Advertisement

Oxidative Heterocycle Formation Using Hypervalent Iodine(III) Reagents

  • Sandip Murarka
  • Andrey P. Antonchick
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 373)

Abstract

Hypervalent iodine(III) reagents have been widely exploited in a diverse array of synthetic transformations. This chapter focuses on the general application of hypervalent iodine(III) reagents in the de novo synthesis and in the late stage functionalization of heterocyclic compounds.

Keywords

Heterocycles Hypervalent iodine(III) reagents Organocatalysis Oxidative cyclization Transition metal-free 

References

  1. 1.
    Zheng Z, Zhang-Negrerie D, Du Y, Zhao K (2014) Sci Chin Chem 57:189–214CrossRefGoogle Scholar
  2. 2.
    Kumar D, Arun V, Pilania M, Kumar NM (2014) Organohypervalent iodine reagents in the synthesis of bioactive heterocycles. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Samanta R, Matcha K, Antonchick AP (2013) Eur J Org Chem 2013:5769–5804CrossRefGoogle Scholar
  4. 4.
    Tellitu I, Domínguez E (2012) Synlett 23:2165–2175CrossRefGoogle Scholar
  5. 5.
    Wirth T (2005) Angew Chem Int Ed 44:3656–3665CrossRefGoogle Scholar
  6. 6.
    Zhdankin VV (2014) Hypervalent iodine chemistry: preparation, structure and synthetic applications of polyvalent iodine compounds. Wiley, ChichesterGoogle Scholar
  7. 7.
    Merritt EA, Olofsson B (2009) Angew Chem Int Ed 48:9052–9070CrossRefGoogle Scholar
  8. 8.
    Fache F, Schulz E, Tommasino ML, Lemaire M (2000) Chem Rev 100:2159–2232CrossRefGoogle Scholar
  9. 9.
    Henkel T, Brunne RM, Müller H, Reichel F (1999) Angew Chem Int Ed 38:643–647CrossRefGoogle Scholar
  10. 10.
    Hili R, Yudin AK (2006) Nat Chem Biol 2:284–287CrossRefGoogle Scholar
  11. 11.
    Kikugawa Y, Kawase M (1990) Chem Lett 19:581–582CrossRefGoogle Scholar
  12. 12.
    Cho SH, Yoon J, Chang S (2011) J Am Chem Soc 133:5996–6005CrossRefGoogle Scholar
  13. 13.
    Antonchick AP, Samanta R, Kulikov K, Lategahn J (2011) Angew Chem Int Ed 50:8605–8608CrossRefGoogle Scholar
  14. 14.
    Ban X, Pan Y, Lin Y, Wang S, Du Y, Zhao K (2012) Org Biomol Chem 10:3606–3609CrossRefGoogle Scholar
  15. 15.
    Zhang X, Zhang-Negrerie D, Deng J, Du Y, Zhao K (2013) J Org Chem 78:12750–12759CrossRefGoogle Scholar
  16. 16.
    Li X, Yang L, Zhang X, Zhang-Negrerie D, Du Y, Zhao K (2014) J Org Chem 79:955–962CrossRefGoogle Scholar
  17. 17.
    Du Y, Liu R, Linn G, Zhao K (2006) Org Lett 8:5919–5922CrossRefGoogle Scholar
  18. 18.
    Yu W, Du Y, Zhao K (2009) Org Lett 11:2417–2420CrossRefGoogle Scholar
  19. 19.
    Huang J, He Y, Wang Y, Zhu Q (2012) Chem Eur J 18:13964–13967CrossRefGoogle Scholar
  20. 20.
    Alla SK, Kumar RK, Sadhu P, Punniyamurthy T (2013) Org Lett 15:1334–1337CrossRefGoogle Scholar
  21. 21.
    Liang D, Zhu Q (2015) Asian J Org Chem 4:42–45CrossRefGoogle Scholar
  22. 22.
    Chen H, Kaga A, Chiba S (2014) Org Lett 16:6136–6139CrossRefGoogle Scholar
  23. 23.
    He Y, Huang J, Liang D, Liu L, Zhu Q (2013) Chem Commun 49:7352–7354CrossRefGoogle Scholar
  24. 24.
    Liang D, He Y, Liu L, Zhu Q (2013) Org Lett 15:3476–3479CrossRefGoogle Scholar
  25. 25.
    Shang S, Zhang-Negrerie D, Du Y, Zhao K (2014) Angew Chem Int Ed 53:6216–6219CrossRefGoogle Scholar
  26. 26.
    Zheng Y, Li X, Ren C, Zhang-Negrerie D, Du Y, Zhao K (2012) J Org Chem 77:10353–10361CrossRefGoogle Scholar
  27. 27.
    Yu Z, Ma L, Yu W (2012) Synlett 23:1534–1540CrossRefGoogle Scholar
  28. 28.
    Tantak MP, Kumar A, Noel B, Shah K, Kumar D (2013) ChemMedChem 8:1468–1474CrossRefGoogle Scholar
  29. 29.
    Kumar D, Kumar NM, Chang K-H, Gupta R, Shah K (2011) Bioorg Med Chem Lett 21:5897–5900CrossRefGoogle Scholar
  30. 30.
    Patel KN, Jadhav NC, Jagadhane PB, Telvekar VN (2012) Synlett 23:1970–1972CrossRefGoogle Scholar
  31. 31.
    Correa A, Tellitu I, Domínguez E, SanMartin R (2006) J Org Chem 71:3501–3505CrossRefGoogle Scholar
  32. 32.
    Wang K, Fu X, Liu J, Liang Y, Dong D (2009) Org Lett 11:1015–1018CrossRefGoogle Scholar
  33. 33.
    Zheng Z, Ma S, Tang L, Zhang-Negrerie D, Du Y, Zhao K (2014) J Org Chem 79:4687–4693CrossRefGoogle Scholar
  34. 34.
    Brahemi G, Kona FR, Fiasella A, Buac D, Soukupová J, Brancale A, Burger AM, Westwell AD (2010) J Med Chem 53:2757–2765CrossRefGoogle Scholar
  35. 35.
    Correa A, Tellitu I, Domínguez E, SanMartin R (2006) Org Lett 8:4811–4813CrossRefGoogle Scholar
  36. 36.
    Huang J, Lu Y, Qiu B, Liang Y, Li N, Dong D (2007) Synthesis 2791–2796Google Scholar
  37. 37.
    Wang J, Yuan Y, Xiong R, Zhang-Negrerie D, Du Y, Zhao K (2012) Org Lett 14:2210–2213CrossRefGoogle Scholar
  38. 38.
    Lv J, Zhang-Negrerie D, Deng J, Du Y, Zhao K (2014) J Org Chem 79:1111–1119CrossRefGoogle Scholar
  39. 39.
    Wu H, He YP, Xu L, Zhang DY, Gong LZ (2014) Angew Chem Int Ed 53:3466–3469CrossRefGoogle Scholar
  40. 40.
    Fan R, Sun Y, Ye Y (2009) Org Lett 11:5174–5177CrossRefGoogle Scholar
  41. 41.
    Sun Y, Fan R (2010) Chem Commun 46:6834–6836CrossRefGoogle Scholar
  42. 42.
    Lu S-C, Zheng P-R, Liu G (2012) J Org Chem 77:7711–7717CrossRefGoogle Scholar
  43. 43.
    Yuan Y, Yang R, Zhang-Negrerie D, Wang J, Du Y, Zhao K (2013) J Org Chem 78:5385–5392CrossRefGoogle Scholar
  44. 44.
    Liu L, Lu H, Wang H, Yang C, Zhang X, Zhang-Negrerie D, Du Y, Zhao K (2013) Org Lett 15:2906–2909CrossRefGoogle Scholar
  45. 45.
    Mao L, Li Y, Xiong T, Sun K, Zhang Q (2012) J Org Chem 78:733–737CrossRefGoogle Scholar
  46. 46.
    Ye Y, Wang H, Fan R (2010) Org Lett 12:2802–2805CrossRefGoogle Scholar
  47. 47.
    Ye Y, Zheng C, Fan R (2009) Org Lett 11:3156–3159CrossRefGoogle Scholar
  48. 48.
    Sun Y, Gan J, Fan R (2011) Adv Synth Catal 353:1735–1740CrossRefGoogle Scholar
  49. 49.
    Shah M, Taschner MJ, Koser GF, Rach NL (1986) Tetrahedron Lett 27:4557–4560CrossRefGoogle Scholar
  50. 50.
    Braddock DC, Cansell G, Hermitage SA (2006) Chem Commun 2483–2485Google Scholar
  51. 51.
    Braddock DC, Cansell G, Hermitage SA, White AJP (2006) Chem Commun 1442–1444Google Scholar
  52. 52.
    Koser GF, Lodaya JS, Ray DG, Kokil PB (1988) J Am Chem Soc 110:2987–2988CrossRefGoogle Scholar
  53. 53.
    Fujita M, Yoshida Y, Miyata K, Wakisaka A, Sugimura T (2010) Angew Chem Int Ed 49:7068–7071CrossRefGoogle Scholar
  54. 54.
    Shimogaki M, Fujita M, Sugimura T (2013) Eur J Org Chem 7128–7138Google Scholar
  55. 55.
    Moon NG, Harned AM (2013) Tetrahedron Lett 54:2960–2963CrossRefGoogle Scholar
  56. 56.
    Singh FV, Wirth T (2012) Synthesis 44:1171–1177CrossRefGoogle Scholar
  57. 57.
    Hong KB, Johnston JN (2014) Org Lett 16:3804–3807CrossRefGoogle Scholar
  58. 58.
    Fra L, Millán A, Souto JA, Muñiz K (2014) Angew Chem Int Ed 53:7349–7353CrossRefGoogle Scholar
  59. 59.
    Kim HJ, Cho SH, Chang S (2012) Org Lett 14:1424–1427CrossRefGoogle Scholar
  60. 60.
    Zhang X, Yang C, Zhang-Negrerie D, Du Y (2015) Chem Eur J 21:5193–5198CrossRefGoogle Scholar
  61. 61.
    Cochran BM, Michael FE (2008) Org Lett 10:5039–5042CrossRefGoogle Scholar
  62. 62.
    Farid U, Wirth T (2012) Angew Chem Int Ed 51:3462–3465CrossRefGoogle Scholar
  63. 63.
    Zheng Z, Dian L, Yuan Y, Zhang-Negrerie D, Du Y, Zhao K (2014) J Org Chem 79:7451–7458CrossRefGoogle Scholar
  64. 64.
    Dohi T, Takenaga N, Goto A, Maruyama A, Kita Y (2007) Org Lett 9:3129–3132CrossRefGoogle Scholar
  65. 65.
    Gu Y, Xue K (2010) Tetrahedron Lett 51:192–196CrossRefGoogle Scholar
  66. 66.
    Li J, Chen H, Zhang-Negrerie D, Du Y, Zhao K (2013) RSC Adv 3:4311–4320CrossRefGoogle Scholar
  67. 67.
    Wang X, Gallardo-Donaire J, Martin R (2014) Angew Chem Int Ed 53:11084–11087CrossRefGoogle Scholar
  68. 68.
    Matcha K, Narayan R, Antonchick AP (2013) Angew Chem Int Ed 52:7985–7989CrossRefGoogle Scholar
  69. 69.
    Wang Q, Dong X, Xiao T, Zhou L (2013) Org Lett 15:4846–4849CrossRefGoogle Scholar
  70. 70.
    Li L, Deng M, Zheng S-C, Xiong Y-P, Tan B, Liu X-Y (2014) Org Lett 16:504–507CrossRefGoogle Scholar
  71. 71.
    Wang J-Y, Liu S-P, Yu W (2009) Synlett 2529–2533Google Scholar
  72. 72.
    Huang J, Liang Y, Pan W, Yang Y, Dong D (2007) Org Lett 9:5345–5348CrossRefGoogle Scholar
  73. 73.
    Jacquemot G, Menard M-A, L’Homme C, Canesi S (2013) Chem Sci 4:1287–1292CrossRefGoogle Scholar
  74. 74.
    Saito A, Kambara Y, Yagyu T, Noguchi K, Yoshimura A, Zhdankin VV (2015) Adv Synth Catal 357:667–671CrossRefGoogle Scholar
  75. 75.
    Saito A, Taniguchi A, Kambara Y, Hanzawa Y (2013) Org Lett 15:2672–2675CrossRefGoogle Scholar
  76. 76.
    Manna S, Antonchick AP (2014) Angew Chem Int Ed 53:7324–7327CrossRefGoogle Scholar
  77. 77.
    Ackermann L, Lygin AV, Hofmann N (2011) Angew Chem Int Ed 50:6379–6382CrossRefGoogle Scholar
  78. 78.
    Guimond N, Gorelsky SI, Fagnou K (2011) J Am Chem Soc 133:6449–6457CrossRefGoogle Scholar
  79. 79.
    Guimond N, Gouliaras C, Fagnou K (2010) J Am Chem Soc 132:6908–6909CrossRefGoogle Scholar
  80. 80.
    Shiota H, Ano Y, Aihara Y, Fukumoto Y, Chatani N (2011) J Am Chem Soc 133:14952–14955CrossRefGoogle Scholar
  81. 81.
    Wang H, Grohmann C, Nimphius C, Glorius F (2012) J Am Chem Soc 134:19592–19595CrossRefGoogle Scholar
  82. 82.
    Zhong H, Yang D, Wang S, Huang J (2012) Chem Commun 48:3236–3238CrossRefGoogle Scholar
  83. 83.
    Chen ZW, Zhu YZ, Ou JW, Wang YP, Zheng JY (2014) J Org Chem 79:10988–10998CrossRefGoogle Scholar
  84. 84.
    Bérard D, Racicot L, Sabot C, Canesi S (2008) Synlett 1076–1080Google Scholar
  85. 85.
    Bérard D, Giroux M-A, Racicot L, Sabot C, Canesi S (2008) Tetrahedron 64:7537–7544CrossRefGoogle Scholar
  86. 86.
    Bérard D, Jean A, Canesi S (2007) Tetrahedron Lett 48:8238–8241CrossRefGoogle Scholar
  87. 87.
    Guérard KC, Sabot C, Beaulieu MA, Giroux MA, Canesi S (2010) Tetrahedron 66:5893–5901CrossRefGoogle Scholar
  88. 88.
    Fan R, Li W, Ye Y, Wang L (2008) Adv Synth Catal 350:1531–1536CrossRefGoogle Scholar
  89. 89.
    Mendelsohn BA, Lee S, Kim S, Teyssier F, Aulakh VS, Ciufolini MA (2009) Org Lett 11:1539–1542CrossRefGoogle Scholar
  90. 90.
    Jawalekar AM, Reubsaet E, Rutjes FPJT, van Delft FL (2011) Chem Commun 47:3198–3200CrossRefGoogle Scholar
  91. 91.
    Hou Y, Lu S, Liu G (2013) J Org Chem 78:8386–8395CrossRefGoogle Scholar
  92. 92.
    Yoshimura A, Middleton KR, Todora AD, Kastern BJ, Koski SR, Maskaev AV, Zhdankin VV (2013) Org Lett 15:4010–4013CrossRefGoogle Scholar
  93. 93.
    Chen CY, Hu WP, Liu MC, Yan PC, Wang JJ, Chung MI (2013) Tetrahedron 69:9735–9741CrossRefGoogle Scholar
  94. 94.
    Okumura S, Takeda Y, Kiyokawa K, Minakata S (2013) Chem Commun 49:9266–9268CrossRefGoogle Scholar
  95. 95.
    Manna S, Matcha K, Antonchick AP (2014) Angew Chem Int Ed 53:8163–8166CrossRefGoogle Scholar
  96. 96.
    Bodipati N, Peddinti RK (2012) Org Biomol Chem 10:1958–1961CrossRefGoogle Scholar
  97. 97.
    Kawano Y, Togo H (2009) Tetrahedron 65:6251–6256CrossRefGoogle Scholar
  98. 98.
    Wencel-Delord J, Glorius F (2013) Nat Chem 5:369–375CrossRefGoogle Scholar
  99. 99.
    Itoh N, Sakamoto T, Miyazawa E, Kikugawa Y (2002) J Org Chem 67:7424–7428CrossRefGoogle Scholar
  100. 100.
    Samanta R, Lategahn J, Antonchick AP (2012) Chem Commun 48:3194–3196CrossRefGoogle Scholar
  101. 101.
    Kim HJ, Kim J, Cho SH, Chang S (2011) J Am Chem Soc 133:16382–16385CrossRefGoogle Scholar
  102. 102.
    Kantak AA, Potavathri S, Barham RA, Romano KM, DeBoef B (2011) J Am Chem Soc 133:19960–19965CrossRefGoogle Scholar
  103. 103.
    Samanta R, Bauer JO, Strohmann C, Antonchick AP (2012) Org Lett 14:5518–5521CrossRefGoogle Scholar
  104. 104.
    Matcha K, Antonchick AP (2013) Angew Chem Int Ed 52:2082–2086CrossRefGoogle Scholar
  105. 105.
    Antonchick AP, Burgmann L (2013) Angew Chem Int Ed 52:3267–3271CrossRefGoogle Scholar
  106. 106.
    Narayan R, Antonchick AP (2014) Chem Eur J 20:4568–4572CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemical BiologyMax-Planck Institute for Molecular PhysiologyDortmundGermany
  2. 2.Department of Chemistry and Chemical BiologyTechnische Universität DortmundDortmundGermany

Personalised recommendations