Advertisement

Theoretical Approaches for Understanding the Interplay Between Stress and Chemical Reactivity

  • Gurpaul S. Kochhar
  • Gavin S. Heverly-Coulson
  • Nicholas J. Mosey
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 369)

Abstract

The use of mechanical stresses to induce chemical reactions has attracted significant interest in recent years. Computational modeling can play a significant role in developing a comprehensive understanding of the interplay between stresses and chemical reactivity. In this review, we discuss techniques for simulating chemical reactions occurring under mechanochemical conditions. The methods described are broadly divided into techniques that are appropriate for studying molecular mechanochemistry and those suited to modeling bulk mechanochemistry. In both cases, several different approaches are described and compared. Methods for examining molecular mechanochemistry are based on exploring the force-modified potential energy surface on which a molecule subjected to an external force moves. Meanwhile, it is suggested that condensed phase simulation methods typically used to study tribochemical reactions, i.e., those occurring in sliding contacts, can be adapted to study bulk mechanochemistry.

Keywords

Chemical simulation Mechanochemistry Modeling Tribochemistry 

Abbreviations

AFM

Atomic force microscopy

AP

Attachment point

CASMP2

Complete active space Møller–Plesset 2nd order perturbation theory

CASSCF

Complete active space self-consistent field

CPMD

Car–Parrinello molecular dynamics

DFT

Density functional theory

EFEI

External force is explicitly included

FF

Force field

FMPES

Force-modified potential energy surface

GSSNEB

Generalized solid-state nudged elastic band

IRC

Intrinsic reaction coordinate

MD

Molecular dynamics

MEP

Minimum energy path

NEB

Nudged elastic band

PES

Potential energy surface

PP

Pulling point

QC

Quantum chemical

QM/MM

Quantum mechanics/molecular mechanics

RI

Registry index

SMD

Steered molecular dynamics

TS

Transition state

Notes

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council of Canada’s Discovery Grant Program is acknowledged. GSK is grateful for support from the Ontario Graduate Scholarship program.

References

  1. 1.
    Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487CrossRefGoogle Scholar
  2. 2.
    Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105:2921–2948CrossRefGoogle Scholar
  3. 3.
    James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–447CrossRefGoogle Scholar
  4. 4.
    Rosen BM, Percec V (2007) Mechanochemistry: a reaction to stress. Nature 446:381–382CrossRefGoogle Scholar
  5. 5.
    Seidel CAM, Kühnemuth R (2014) Mechanochemistry: molecules under pressure. Nat Nanotechnol 9:164–165CrossRefGoogle Scholar
  6. 6.
    Black AL, Lenhardt JM, Craig SL (2011) From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21:1655–1663CrossRefGoogle Scholar
  7. 7.
    Kreuzer HJ, Payne SH, Livadaru L (2001) Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis. Biophys J 80:2505–2514CrossRefGoogle Scholar
  8. 8.
    Kersey FR, Yount WC, Craig SL, Carolina N (2006) Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J Am Chem Soc 128:3886–3887CrossRefGoogle Scholar
  9. 9.
    Duwez A-S, Cuenot S, Jérôme C, Gabriel S, Jérôme R, Rapino S, Zerbetto F (2006) Mechanochemistry: targeted delivery of single molecules. Nat Nanotechnol 1:122–125CrossRefGoogle Scholar
  10. 10.
    Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346CrossRefGoogle Scholar
  11. 11.
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290CrossRefGoogle Scholar
  12. 12.
    Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228CrossRefGoogle Scholar
  13. 13.
    Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816CrossRefGoogle Scholar
  14. 14.
    Yang Q-Z, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R (2009) A molecular force probe. Nat Nanotechnol 4:302–306CrossRefGoogle Scholar
  15. 15.
    Lundbæk JA, Collingwood SA (2010) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 7:373–395CrossRefGoogle Scholar
  16. 16.
    Suslick KS (2004) Sonochemistry. Compr Coord Chem II 1:731–739Google Scholar
  17. 17.
    Basedow AM, Ebert KH (1977) Ultrasonic degradation of polymers in solution. Adv Polym Sci 22:83–148CrossRefGoogle Scholar
  18. 18.
    Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249CrossRefGoogle Scholar
  19. 19.
    Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427CrossRefGoogle Scholar
  20. 20.
    James SL, Friščić T (2013) Mechanochemistry. Chem Soc Rev 42:7494–7496CrossRefGoogle Scholar
  21. 21.
    Friščić T, Halasz I, Beldon PJ, Belenguer AM, Adams F, Kimber SAJ, Honkimäki V, Dinnebier RE (2013) Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem 5:66–73Google Scholar
  22. 22.
    Christinat N, To J, Schu C, Scopelliti R, Severin K (2009) Synthesis of molecular nanostructures by multicomponent condensation reactions in a ball mill. J Am Chem Soc 131:3154–3155CrossRefGoogle Scholar
  23. 23.
    Cravotto G, Cintas P (2010) Reconfiguration of stereoisomers under sonomechanical activation. Angew Chem Int Ed Engl 49:6028–6030CrossRefGoogle Scholar
  24. 24.
    Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671CrossRefGoogle Scholar
  25. 25.
    Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci 98:468–472CrossRefGoogle Scholar
  26. 26.
    Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J (2002) Mechanical unfolding of a Titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol 322:841–849CrossRefGoogle Scholar
  27. 27.
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub E, Gaub HE (1997) Reversible unfolding of individual Titin immunoglobulin domains by AFM. Science 276:1109–1112CrossRefGoogle Scholar
  28. 28.
    Weder C (2009) Polymers react to stress. Nature 459:45–46CrossRefGoogle Scholar
  29. 29.
    Kochhar GS, Bailey A, Mosey NJ (2010) Competition between orbitals and stress in mechanochemistry. Angew Chem Int Ed Engl 49:7452–7455CrossRefGoogle Scholar
  30. 30.
    Ong MT, Leiding J, Tao H, Virshup AM, Martinez TJ (2009) First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J Am Chem Soc 131:6377–6379CrossRefGoogle Scholar
  31. 31.
    Ribas-Arino J, Shiga M, Marx D (2009) Understanding covalent mechanochemistry. Angew Chem Int Ed Engl 48:4190–4193CrossRefGoogle Scholar
  32. 32.
    Beyer MK (2000) The mechanical strength of a covalent bond calculated by density functional theory. J Chem Phys 112:7307–7312CrossRefGoogle Scholar
  33. 33.
    Friedrichs J, Lüssmann M, Frank I (2010) Conservation of orbital symmetry can be circumvented in mechanically induced reactions. Chemphyschem 11:3339–3342CrossRefGoogle Scholar
  34. 34.
    Ribas-Arino J, Shiga M, Marx D (2009) Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes. Chem Eur J 15:13331–13335CrossRefGoogle Scholar
  35. 35.
    Makarov DE, Wang Z, Thompson JB, Hansma HG (2002) On the interpretation of force extension curves of single protein molecules. J Chem Phys 116:7760–7765CrossRefGoogle Scholar
  36. 36.
    Konda SSM, Avdoshenko SM, Makarov DE (2014) Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules. J Chem Phys 140:104114CrossRefGoogle Scholar
  37. 37.
    Bailey A, Mosey NJ (2012) Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J Chem Phys 136:044102CrossRefGoogle Scholar
  38. 38.
    Beyer MK (2003) Coupling of mechanical and chemical energy: proton affinity as a function of external force. Angew Chem Int Ed Engl 42:4913–4915CrossRefGoogle Scholar
  39. 39.
    Lupton EM, Achenbach F, Weis J, Bräuchle C, Frank I (2006) Modified chemistry of siloxanes under tensile stress: interaction with environment. J Phys Chem B 110:14557–14563CrossRefGoogle Scholar
  40. 40.
    Lupton EM, Nonnenberg C, Frank I, Achenbach F, Weis J, Bräuchle C (2005) Stretching siloxanes: an ab initio molecular dynamics study. Chem Phys Lett 414:132–137CrossRefGoogle Scholar
  41. 41.
    Aktah D, Frank I (2002) Breaking bonds by mechanical stress: when do electrons decide for the other side? J Am Chem Soc 124:3402–3406CrossRefGoogle Scholar
  42. 42.
    Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057–1060CrossRefGoogle Scholar
  43. 43.
    Lenhardt JM, Ogle JW, Ong MT, Choe R, Martinez TJ, Craig SL (2011) Reactive cross-talk between adjacent tension-trapped transition states. J Am Chem Soc 133:3222–3225CrossRefGoogle Scholar
  44. 44.
    Kryger MJ, Ong MT, Odom SA, Sottos NR, White SR, Martinez TJ, Moore JS (2010) Masked cyanoacrylates unveiled by mechanical force. J Am Chem Soc 132:4558–4559CrossRefGoogle Scholar
  45. 45.
    Konôpka M, Turanský R, Reichert J, Fuchs H, Marx D, Štich I (2008) Mechanochemistry and thermochemistry are different: stress-induced strengthening of chemical bonds. Phys Rev Lett 100:115503CrossRefGoogle Scholar
  46. 46.
    Dopieralski P, Anjukandi P, Rückert M, Shiga M, Ribas-Arino J, Marx D (2011) On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores. J Mater Chem 21:8309–8316Google Scholar
  47. 47.
    Ribas-arino J, Shiga M, Marx D (2010) Mechanochemical transduction of externally applied forces to mechanophores. J Am Chem Soc 132:10609–10614CrossRefGoogle Scholar
  48. 48.
    Harrison JA, Gao G, Schall JD, Knippenberg MT, Mikulski PT (2008) Friction between solids. Philos Trans R Socient A 366:1469–1495CrossRefGoogle Scholar
  49. 49.
    Mosey NJ, Muser M (2007) Atomistic modeling of friction. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, 25th ed. Wiley-VCH, New York, pp 67–124Google Scholar
  50. 50.
    Schlierf M, Li H, Fernandez JM (2004) The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc Natl Acad Sci USA 101:7299–7304CrossRefGoogle Scholar
  51. 51.
    Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678CrossRefGoogle Scholar
  52. 52.
    Potisek SL, Davis DA, Sottos NR, White SR, Moore JS (2007) Mechanophore-linked addition polymers. J Am Chem Soc 129:13808–13809CrossRefGoogle Scholar
  53. 53.
    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283:1727–1730CrossRefGoogle Scholar
  54. 54.
    Freitas A, Sharma M (2001) Detachment of particles from surfaces: an AFM study. J Colloid Interface Sci 233:73–82CrossRefGoogle Scholar
  55. 55.
    Iozzi MF, Helgaker T, Uggerud E (2009) Assessment of theoretical methods for the determination of the mechanochemical strength of covalent bonds. Mol Phys 107:2537–2546CrossRefGoogle Scholar
  56. 56.
    Su T, Purohit PK (2009) Mechanics of forced unfolding of proteins. Acta Biomater 5:1855–1863CrossRefGoogle Scholar
  57. 57.
    Ikai A, Alimujiang Y (2001) Force–extension curves of dimerized polyglutamic acid. Appl Phys A 120:117–120CrossRefGoogle Scholar
  58. 58.
    Davis DA, Hamilton A, Yang J et al (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72CrossRefGoogle Scholar
  59. 59.
    Zemanová M, Bleha T (2005) Isometric and isotensional force-length profiles in polymethylene chains. Macromol Theory Simulations 14:596–604CrossRefGoogle Scholar
  60. 60.
    Keller D, Swigon D, Bustamante C (2003) Relating single-molecule measurements to thermodynamics. Biophys J 84:733–738CrossRefGoogle Scholar
  61. 61.
    Paulusse JMJ, Sijbesma RP (2004) Reversible mechanochemistry of a Pd(II) coordination polymer. Angew Chem Int Ed Engl 43:4460–4462CrossRefGoogle Scholar
  62. 62.
    Karthikeyan S, Potisek SL, Piermattei A, Sijbesma RP (2008) Highly efficient mechanochemical scission of silver-carbene coordination polymers. J Am Chem Soc 130:14968–14969CrossRefGoogle Scholar
  63. 63.
    Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133–137CrossRefGoogle Scholar
  64. 64.
    Izailev S, Stepaniants S et al (1999) Steered molecular dynamics. In: Deuflhard P, Hermans J, Leimkuhler B, Mark AE, Reich S, Skeel RD (eds) Computational molecular dynamics: challenges, methods, ideas, vol 4. Springer, New York, pp 39–65CrossRefGoogle Scholar
  65. 65.
    Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581CrossRefGoogle Scholar
  66. 66.
    Grubmuiller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271:997–999CrossRefGoogle Scholar
  67. 67.
    Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) Steered molecular dynamics investigations of protein function. J Mol Graph Model 19:13–25CrossRefGoogle Scholar
  68. 68.
    Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230CrossRefGoogle Scholar
  69. 69.
    Stepaniants S, Izrailev S, Schulten K (1997) Extraction of lipids from phospholipid membranes by steered molecular dynamics. J Mol Model 3:473–475CrossRefGoogle Scholar
  70. 70.
    Silberstein MN, Cremar LD, Beiermann BA, Kramer SB, Martinez TJ, White SR, Sottos NR (2014) Modeling mechanophore activation within a viscous rubbery network. J Mech Phys Solids 63:141–153CrossRefGoogle Scholar
  71. 71.
    Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623–628CrossRefGoogle Scholar
  72. 72.
    Franco I, George CB, Solomon GC, Schatz GC, Ratner MA (2011) Mechanically activated molecular switch through single-molecule pulling. J Am Chem Soc 133:2242–2249CrossRefGoogle Scholar
  73. 73.
    Franco I, Schatz GC, Ratner MA (2009) Single-molecule pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation. J Chem Phys 131:124902CrossRefGoogle Scholar
  74. 74.
    Paturej J, Kuban L, Milchev A, Vilgis TA (2012) Tension enhancement in branched macromolecules upon adhesion on a solid substrate. Europhys Lett 97:58003CrossRefGoogle Scholar
  75. 75.
    Ghosh A, Dimitrov DI, Rostiashvili VG, Milchev A, Vilgis TA (2010) Thermal breakage and self-healing of a polymer chain under tensile stress. J Chem Phys 132:204902CrossRefGoogle Scholar
  76. 76.
    Paturej J, Milchev A, Rostiashvili VG, Vilgis TA (2011) Polymer chain scission at constant tension – an example of force-induced collective behaviour. Europhys Lett 94:48003CrossRefGoogle Scholar
  77. 77.
    Paturej J, Dubbeldam JLA, Rostiashvili VG, Milchev A, Vilgis TA (2014) Force spectroscopy of polymer desorption: theory and molecular dynamics simulation. Soft Matter 10:2785–2799CrossRefGoogle Scholar
  78. 78.
    Wiita AP, Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127CrossRefGoogle Scholar
  79. 79.
    Li W, Gräter F (2010) Atomistic evidence of how force dynamically regulates thiol/disulfide exchange. J Am Chem Soc 132:16790–16795CrossRefGoogle Scholar
  80. 80.
    Baldus IB, Gräter F (2012) Mechanical force can fine-tune redox potentials of disulfide bonds. Biophys J 102:622–629CrossRefGoogle Scholar
  81. 81.
    Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  82. 82.
    Smalø HS, Uggerud E (2013) Breaking covalent bonds using mechanical force, which bond breaks? Mol Phys 111:1563–1573CrossRefGoogle Scholar
  83. 83.
    Smalø HS, Uggerud E (2012) Ring opening vs. direct bond scission of the chain in polymeric triazoles under the influence of an external force. Chem Comm 48:10443–10445CrossRefGoogle Scholar
  84. 84.
    Kryger MJ, Munaretto AM, Moore S (2011) Structure-mechanochemical activity relationships for cyclobutane mechanophores. J Am Chem Soc 133:18992–18998CrossRefGoogle Scholar
  85. 85.
    Lourderaj U, McAfee JL, Hase WL (2008) Potential energy surface and unimolecular dynamics of stretched n-butane. J Chem Phys 129:094701CrossRefGoogle Scholar
  86. 86.
    Schmidt SW, Beyer MK, Clausen-Schaumann H (2008) Dynamic strength of the silicon-carbon bond observed over three decades of force-loading rates. J Am Chem Soc 130:3664–3668CrossRefGoogle Scholar
  87. 87.
    Iozzi MF, Helgaker T, Uggerud E (2011) Influence of external force on properties and reactivity of disulfide bonds. J Phys Chem A 115:2308–3215CrossRefGoogle Scholar
  88. 88.
    Groote R, Szyja M, Pidko EA, Hensen EJM, Sijbesma RP (2011) Unfolding and mechanochemical scission of supramolecular polymers containing a metal-ligand coordination bond. Macromolecules 44:9187–9195CrossRefGoogle Scholar
  89. 89.
    Shiraki T, Diesendruck CE, Moore JS (2014) The mechanochemical production of phenyl cations through heterolytic bond scission. Faraday Discuss. doi: 10.1039/C4FD00027G Google Scholar
  90. 90.
    Krüger D, Rousseau R, Fuchs H, Marx D (2003) Towards “mechanochemistry”: mechanically induced isomerizations of thiolate-gold clusters. Angew Chem Int Ed Engl 42:2251–2253CrossRefGoogle Scholar
  91. 91.
    Huang Z, Yang Q, Khvostichenko D, Kucharski TJ, Chen J, Boulatov R (2009) Method to derive restoring forces of strained molecules from kinetic measurements. J Am Chem Soc 131:1407–1409CrossRefGoogle Scholar
  92. 92.
    Kucharski TJ, Yang Q-Z, Tian Y, Boulatov R (2010) Strain-dependent acceleration of a paradigmatic SN2 reaction accurately predicted by the force formalism. J Phys Chem Lett 1:2820–2825CrossRefGoogle Scholar
  93. 93.
    Kucharski TJ, Huang Z, Yang Q-Z, Tian Y, Rubin NC, Concepcion CD, Boulatov R (2009) Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew Chemie 121:7174–7177CrossRefGoogle Scholar
  94. 94.
    Akbulatov S, Tian Y, Kapustin E, Boulatov R (2013) Model studies of the kinetics of ester hydrolysis under stretching force. Angew Chem Int Ed Engl 52:6992–6995CrossRefGoogle Scholar
  95. 95.
    Akbulatov S, Tian Y, Boulatov R (2012) Force−reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J Am Chem Soc 134:7620–7623CrossRefGoogle Scholar
  96. 96.
    Tian Y, Kucharski TJ, Yang Q-Z, Boulatov R (2013) Model studies of force-dependent kinetics of multi-barrier reactions. Nat Commun 4:2538CrossRefGoogle Scholar
  97. 97.
    Kucharski TJ, Boulatov R (2011) The physical chemistry of mechanoresponsive polymers. J Mater Chem 21:8237–8255CrossRefGoogle Scholar
  98. 98.
    Hermes M, Boulatov R (2011) The entropic and enthalpic contributions to force-dependent dissociation kinetics of the pyrophosphate bond. J Am Chem Soc 133(50):20044–20047CrossRefGoogle Scholar
  99. 99.
    Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  100. 100.
    Hofbauer F, Frank I (2010) Disulfide bond cleavage: a redox reaction without electron transfer. Chem Eur J 16:5097–5101CrossRefGoogle Scholar
  101. 101.
    Hofbauer F, Frank I (2012) CPMD simulation of a bimolecular chemical reaction: nucleophilic attack of a disulfide bond under mechanical stress. Chem Eur J 18:16332–16338CrossRefGoogle Scholar
  102. 102.
    Krupička M, Sander W, Marx D (2014) Mechanical manipulation of chemical reactions: reactivity switching of Bergman cyclizations. J Phys Chem Lett 5:905–909CrossRefGoogle Scholar
  103. 103.
    Stauch T, Dreuw A (2014) Force-spectrum relations for molecular optical force probes. Angew Chem Int Ed Engl 53:2759–2761CrossRefGoogle Scholar
  104. 104.
    Smalø HS, Rybkin VV, Klopper W, Helgaker T, Uggerud E (2014) Mechanochemistry: the effect of dynamics. J Phys Chem A 118:7683–7694CrossRefGoogle Scholar
  105. 105.
    Schmidt M, Baldridge K (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  106. 106.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, WallingfordGoogle Scholar
  107. 107.
    Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113–3125CrossRefGoogle Scholar
  108. 108.
    Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618–627CrossRefGoogle Scholar
  109. 109.
    Dopieralski P, Ribas-Arino J, Anjukandi P, Krupicka M, Kiss J, Marx D (2013) The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. Nat Chem 5:685–691CrossRefGoogle Scholar
  110. 110.
    Lele TP, Thodeti CK, Ingber DE (2006) Force meets chemistry: analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching. J Cell Biochem 97:1175–1183CrossRefGoogle Scholar
  111. 111.
    Greenberg MJ, Moore JR (2010) The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton 67:273–285CrossRefGoogle Scholar
  112. 112.
    Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748CrossRefGoogle Scholar
  113. 113.
    Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72(4):1541–1555CrossRefGoogle Scholar
  114. 114.
    Evans E (2001) Probing the relation between force-lifetime and chemistry. Annu Rev Biophys Biomol Struct 30:105–128CrossRefGoogle Scholar
  115. 115.
    Konda SSM, Brantley JN, Bielawski CW, Makarov DE (2011) Chemical reactions modulated by mechanical stress: extended Bell theory. J Chem Phys 135:164103CrossRefGoogle Scholar
  116. 116.
    Konda SSM, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE (2013) Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J Am Chem Soc 135:12722–12729CrossRefGoogle Scholar
  117. 117.
    Brantley JN, Konda SSM, Makarov DE, Bielawski CW (2012) Regiochemical effects on molecular stability: a mechanochemical evaluation of 1,4- and 1,5-disubstituted triazoles. J Am Chem Soc 134:9882–9885CrossRefGoogle Scholar
  118. 118.
    Tian Y, Boulatov R (2013) Comparison of the predictive performance of the Bell-Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem Comm 49:4187–4189CrossRefGoogle Scholar
  119. 119.
    Hsu SM, Zhang J, Yin Z (2002) The nature and origin of tribochemistry. Tribol Lett 13:131–139CrossRefGoogle Scholar
  120. 120.
    Kajdas C (2013) General approach to mechanochemistry and its relations to tribochemistry. In: Pihtili H (ed) Tribology in engineering. InTech, pp 209–240Google Scholar
  121. 121.
    Liang T, Sawyer WG, Perry SS, Sinnott SB, Phillpot SR (2008) First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys Rev B 77:104105CrossRefGoogle Scholar
  122. 122.
    Smith GS, Modine NA, Waghmare UV, Kaxiras E (1998) First-principles study of static nanoscale friction between MoO3. J Comput Mater Des 5:61–71CrossRefGoogle Scholar
  123. 123.
    Modine NA, Zumbach G, Kaxiras E (1997) Adaptive-coordinate real-space electronic structure calculations for atoms, molecules, and solids. Phys Rev B 55:10289CrossRefGoogle Scholar
  124. 124.
    Lees AW, Edwards SF (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5:1921–1929CrossRefGoogle Scholar
  125. 125.
    Zilibotti G, Righi MC (2011) Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27:6862–6867CrossRefGoogle Scholar
  126. 126.
    Wang J, Want F, Li J, Sun Q, Yuan P, Jia Y (2013) Comparative study of friction properties for hydrogen- and fluorine-modified diamond surfaces: a first-principles investigation. Surf Sci 608:74–79CrossRefGoogle Scholar
  127. 127.
    Wang L-F, Ma T-B, Hu Y-Z, Wang H (2012) Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations. Phys Rev B 86:125436CrossRefGoogle Scholar
  128. 128.
    Wang L-F, Ma T-B, Hu Y-Z, Wang H, Shao T-M (2013) Ab initio study of the friction mechanism of fluorographene and graphane. J Phys Chem C 117:12520–12525CrossRefGoogle Scholar
  129. 129.
    Leven I, Krepel D, Shemesh O, Hod O (2013) Robust superlubricity in graphene/h-BN heterojunctions. J Phys Chem Lett 4:115–120CrossRefGoogle Scholar
  130. 130.
    Hod O (2013) The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14:2376–2391CrossRefGoogle Scholar
  131. 131.
    Zhong W, Tománek D (1990) First-principles theory of atomic-scale friction. Phys Rev Lett 64:3054–3057CrossRefGoogle Scholar
  132. 132.
    Neitola R, Pakkanen TA (2001) Ab initio studies on the atomic-scale origin of friction between diamond (111) surfaces. J Phys Chem B 105:1338–1343CrossRefGoogle Scholar
  133. 133.
    Koskilinna JO, Linnolahti M, Pakkanen TA (2005) Tribochemical reactions between methylated diamond (111) surfaces: a theoretical study. Tribol Lett 20:157–161CrossRefGoogle Scholar
  134. 134.
    Neitola R, Pakkanen TA (2006) Ab initio studies on nanoscale friction between fluorinated diamond surfaces: effect of model size and level of theory. J Phys Chem B 110:16660–16665CrossRefGoogle Scholar
  135. 135.
    Neitola R, Pakkanen TA (2004) Ab initio studies on the atomic-scale origin of friction between hydrocarbon layers. Chem Phys 299:47–56CrossRefGoogle Scholar
  136. 136.
    Neitola R, Ruuska H, Pakkanen TA (2005) Ab initio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J Phys Chem B 109:10348–10354CrossRefGoogle Scholar
  137. 137.
    Koskilinna JO, Linnolahti M, Pakkanen TA (2007) Friction paths for cubic boron nitride: an ab initio study. Tribol Lett 27:145–154CrossRefGoogle Scholar
  138. 138.
    Koskilinna JO, Linnolahti M, Pakkanen TA (2008) Friction and a tribochemical reaction between ice and hexagonal boron nitride: a theoretical study. Tribol Lett 29:163–167CrossRefGoogle Scholar
  139. 139.
    Ogata S, Li J, Hirosaki N, Shibutani Y, Yip S (2004) Ideal shear strain of metals and ceramics. Phys Rev B 70:104104CrossRefGoogle Scholar
  140. 140.
    Liao P, Carter EA (2010) Ab initio density functional theory+U predictions of the shear response of iron oxides. Acta Mater 58:5912–5925CrossRefGoogle Scholar
  141. 141.
    Mosey NJ, Liao P, Carter EA (2008) Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J Chem Phys 129:014103CrossRefGoogle Scholar
  142. 142.
    Mosey NJ, Carter EA (2009) Shear strength of chromia across multiple length scales: An LDA+U study. Acta Mater 57:2933–2943CrossRefGoogle Scholar
  143. 143.
    Mills G, Jónsson H (1994) Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett 72:1124–1127CrossRefGoogle Scholar
  144. 144.
    Mills G, Jónsson H, Schenter G (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324:305–337CrossRefGoogle Scholar
  145. 145.
    Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Class Quantum Dyn Condens Phase Simulations. World Scientific, Singapore, pp 385–404Google Scholar
  146. 146.
    Caspersen KJ, Carter EA (2005) Finding transition states for crystalline solid-solid phase transformations. Proc Natl Acad Sci 102:6738–6743CrossRefGoogle Scholar
  147. 147.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904CrossRefGoogle Scholar
  148. 148.
    Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) A generalized solid-state nudged elastic band method. J Chem Phys 136:074103CrossRefGoogle Scholar
  149. 149.
    Trinkle D, Hennig R, Srinivasan S, Hatch D, Jones M, Stokes H, Albers R, Wilkins J (2003) New mechanism for the α to ω martensitic transformation in pure titanium. Phys Rev Lett 91:025701CrossRefGoogle Scholar
  150. 150.
    Hennig RG, Trinkle DR, Bouchet J, Srinivasan SG, Albers RC, Wilkins JW (2005) Impurities block the α to ω martensitic transformation in titanium. Nat Mater 4:129–133CrossRefGoogle Scholar
  151. 151.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  152. 152.
    Liu J, Johnson D (2009) bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: coupled shuffle and shear modes. Phys Rev B 79:134113Google Scholar
  153. 153.
    Xiao P, Henkelman G (2012) Communication: from graphite to diamond: reaction pathways of the phase transition. J Chem Phys 137:101101CrossRefGoogle Scholar
  154. 154.
    Vu NH, Le HV, Cao TM, Pham VV, Le HM, Nguyen-Manh D (2012) Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach. J Phys Condens Matter 24:405501CrossRefGoogle Scholar
  155. 155.
    Dong X, Zhou X-F, Qian G-R, Zhao Z, Tian Y, Wang H-T (2013) An ab initio study on the transition paths from graphite to diamond under pressure. J Phys Condens Matter 25:145402CrossRefGoogle Scholar
  156. 156.
    Xiao P, Cheng J-G, Zhou J-S, Goodenough JB, Henkelman G (2013) Mechanism of the CaIrO3 post-perovskite phase transition under pressure. Phys Rev B 88:144102CrossRefGoogle Scholar
  157. 157.
    Dai Y, Ni S, Li Z, Yang J (2013) Diffusion and desorption of oxygen atoms on graphene. J Phys Condens Matter 25:405301CrossRefGoogle Scholar
  158. 158.
    Briquet LGV, Wirtz T, Philipp P (2013) First principles investigation of Ti adsorption and migration on Si(100) surfaces. J Appl Phys 114:243505CrossRefGoogle Scholar
  159. 159.
    Jennings PC, Aleksandrov HA, Neyman KM, Johnston RL (2014) A DFT study of oxygen dissociation on platinum based nanoparticles. Nanoscale 6:1153–1165CrossRefGoogle Scholar
  160. 160.
    Harrison JA, White CT, Colton RJ, Brenner DW (1992) Molecular-dynamics simulation of atomic-scale friction of diamond surfaces. Phys Rev B 46:9700–9708CrossRefGoogle Scholar
  161. 161.
    Harrison JA, Colton RJ, White CT, Brenner DW (1993) Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear 168:127–133CrossRefGoogle Scholar
  162. 162.
    Harrison JA, White CT, Colton RJ, Brenner DW (1995) Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics. Thin Solid Films 260:205–211CrossRefGoogle Scholar
  163. 163.
    Gao G, Cannara RJ, Carpick RW, Harrison JA (2007) Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23:5394–5405CrossRefGoogle Scholar
  164. 164.
    Yue D-C, Ma T-B, Hu Y-Z, Yeon J, van Duin ACT, Wang H, Luo J (2013) Tribochemistry of phosphoric acid sheared between quartz surfaces: a reactive molecular dynamics study. J Phys Chem C 117:25604–25614CrossRefGoogle Scholar
  165. 165.
    Carkner CJ, Mosey NJ (2010) Slip mechanisms of hydroxylated α-Al2O3 (0001)/(0001) interfaces: a first-principles molecular dynamics study. J Phys Chem C 114:17709–17719CrossRefGoogle Scholar
  166. 166.
    Carkner CJ, Haw SM, Mosey NJ (2010) Effect of adhesive interactions on static friction at the atomic scale. Phys Rev Lett 105:056102CrossRefGoogle Scholar
  167. 167.
    Haw SM, Mosey NJ (2012) Tribochemistry of aldehydes sheared between (0001) surfaces of α-alumina from first-principles molecular dynamics. J Phys Chem C 116:2132–2145CrossRefGoogle Scholar
  168. 168.
    Haw SM, Mosey NJ (2011) Chemical response of aldehydes to compression between (0001) surfaces of α-alumina. J Chem Phys 134:014702CrossRefGoogle Scholar
  169. 169.
    Bernasconi M, Chiarotti GL, Focher P, Scandolo S, Tosatti E, Parrinello M (1995) First-principle-constant pressure molecular dynamics. J Phys Chem Solids 56:501–505CrossRefGoogle Scholar
  170. 170.
    Wentzcovitch R (1991) Invariant molecular-dynamics approach to structural phase transitions. Phys Rev B 44:2358–2361CrossRefGoogle Scholar
  171. 171.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684CrossRefGoogle Scholar
  172. 172.
    Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393CrossRefGoogle Scholar
  173. 173.
    Serra S (1999) Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science 284:788–790CrossRefGoogle Scholar
  174. 174.
    Mugnai M, Pagliai M, Cardini G, Schettino V (2008) Mechanism of the ethylene polymerization at very high pressure. J Chem Theory Comput 4:646–651CrossRefGoogle Scholar
  175. 175.
    Bernasconi M, Chiarotti G, Focher P, Parrinello M, Tosatti E (1997) Solid-state polymerization of acetylene under pressure: ab initio simulation. Phys Rev Lett 78:2008–2011CrossRefGoogle Scholar
  176. 176.
    Schettino V, Bini R (2007) Constraining molecules at the closest approach: chemistry at high pressure. Chem Soc Rev 36:869–880CrossRefGoogle Scholar
  177. 177.
    Mosey N, Woo T, Müser M (2005) Energy dissipation via quantum chemical hysteresis during high-pressure compression: a first-principles molecular dynamics study of phosphates. Phys Rev B 72:054124CrossRefGoogle Scholar
  178. 178.
    Mosey NJ, Müser MH, Woo TK (2005) Molecular mechanisms for the functionality of lubricant additives. Science 307:1612–1615CrossRefGoogle Scholar
  179. 179.
    Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  180. 180.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  181. 181.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gurpaul S. Kochhar
    • 1
  • Gavin S. Heverly-Coulson
    • 1
  • Nicholas J. Mosey
    • 1
  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations