRefGoogle Scholar
  66. 66.
    Bora DK, Hu Y, Thiess S, Erat S, Feng X, Mukherjee S, Fortunato G, Gaillard N, Toth R, Gajda-Schrantz K, Drube W, Grätzel M, Guo J, Zhu J, Constable EC, Sarma DD, Wang H, Braun A (2013) J Electron Spectrosc Relat Phenom 190A:93–105CrossRefGoogle Scholar
  67. 67.
    Sivula K (2013) J Phys Chem Lett 4(10):624–1633CrossRefGoogle Scholar
  68. 68.
    Cavalleri M, Ogasawara H, Pettersson LGM, Nilsson A (2002) Chem Phys Lett 364:363–370CrossRefGoogle Scholar
  69. 69.
    Lanyi JK (1997) J Biol Chem 272:31209–31212CrossRefGoogle Scholar
  70. 70.
    Balasubramanian S, Wang P, Schaller RD, Rajh T, Rozhkova EA (2013) Nano Lett 13(7):3365–3371CrossRefGoogle Scholar
  71. 71.
    Pieper J, Buchsteiner A, Dencher NA, Lechner RE, Hauß T (2009) Photochem Photobiol 85:590–597CrossRefGoogle Scholar
  72. 72.
    Patzelt H, Simon B, terLaak A, Kessler B, Kuhne R, Schmieder P, Oesterhaelt D, Oschkinat H (2002) Proc Natl Acad Sci U S A 99:9765–9770CrossRefGoogle Scholar
  73. 73.
    Dencher NA, Dresselhaus D, Zaccai G, Büldt G (1989) Proc Natl Acad Sci U S A 86:7876–7879CrossRefGoogle Scholar
  74. 74.
    Horn C, Steinem C (2005) Biophys J 89:1046–1054CrossRefGoogle Scholar
  75. 75.
    Allam NK, Yen C-W, Near RD, El-Sayed MA (2011) Energy Environ Sci 4:2909–2914CrossRefGoogle Scholar
  76. 76.
    Chen Q, Holdsworth S, Embs J, Pomjakushin V, Frick B, Braun A (2012) High Press Res 32(4):471–481CrossRefGoogle Scholar
  77. 77.
    Chen Q, Banyte J, Zhang X, Embs JP, Braun A (2013) Solid State Ionics 252:2–6CrossRefGoogle Scholar
  78. 78.
    Fabbri E, Pergolesi D, Traversa E (2010) Sci Technol Adv Mater 11:044301CrossRefGoogle Scholar
  79. 79.
    Chen Q, El Gabaly F, Aksoy Akgul F, Liu Z, Mun BS, Yamaguchi S, Braun A (2013) Chem Mater 25(23):4690–4696CrossRefGoogle Scholar
  80. 80.
    Braun A, Embs J-P, Remhof A (2014) 2013 ESS science symposium: neutrons for future energy strategies. Neutron News (Taylor & Francis) 25(1):6–7CrossRefGoogle Scholar
  81. 81.
    Pieper J (1804) Biochim Biophys Acta 2010:83–88Google Scholar
  82. 82.
    Raman CV, Krishnan KS (1928) Nature 121:501CrossRefGoogle Scholar
  83. 83.
    Fleischmann M, Hendra PJ, Mcquilla AJ (1974) Chem Phys Lett 26:163CrossRefGoogle Scholar
  84. 84.
    Albrecht AC (1961) J Chem Phys 34:1476CrossRefGoogle Scholar
  85. 85.
    Albrecht AC, Hutley MC (1971) J Chem Phys 55:4438CrossRefGoogle Scholar
  86. 86.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101CrossRefGoogle Scholar
  87. 87.
    Moskovits M (2005) J Raman Spectrosc 36:485CrossRefGoogle Scholar
  88. 88.
    Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Phys Rev B 76:113409CrossRefGoogle Scholar
  89. 89.
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Nature 498:82CrossRefGoogle Scholar
  90. 90.
    Murgida DH, Hildebrandt P (2004) Acc Chem Res 37:854CrossRefGoogle Scholar
  91. 91.
    Chatterjee S, Sengupta K, Samanta S, Das PK, Dey A (2013) Inorg Chem 52:9897CrossRefGoogle Scholar
  92. 92.
    Schlögl R (2010) ChemSusChem 3:209CrossRefGoogle Scholar
  93. 93.
    Yeo BS, Bell AT (2011) J Am Chem Soc 133:5587CrossRefGoogle Scholar
  94. 94.
    Yeo BS, Bell AT (2012) J Phys Chem C 116:8394CrossRefGoogle Scholar
  95. 95.
    Ranjan C, Zoran P, Schloegl R (2014) E-MRS 2014 spring meeting, Lille, FranceGoogle Scholar
  96. 96.
    Schmitt KG, Gewirth AA (2014) J Phys Chem C 118:17567CrossRefGoogle Scholar
  97. 97.
    Klink S, Höche D, La Mantia F, Schuhmann W (2013) J Power Sources 240:273–280CrossRefGoogle Scholar
  98. 98.
    Klink S, Madej E, Ventosa E, Lindner A, Schuhmann W, La Mantia F (2012) Electrochem Commun 22:120–123CrossRefGoogle Scholar
  99. 99.
    Agarwal P, Orazem ME, Garcia-Rubio LH (1995) J Electrochem Soc 142(12):4159–4168CrossRefGoogle Scholar
  100. 100.
    Agarwal P, Orazem ME, Garcia-Rubio LH (1992) J Electrochem Soc 139(7):1917–1927CrossRefGoogle Scholar
  101. 101.
    La Mantia F, Vetter J, Novák P (2008) Electrochim Acta 53(12):4109–4121CrossRefGoogle Scholar
  102. 102.
    Schiller CA, Richter F, Gulzow E, Wagner N (2001) Phys Chem Chem Phys 3(3):374–378CrossRefGoogle Scholar
  103. 103.
    Newman JS, Tobias CW (1962) J Electrochem Soc 109(12):1183–1191CrossRefGoogle Scholar
  104. 104.
    de Levie R (1963) Electrochim Acta 8(10):751–780CrossRefGoogle Scholar
  105. 105.
    Darby R (1966) J Electrochem Soc 113(4):392–396CrossRefGoogle Scholar
  106. 106.
    De Vidts P, White RE (1997) J Electrochem Soc 144(4):1343–1353CrossRefGoogle Scholar
  107. 107.
    Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I, Bisquert J (2011) Phys Chem Chem Phys 13(20):9083–9118CrossRefGoogle Scholar
  108. 108.
    Dewald JF (1960) J Phys Chem Solid 14:155–161CrossRefGoogle Scholar
  109. 109.
    Abram RA, Doherty PJ (1982) Philos Mag B 45(2):167–176CrossRefGoogle Scholar
  110. 110.
    Archibald IW, Abram RA (1983) Philos Mag B 48(2):111–125CrossRefGoogle Scholar
  111. 111.
    Archibald IW, Abram RA (1986) Philos Mag B 54(5):421–438CrossRefGoogle Scholar
  112. 112.
    Cohen JD, Lang DV (1982) Phys Rev B 25(8):5321–5350CrossRefGoogle Scholar
  113. 113.
    Di Quarto F, La Mantia F, Santamaria M (2005) Electrochim Acta 50(25–26):5090–5102CrossRefGoogle Scholar
  114. 114.
    La Mantia F, Habazaki H, Santamaria M, Di Quarto F (2010) Russ J Electrochem 46(11):1306–1322CrossRefGoogle Scholar
  115. 115.
    La Mantia F, Stojadinović J, Santamaria M, Di Quarto F (2010) ChemPhysChem 13(12):2910–2918CrossRefGoogle Scholar
  116. 116.
    Huang VMW, Vivier V, Orazem ME, Pebere N, Tribollet B (2007) J Electrochem Soc 154(2):C81–C88CrossRefGoogle Scholar
  117. 117.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Electrochim Acta 55(21):6218–6227CrossRefGoogle Scholar
  118. 118.
    Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. VCH, WeinheimCrossRefGoogle Scholar
  119. 119.
    Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley-VCH, New YorkGoogle Scholar
  120. 120.
    Crozier PA, Hansen TW (2015) MRS Bull 40:38–45CrossRefGoogle Scholar
  121. 121.
    Zhang L, Liu Q, Aoki T, Crozier PA (2015) J Phys Chem C. doi: 10.1021/jp512907g Google Scholar
  122. 122.
    Liu Q, Zhang L, Crozier PA (2015) Appl Catal Environ 172:58–64CrossRefGoogle Scholar
  123. 123.
    Yoshida K, Yamasaki J, Tanaka N (2004) Appl Phys Lett 84:2542–2544CrossRefGoogle Scholar
  124. 124.
    Yoshida K, Nozaki T, Hirayama T, Tanaka N (2007) J Electron Microsc (Tokyo) 56:177–180CrossRefGoogle Scholar
  125. 125.
    Cavalca F, Laursen AB, Kardynal BE, Dunin-Borkowski RE, Dahl S, Wagner JB, Hansen TW (2012) Nanotechnology 23:6CrossRefGoogle Scholar
  126. 126.
    Cavalca F, Laursen AB, Wagner JB, Damsgaard CD, Chorkendorff I, Hansen TW (2013) ChemCatChem 5:2667–2672CrossRefGoogle Scholar
  127. 127.
    Miller BK, Crozier PA (2013) Microsc Microanal 19:461–469CrossRefGoogle Scholar
  128. 128.
    Crozier PA, McCartney MR, Smith DJ (1990) Surf Sci 237:232–240CrossRefGoogle Scholar
  129. 129.
    McCartney MR, Crozier PA, Weiss JK, Smith DJ (1991) Vacuum 42:301–308CrossRefGoogle Scholar
  130. 130.
    Brydson R, Sauer H, Engel W, Thomas JM, Zeitler E, Kosugi N, Kuroda H (1989) J Phys Condens Matter 1:797–812CrossRefGoogle Scholar
  131. 131.
    Lazar S, Botton GA, Wu M-Y, Tichelaar FD, Zandbergen HW (2003) Ultramicroscopy 96:535–546CrossRefGoogle Scholar
  132. 132.
    Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) J Phys Chem B 107:1028–1035CrossRefGoogle Scholar
  133. 133.
    Henderson MA (1996) Langmuir 12:5093–5098CrossRefGoogle Scholar
  134. 134.
    Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B (2006) Phys Rev Lett 96:4CrossRefGoogle Scholar
  135. 135.
    Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Surf Sci 598:226–245CrossRefGoogle Scholar
  136. 136.
    Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H, Thornton G (2006) Nat Mater 5:189–192CrossRefGoogle Scholar
  137. 137.
    Bohmer N, Roussiere T, Kuba M, Schunk SA (2012) Comb Chem High Throughput Screen 15:123CrossRefGoogle Scholar
  138. 138.
    Green ML, Takeuchi I, Hattrick-Simpers JR (2013) J Appl Phys 113:231101CrossRefGoogle Scholar
  139. 139.
    Barber ZH, Blamire MG (2008) Mater Sci Technol 24:757CrossRefGoogle Scholar
  140. 140.
    Koinuma H, Takeuchi I (2004) Nat Mater 3:429CrossRefGoogle Scholar
  141. 141.
    Muster TH, Trinchi A, Markley TA, Lau D, Martin P, Bradbury A, Bendavid A, Dligatch S (2011) Electrochim Acta 56:9679CrossRefGoogle Scholar
  142. 142.
    Sun S, Ding J, Bao J, Luo Z, Gao C (2011) Comb Chem High Throughput Screen 14:160CrossRefGoogle Scholar
  143. 143.
    Jaramillo TF, Baeck S-H, Kleiman-Shwarsctein A, McFarland EW (2004) Macromol Rapid Commun 25:297–301CrossRefGoogle Scholar
  144. 144.
    Baeck SH, Jaramillo TF, Brändli C, McFarland EW (2002) J Comb Chem 4:563CrossRefGoogle Scholar
  145. 145.
    Jaramillo TF, Baeck S-H, Kleiman-Shwarsctein A, Choi K-S, Stucky GD, McFarland EW (2005) J Comb Chem 7:264CrossRefGoogle Scholar
  146. 146.
    Woodhouse M, Herman GS, Parkinson BA (2005) Chem Mater 17:4318–4324CrossRefGoogle Scholar
  147. 147.
    Woodhouse M, Parkinson BA (2008) Chem Mater 20:2495CrossRefGoogle Scholar
  148. 148.
    Seley D, Ayers K, Parkinson BA (2013) ACS Comb Sci 15:82CrossRefGoogle Scholar
  149. 149.
    Haber JA, Cai Y, Jung S, Xiang C, Mitrovic S, Jin J, Bell AT, Gregoire JM (2014) Energy Environ Sci 7:682CrossRefGoogle Scholar
  150. 150.
    Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Science 340:60CrossRefGoogle Scholar
  151. 151.
    Gregoire JM, Kirby SD, Turk ME, van Dover RB (2009) Thin Solid Films 517:1607CrossRefGoogle Scholar
  152. 152.
    Perkins JD, Teplin CW, van Hest MF, Alleman JL, Li X, Dabney MS, Keyes BM, Gedvilas LM, Ginley DS, Lin Y, Lu Y (2004) Appl Surf Sci 223:124CrossRefGoogle Scholar
  153. 153.
    Sigdel AK, Ndione PF, Perkins JD, Gennett T, van Hest MF, Shaheen SE, Ginley DS, Berry JJ (2012) J Appl Phys 111:093718CrossRefGoogle Scholar
  154. 154.
    Gregoire JM, Xiang C, Liu X, Marcin M, Jin J (2013) Rev Sci Instrum 84:024102CrossRefGoogle Scholar
  155. 155.
    Hassel AW, Lohrengel MM (1997) Electrochim Acta 42:3327CrossRefGoogle Scholar
  156. 156.
    Haber JA, Xiang C, Guevarra D, Jung S, Jin J, Gregoire JM (2014) ChemElectroChem 1:524–528CrossRefGoogle Scholar
  157. 157.
    Katz JE, Gingrich TR, Santori EA, Lewis NS (2009) Energy Environ Sci 2:103–112CrossRefGoogle Scholar
  158. 158.
    Hu S, Xiang C, Haussener S, Berger AD, Lewis NS (2013) Energy Environ Sci 6:2984CrossRefGoogle Scholar
  159. 159.
    Ye H, Lee L, Jang JS, Bard AJ (2010) J Phys Chem C 114:13322CrossRefGoogle Scholar
  160. 160.
    Lewis NS (1984) J Electrochem Soc 131:2496CrossRefGoogle Scholar
  161. 161.
    Xiang C, Haber J, Marcin M, Mitrovic S, Jin J, Gregoire JM (2014) ACS Comb Sci 16:120CrossRefGoogle Scholar
  162. 162.
    Chen G, Bare SR, Mallouk TE (2002) J Electrochem Soc 149:A1092CrossRefGoogle Scholar
  163. 163.
    Dokoutchaev AG, Abdelrazzaq F, Thompson ME, Willson J, Chang C, Bocarsly A (2002) Chem Mater 14:3343CrossRefGoogle Scholar
  164. 164.
    Nakayama A, Suzuki E, Ohmori T (2002) Appl Surf Sci 189:260CrossRefGoogle Scholar
  165. 165.
    Gerken JB, Chen JYC, Massé RC, Powell AB, Stahl SS (2012) Angew Chem 51:6676CrossRefGoogle Scholar
  166. 166.
    Xiang C, Suram SK, Haber JA, Guevarra DW, Jin J, Gregoire JM (2014) ACS Comb Sci 16:47CrossRefGoogle Scholar
  167. 167.
    Nozik AJ (1975) Nature 257:383–386CrossRefGoogle Scholar
  168. 168.
    Parkinson B (1984) Annu Rev Phys Chem 17:431–437Google Scholar
  169. 169.
    Bard AJ, Fox MA (1995) Annu Rev Phys Chem 28:141–145Google Scholar
  170. 170.
    McKone JR, Lewis NS, Gray HB (2013) Chem Mater 26:407–414CrossRefGoogle Scholar
  171. 171.
    Xiang X-D, Sun X, Briceño G, Lou Y, Wang K-A, Chang H, Wallace-Freedman WG, Chen S-W, Schultz PG (1995) Science 268:1738–1740CrossRefGoogle Scholar
  172. 172.
    Stepanovich A, Sliozberg K, Schuhmann W, Ludwig A (2012) Int J Hydrogen Energy 37:11618–11624CrossRefGoogle Scholar
  173. 173.
    Seyler M, Stoewe K, Maier WF (2007) Appl Catal B Environ 76:146–157CrossRefGoogle Scholar
  174. 174.
    Bard AJ, Fan FRF, Kwak J, Lev O (1989) Anal Chem 61:132–138CrossRefGoogle Scholar
  175. 175.
    Lee J, Ye H, Pan S, Bard AJ (2008) Anal Chem 80:7445–7450CrossRefGoogle Scholar
  176. 176.
    Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Science 280:1735–1737CrossRefGoogle Scholar
  177. 177.
    Baeck S-H, Jaramillo TF, Jeong DH, McFarland EW (2004) Chem Commun 390–391Google Scholar
  178. 178.
    Bard A, Lee HC, Leonard K, Park HS, Wang S (2013) Rapid screening methods in the discovery and investigation of new photocatalyst compositions. In: Lewerenz HJ, Peter L (eds) Photoelectrochemical water splitting: materials processes and architectures. The Royal Society of Chemistry, London, pp 132–153Google Scholar
  179. 179.
    Batzill M, Diebold U (2005) Prog Surf Sci 79:47–154CrossRefGoogle Scholar
  180. 180.
    Liu G, Liu C, Bard AJ (2010) J Phys Chem C 114:20997–21002CrossRefGoogle Scholar
  181. 181.
    Park HS, Kweon KE, Ye H, Paek E, Hwang GS, Bard AJ (2011) J Phys Chem C 115:17870–17879CrossRefGoogle Scholar
  182. 182.
    Ye H, Park HS, Bard AJ (2011) J Phys Chem C 115(25):12464–12470CrossRefGoogle Scholar
  183. 183.
    Zhang F, Roznyatovskiy V, Fan F-RF, Lynch V, Sessler JL, Bard AJ (2011) J Phys Chem C 115:2592–2599CrossRefGoogle Scholar
  184. 184.
    Cong Y, Park HS, Wang S, Dang HX, Fan F-RF, Mullins CB, Bard AJ (2012) J Phys Chem C 116:14541–14550CrossRefGoogle Scholar
  185. 185.
    Esposito DV, Levin I, Moffat TP, Talin AA (2013) Nat Mater 12:562–568CrossRefGoogle Scholar
  186. 186.
    Park HS, Leonard KC, Bard AJ (2013) J Phys Chem C 117:12093–12102CrossRefGoogle Scholar
  187. 187.
    Fosdick SE, Berglund SP, Mullins CB, Crooks RM (2014) ACS Catal 4:1332–1339CrossRefGoogle Scholar
  188. 188.
    Trotochaud L, Mills TJ, Boettcher SW (2013) J Phys Chem Lett 4(6):931–935CrossRefGoogle Scholar
  189. 189.
    Walter MC et al (2010) Chem Rev 110(11):6446–6473CrossRefGoogle Scholar
  190. 190.
    McCrory CC et al (2013) J Am Chem Soc 135(45):16977–16987CrossRefGoogle Scholar
  191. 191.
    Sun J, Zhong DK, Gamelin DR (2010) Energy Environ Sci 3(9):1252–1261CrossRefGoogle Scholar
  192. 192.
    Klahr B et al (2012) J Am Chem Soc 134(40):16693–16700CrossRefGoogle Scholar
  193. 193.
    Seabold JA, Choi K-S (2011) Chem Mater 23(5):1105–1112CrossRefGoogle Scholar
  194. 194.
    Liu R et al (2011) Angew Chem Int Ed 50(2):499–502CrossRefGoogle Scholar
  195. 195.
    Kay A, Cesar I, Grätzel M (2006) J Am Chem Soc 128(49):15714–15721CrossRefGoogle Scholar
  196. 196.
    Tilley SD et al (2010) Angew Chem Int Ed 49(36):6405–6408CrossRefGoogle Scholar
  197. 197.
    Abdi FF, van de Krol R (2012) J Phys Chem C 116(17):9398–9404CrossRefGoogle Scholar
  198. 198.
    Gamelin DR (2012) Nat Chem 4(12):965–967CrossRefGoogle Scholar
  199. 199.
    Zhong DK, Gamelin DR (2010) J Am Chem Soc 132(12):4202–4207CrossRefGoogle Scholar
  200. 200.
    McDonald KJ, Choi K-S (2011) Chem Mater 23(7):1686–1693CrossRefGoogle Scholar
  201. 201.
    Barroso M et al (2011) J Am Chem Soc 133(38):14868–14871CrossRefGoogle Scholar
  202. 202.
    Steinmiller EMP, Choi K-S (2009) Proc Natl Acad Sci U S A 106(49):20633–20636CrossRefGoogle Scholar
  203. 203.
    Surendranath Y, Bediako DK, Nocera DG (2012) Proc Natl Acad Sci U S A 109:15617–15621CrossRefGoogle Scholar
  204. 204.
    Pijpers JJH et al (2011) Proc Natl Acad Sci U S A 108(25):10056–10061CrossRefGoogle Scholar
  205. 205.
    Reece SY et al (2011) Science 334(6056):645–648CrossRefGoogle Scholar
  206. 206.
    Young ER et al (2011) Energy Environ Sci 4(6):2058–2061CrossRefGoogle Scholar
  207. 207.
    Zhong DK, Choi S, Gamelin DR (2011) J Am Chem Soc 133(45):18370–18377CrossRefGoogle Scholar
  208. 208.
    Gregoire JM et al (2013) J Electrochem Soc 160(4):F337–F342CrossRefGoogle Scholar
  209. 209.
    Malara F et al (2014) ACS Appl Mater Interfaces 6(12):9290–9297CrossRefGoogle Scholar
  210. 210.
    Dyer AL et al (2014) Adv Mater 26(28):4895–4900CrossRefGoogle Scholar
  211. 211.
    Seike T, Nagai J (1991) Solar Energy Mater 22:107–117CrossRefGoogle Scholar
  212. 212.
    Hugot-Le Goff A, Cordoba de Torresi S (1990) Electrochromic materials. In: Proceedings of the electrochemical society, Pennington, NJGoogle Scholar
  213. 213.
    Corrigan DA, Knight SL (1989) J Electrochem Soc 136(3):613–619CrossRefGoogle Scholar
  214. 214.
    McIntyre JDE, Kolb DM (1970) Specular reflection spectroscopy of electrode surface films. Symp Faraday Soc 4:99–113CrossRefGoogle Scholar
  215. 215.
    Decker F et al (1992) Electrochim Acta 37(6):1033–1038CrossRefGoogle Scholar
  216. 216.
    Trotochaud L et al (2012) J Am Chem Soc 134(41):17253–17261CrossRefGoogle Scholar
  217. 217.
    Trotochaud L et al (2014) J Am Chem Soc 136(18):6744–6753CrossRefGoogle Scholar
  218. 218.
    Azens A et al (1998) Sol Energy Mater Sol Cells 54(1–4):85–91CrossRefGoogle Scholar
  219. 219.
    Monk PMS et al (2001) Electrochim Acta 46(13–14):2091–2096CrossRefGoogle Scholar
  220. 220.
    Smith RDL et al (2013) J Am Chem Soc 135(31):11580–11586CrossRefGoogle Scholar
  221. 221.
    Brückner A (2001) Chemic Commun 2122–2123Google Scholar
  222. 222.
    Brückner A (2005) Chem Commun 1761–1763Google Scholar
  223. 223.
    Zeng K, Zhang DK (2010) Prog Energy Combust Sci 36(3):307–326CrossRefGoogle Scholar
  224. 224.
    Leenheer AJ, Atwater HA (2010) J Electrochem Soc 157(9):B1290–B1294CrossRefGoogle Scholar
  225. 225.
    Sides PJ, Tobias CW (1982) J Electrochem Soc 129(12):2715–2720CrossRefGoogle Scholar
  226. 226.
    Yu HT, Shen JQ, Wei YH (2008) Particuology 6(5):340–346CrossRefGoogle Scholar
  227. 227.
    Balzer RJ, Vogt H (2003) J Electrochem Soc 150(1):E11–E16CrossRefGoogle Scholar
  228. 228.
    Eigeldinger J, Vogt H (2000) Electrochim Acta 45(27):4449–4456CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Candace K. Chan
    • 1
  • Harun Tüysüz
    • 2
  • Artur Braun
    • 3
  • Chinmoy Ranjan
    • 4
  • Fabio La Mantia
    • 5
  • Benjamin K. Miller
    • 1
  • Liuxian Zhang
    • 1
  • Peter A. Crozier
    • 1
    Email author
  • Joel A. Haber
    • 6
  • John M. Gregoire
    • 6
    Email author
  • Hyun S. Park
    • 7
  • Adam S. Batchellor
    • 8
  • Lena Trotochaud
    • 8
  • Shannon W. Boettcher
    • 8
    Email author
  1. 1.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA
  2. 2.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany
  3. 3.Empa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  4. 4.Max Planck Institute for Chemical Energy ConversionMuelheim an der RuhrGermany
  5. 5.Semiconductor and Energy Conversion – Center for Electrochemical SciencesRuhr-Universität BochumBochumGermany
  6. 6.Joint Center for Artificial PhotosynthesisCalifornia Institute of TechnologyPasadenaUSA
  7. 7.Fuel Cell Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
  8. 8.Department of Chemistry and BiochemistryUniversity of OregonEugeneUSA

Personalised recommendations