Advertisement

Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response

  • GangSeob Jung
  • Zhao Qin
  • Markus J. Buehler
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 369)

Abstract

The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales.

Keywords

Amyloidosis Biological materials Bone Lamin 

Notes

Acknowledgements

We acknowledge support from DOD-PECASE, NSF, and ARO, and additional funding from NIH-U01.

References

  1. 1.
    Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J et al (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738):761–763CrossRefGoogle Scholar
  2. 2.
    Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2011) Deformation mechanisms in nacre. J Mater Res 16(09):2485–2493CrossRefGoogle Scholar
  3. 3.
    Buehler M, Keten S (2010) Colloquium: failure of molecules, bones, and the Earth itself. Rev Mod Phys 82:1459–1487CrossRefGoogle Scholar
  4. 4.
    Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2014) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:D789–D798CrossRefGoogle Scholar
  5. 5.
    Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S et al (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci 107(14):6316–6321CrossRefGoogle Scholar
  6. 6.
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423(6937):293–298CrossRefGoogle Scholar
  7. 7.
    De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I et al (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science 300(5628):2055CrossRefGoogle Scholar
  8. 8.
    Csoka AB, Cao H, Sammak PJ, Constantinescu D, Schatten GP, Hegele RA (2004) Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 41(4):304–308CrossRefGoogle Scholar
  9. 9.
    Primorac D, Rowe DW, Mottes M, Barisić I, Anticević D, Mirandola S et al (2001) Osteogenesis imperfecta at the beginning of bone and joint decade. Croat Med J 42(4):393–415Google Scholar
  10. 10.
    Prockop JD (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64(1):403–434CrossRefGoogle Scholar
  11. 11.
    Byers PH, Wallis GA, Willing MC (1991) Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet 28(7):433–442CrossRefGoogle Scholar
  12. 12.
    Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42(18):7571–7637CrossRefGoogle Scholar
  13. 13.
    Huang YY, Knowles TPJ, Terentjev EM (2009) Strength of nanotubes, filaments, and nanowires from sonication-induced scission. Adv Mater 21(38–39):3945–3948CrossRefGoogle Scholar
  14. 14.
    Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T (2006) Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci 103(27):10271–10276CrossRefGoogle Scholar
  15. 15.
    Buehler MJ, Yung YC (2009) Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat Mater 8(3):175–188CrossRefGoogle Scholar
  16. 16.
    Reches M, Gazit E (2005) Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Isr J Chem 45(3):363–371CrossRefGoogle Scholar
  17. 17.
    Yemini M, Reches M, Rishpon J, Gazit E (2005) Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 5(1):183–186CrossRefGoogle Scholar
  18. 18.
    Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed 47(22):4062–4069CrossRefGoogle Scholar
  19. 19.
    Paparcone R, Keten S, Buehler MJ (2010) Atomistic simulation of nanomechanical properties of Alzheimer’s Aβ(1-40) amyloid fibrils under compressive and tensile loading. J Biomech 43(6):1196–1201CrossRefGoogle Scholar
  20. 20.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75(1):333–366CrossRefGoogle Scholar
  21. 21.
    Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci 107(8):3487–3492CrossRefGoogle Scholar
  22. 22.
    Otzen DE, Kristensen O, Oliveberg M (2000) Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly. Proc Natl Acad Sci 97(18):9907–9912CrossRefGoogle Scholar
  23. 23.
    Wurth C, Guimard NK, Hecht MH (2002) Mutations that reduce aggregation of the Alzheimer’s Aβ42 peptide: an unbiased search for the sequence determinants of Aβ amyloidogenesis. J Mol Biol 319(5):1279–1290CrossRefGoogle Scholar
  24. 24.
    Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G et al (2002) Kinetic partitioning of protein folding and aggregation. Nat Struct Biol 9(2):137–143CrossRefGoogle Scholar
  25. 25.
    Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM (2002) Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci 99(Suppl 4):16419–16426CrossRefGoogle Scholar
  26. 26.
    Schmittschmitt JP, Scholtz JM (2003) The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci 12(10):2374–2378CrossRefGoogle Scholar
  27. 27.
    Jarrett JT, Berger EP, Lansbury PT (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32(18):4693–4697CrossRefGoogle Scholar
  28. 28.
    Jansen R, Dzwolak W, Winter R (2005) Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. Biophys J 88(2):1344–1353CrossRefGoogle Scholar
  29. 29.
    Morris KL, Serpell LC (2012) X-Ray fibre diffraction studies of amyloid fibrils, vol 849, Amyloid proteins. Humana Press, Totowa, pp 121–135Google Scholar
  30. 30.
    Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F et al (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci 99(26):16742–16747CrossRefGoogle Scholar
  31. 31.
    Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci 97(24):13045–13050CrossRefGoogle Scholar
  32. 32.
    Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s ß-amyloid fibrils. Science 307(5707):262–265CrossRefGoogle Scholar
  33. 33.
    Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H et al (2005) 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proc Natl Acad Sci 102(48):17342–17347CrossRefGoogle Scholar
  34. 34.
    Shulha H, Zhai X, Tsukruk VV (2003) Molecular stiffness of individual hyperbranched macromolecules at solid surfaces. Macromolecules 36(8):2825–2831CrossRefGoogle Scholar
  35. 35.
    Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810CrossRefGoogle Scholar
  36. 36.
    Guo S, Akhremitchev BB (2006) Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 7(5):1630–1636CrossRefGoogle Scholar
  37. 37.
    del Mercato LL, Maruccio G, Pompa PP, Bochicchio B, Tamburro AM, Cingolani R et al (2008) Amyloid-like fibrils in elastin-related polypeptides: structural characterization and elastic properties. Biomacromolecules 9(3):796–803CrossRefGoogle Scholar
  38. 38.
    Smith JF, Knowles TPJ, Dobson CM, MacPhee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci 103(43):15806–15811CrossRefGoogle Scholar
  39. 39.
    Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I (2005) Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5(7):1343–1346CrossRefGoogle Scholar
  40. 40.
    Xu Z, Paparcone R, Buehler MJ (2010) Alzheimer’s Aβ(1-40) amyloid fibrils feature size-dependent mechanical properties. Biophys J 98(10):2053–2062CrossRefGoogle Scholar
  41. 41.
    Paparcone R, Buehler MJ (2011) Failure of Aβ(1-40) amyloid fibrils under tensile loading. Biomaterials 32(13):3367–3374CrossRefGoogle Scholar
  42. 42.
    Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat Mater 9(4):359–367CrossRefGoogle Scholar
  43. 43.
    Paparcone R, Pires MA, Buehler MJ (2010) Mutations alter the geometry and mechanical properties of Alzheimer’s Aβ(1-40) amyloid fibrils. Biochemistry 49(41):8967–8977CrossRefGoogle Scholar
  44. 44.
    Kreplak L, Fudge D (2007) Biomechanical properties of intermediate filaments: from tissues to single filaments and back. Bioessays 29(1):26–35CrossRefGoogle Scholar
  45. 45.
    Wang J, Zohar R, McCulloch CA (2006) Multiple roles of α-smooth muscle actin in mechanotransduction. Exp Cell Res 312(3):205–214CrossRefGoogle Scholar
  46. 46.
    Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283(5744):249–255CrossRefGoogle Scholar
  47. 47.
    Hesse M, Magin TM, Weber K (2001) Genes for intermediate filament proteins and the draft sequence of the human genome novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114(14):2569–2575Google Scholar
  48. 48.
    Strelkov SV, Herrmann H, Aebi U (2003) Molecular architecture of intermediate filaments. Bioessays 25(3):243–251CrossRefGoogle Scholar
  49. 49.
    Omary MB, Coulombe PA, McLean WHI (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351(20):2087–2100CrossRefGoogle Scholar
  50. 50.
    Qin Z, Buehler MJ (2012) Computational and theoretical modeling of intermediate filament networks: structure, mechanics and disease. Acta Mech Sinica 28(4):941–950CrossRefGoogle Scholar
  51. 51.
    Uitto J (2002) Searching for clues to premature aging. Trends Mol Med 8(4):155–157CrossRefGoogle Scholar
  52. 52.
    Vassar R, Coulombe PA, Degenstein L, Albers K, Fuchs E (1991) Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell 64(2):365–380CrossRefGoogle Scholar
  53. 53.
    Albers K, Fuchs E (1987) The expression of mutant epidermal keratin cDNAs transfected in simple epithelial and squamous cell carcinoma lines. J Cell Biol 105(2):791–806CrossRefGoogle Scholar
  54. 54.
    Ma L, Yamada S, Wirtz D, Coulombe PA (2001) A ‘hot-spot’ mutation alters the mechanical properties of keratin filament networks. Nat Cell Biol 3(5):503–506CrossRefGoogle Scholar
  55. 55.
    Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279(5350):514–519CrossRefGoogle Scholar
  56. 56.
    Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562–573CrossRefGoogle Scholar
  57. 57.
    Smith TA, Strelkov SV, Burkhard P, Aebi U, Parry DAD (2002) Sequence comparisons of intermediate filament chains: evidence of a unique functional/structural role for coiled-coil segment 1A and linker L1. J Struct Biol 137(1–2):128–145CrossRefGoogle Scholar
  58. 58.
    Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem 73(1):749–789CrossRefGoogle Scholar
  59. 59.
    Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci 103(19):7222–7227CrossRefGoogle Scholar
  60. 60.
    Parbhu AN, Bryson WG, Lal R (1999) Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM. Biochemistry 38(36):11755–11761CrossRefGoogle Scholar
  61. 61.
    Lin Y-C, Broedersz CP, Rowat AC, Wedig T, Herrmann H, MacKintosh FC et al (2010) Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. J Mol Biol 399(4):637–644CrossRefGoogle Scholar
  62. 62.
    Ackbarow T, Sen D, Thaulow C, Buehler MJ (2009) Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS One 4(6):e6015CrossRefGoogle Scholar
  63. 63.
    Strelkov SV, Herrmann H, Geisler N, Lustig A, Ivaninskii S, Zimbelmann R et al (2001) Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J Mol Biol 306(4):773–781CrossRefGoogle Scholar
  64. 64.
    Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R, Aebi U et al (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J 21(6):1255–1266CrossRefGoogle Scholar
  65. 65.
    Aziz A, Hess JF, Budamagunta MS, Voss JC, Kuzin AP, Huang YJ et al (2012) The structure of vimentin linker 1 and rod 1B domains characterized by site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) and X-ray crystallography. J Biol Chem 287(34):28349–28361CrossRefGoogle Scholar
  66. 66.
    Ackbarow T, Buehler MJ (2007) Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. J Mater Sci 42(21):8771–8787CrossRefGoogle Scholar
  67. 67.
    Qin Z, Kreplak L, Buehler MJ (2009) Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS One 4(10):e7294CrossRefGoogle Scholar
  68. 68.
    Fudge DS, Gardner KH, Forsyth VT, Riekel C, Gosline JM (2003) The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys J 85(3):2015–2027CrossRefGoogle Scholar
  69. 69.
    Kreplak L, Doucet J, Dumas P, Briki F (2004) New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophys J 87(1):640–647CrossRefGoogle Scholar
  70. 70.
    Panorchan P, Schafer BW, Wirtz D, Tseng Y (2004) Nuclear envelope breakdown requires overcoming the mechanical integrity of the nuclear lamina. J Biol Chem 279(42):43462–43467CrossRefGoogle Scholar
  71. 71.
    Wilson KL, Zastrow MS, Lee KK (2001) Lamins and disease. Cell 104(5):647–650Google Scholar
  72. 72.
    Rowat AC, Lammerding J, Herrmann H, Aebi U (2008) Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 30(3):226–236CrossRefGoogle Scholar
  73. 73.
    Wilson KL, Berk JM (2010) The nuclear envelope at a glance. J Cell Sci 123(12):1973–1978CrossRefGoogle Scholar
  74. 74.
    Qin Z, Kalinowski A, Dahl KN, Buehler MJ (2011) Structure and stability of the lamin A tail domain and HGPS mutant. J Struct Biol 175(3):425–433CrossRefGoogle Scholar
  75. 75.
    Verstraeten VLRM, Ji JY, Cummings KS, Lee RT, Lammerding J (2008) Increased mechanosensitivity and nuclear stiffness in Hutchinson–Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell 7(3):383–393CrossRefGoogle Scholar
  76. 76.
    Misof K, Landis WJ, Klaushofer K, Fratzl P (1997) Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest 100(1):40–45CrossRefGoogle Scholar
  77. 77.
    Orgel JPRO, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci 103(24):9001–9005CrossRefGoogle Scholar
  78. 78.
    Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ et al (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58(3–5):77–116CrossRefGoogle Scholar
  79. 79.
    Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009CrossRefGoogle Scholar
  80. 80.
    Gautieri A, Buehler MJ, Redaelli A (2009) Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. J Mech Behav Biomed Mater 2(2):130–137CrossRefGoogle Scholar
  81. 81.
    Currey JD (1990) Physical characteristics affecting the tensile failure properties of compact bone. J Biomech 23(8):837–844CrossRefGoogle Scholar
  82. 82.
    Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4):1737–1746CrossRefGoogle Scholar
  83. 83.
    Currey J (2001) Sacrificial bonds heal bone. Nature 414:699CrossRefGoogle Scholar
  84. 84.
    Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600CrossRefGoogle Scholar
  85. 85.
    Nair AK, Gautieri A, Chang S-W, Buehler MJ (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 4:1724CrossRefGoogle Scholar
  86. 86.
    Gautieri A, Uzel S, Vesentini S, Redaelli A, Buehler MJ (2009) Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. Biophys J 97(3):857–865CrossRefGoogle Scholar
  87. 87.
    Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle X-ray scattering. J Clin Invest 97(2):396–402CrossRefGoogle Scholar
  88. 88.
    Qin Z, Gautieri A, Nair AK, Inbar H, Buehler MJ (2012) Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface. Langmuir 28(4):1982–1992CrossRefGoogle Scholar
  89. 89.
    Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48(6):407–413CrossRefGoogle Scholar
  90. 90.
    Mostafa NY, Brown PW (2007) Computer simulation of stoichiometric hydroxyapatite: structure and substitutions. J Phys Chem Solid 68(3):431–437CrossRefGoogle Scholar
  91. 91.
    de Leeuw NH, Bowe JR, Rabone JAL (2007) A computational investigation of stoichiometric and calcium-deficient oxy- and hydroxy-apatites. Faraday Discuss 134:195–214CrossRefGoogle Scholar
  92. 92.
    Raiteri P, Gale JD (2010) Water is the key to nonclassical nucleation of amorphous calcium carbonate. J Am Chem Soc 132(49):17623–17634CrossRefGoogle Scholar
  93. 93.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  94. 94.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  95. 95.
    Paparcone R, Buehler MJ (2010) Failure of Alzheimer’s Aβ(1-40) amyloid nanofibrils under compressive loading. JOM 62(4):64–68CrossRefGoogle Scholar
  96. 96.
    Deshpande AS, Beniash E (2008) Bioinspired synthesis of mineralized collagen fibrils. Cryst Growth Des 8(8):3084–3090CrossRefGoogle Scholar
  97. 97.
    Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2012) Osteogenesis imperfecta mutations lead to local tropocollagen unfolding and disruption of H-bond network. RSC Adv 2:3890–3896CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations