Interplay Between Mechanochemistry and Sonochemistry

  • Pedro CintasEmail author
  • Giancarlo CravottoEmail author
  • Alessandro Barge
  • Katia Martina
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 369)


Ultrasonic irradiation-based mechanochemical strategies have recently been the subject of intensive investigation because of the advantages they offer. These include simplicity, energy savings and wide applicability. Traditional areas of sonoprocessing such as cleaning, efficient mixing and solid activation have been extended to both macromolecular and micro/nanostructures, some of which are biologically significant, ultrasound-responsive actuators and crystal design, among others. Unlike conventional mechanochemical protocols, which require little solvent usage if any at all, mechanical (and chemical) effects promoted by ultrasound are observed in a liquid medium. Tensile forces, which share similarities with solid mechanochemistry, are generated by virtue of nonlinear effects, notably cavitation, when high-amplitude waves propagate in a fluid. This work aims to provide insight into some recent developments in the multifaceted field of sono-mechanochemistry using various examples that illustrate the role of ultrasonic activation, which is capable of boosting hitherto sterile transformations and inventing new crafts in applied chemistry. After a preliminary discussion of acoustics, which is intended to provide a mechanistic background, we mainly focus on experimental developments, while we often mention emerging science and occasionally delve into theoretical models and force simulations.


Cavitation Mechanical effects Mechanotransduction Self-assembly Streaming Ultrasound-responsive systems 



Financial support from the following agencies is gratefully acknowledged: University of Turin (fondi ricerca locale 2013) and the Junta de Extremadura-FEDER (Ayuda a Grupos Consolidados, Grant No. GR10049). The authors are also deeply indebted to Dr. David Fernández-Rivas (University of Twente, The Netherlands, and BubClean) for his stimulating feedback and permission to reproduce Fig. 4.


  1. 1.
    Gooberman GL (1990) Sound. In: Gwinn RP, Norton PB, Goetz PW (eds) The new encyclopaedia britannica vol. 27, Encyclopaedia Britannica Inc, Chicago, pp 629–631 (ultrasonics); entire chapter on sound, pp 604–632Google Scholar
  2. 2.
    Rossing TD (2007) Introduction to acoustics. In: Rossing TD (ed) Springer handbook of acoustics. Springer, New York, pp 1–6CrossRefGoogle Scholar
  3. 3.
    Cravotto G, Cintas P (2011) Introduction to sonochemistry: a historical and conceptual overview. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound and sonochemistry. CRC/Taylor & Francis, Boca Raton, pp 23–40, Ch 2Google Scholar
  4. 4.
    Mason TJ, Lorimer JP (2002) Applied sonochemistry. The uses of power ultrasound in chemistry and processing. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Cravotto G, Cintas P (2006) Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem Soc Rev 35:180–196CrossRefGoogle Scholar
  6. 6.
    Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798CrossRefGoogle Scholar
  7. 7.
    Cravotto G, Cintas P (2012) Harnessing mechanochemical effects with ultrasound-induced reactions. Chem Sci 3:295–307CrossRefGoogle Scholar
  8. 8.
    Cravotto G, Calcio Gaudino E, Cintas P (2013) On the mechanochemical activation by ultrasound. Chem Soc Rev 42:7521–7534CrossRefGoogle Scholar
  9. 9.
    Suslick KS (2014) Mechanochemistry and sonochemistry: concluding remarks. Faraday Discuss 170. doi:10.1039/c4fd00148fGoogle Scholar
  10. 10.
    May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506CrossRefGoogle Scholar
  11. 11.
    Wiggins KM, Brantley JN, Bielawski CW (2013) Methods for activating and characterizing mechanically responsive polymers. Chem Soc Rev 42:7130–7147CrossRefGoogle Scholar
  12. 12.
    Brantley JN, Wiggins KM, Bielawski CW (2013) Polymer mechanochemistry: the design and study of mechanophores. Polym Int 62:2–12CrossRefGoogle Scholar
  13. 13.
    Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059CrossRefGoogle Scholar
  14. 14.
    Ariga K, Mori T, Hill JP (2012) Mechanical control of nanomaterials and nanosystems. Adv Mater 24:158–176CrossRefGoogle Scholar
  15. 15.
    Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567CrossRefGoogle Scholar
  16. 16.
    Sander JRG, Zeiger BW, Suslick KS (2014) Sonocrystallization and sonofragmentation. Ultrason Sonochem 21:1908–1915CrossRefGoogle Scholar
  17. 17.
    Huang Z, Boulatov R (2011) Chemomechanics: chemical kinetics for multiscale phenomena. Chem Soc Rev 40:2359–2384CrossRefGoogle Scholar
  18. 18.
    Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487CrossRefGoogle Scholar
  19. 19.
    Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009. doi: 10.1126/science.1232009 CrossRefGoogle Scholar
  20. 20.
    Brunet T, Leng J, Mondain-Monval O (2013) Soft acoustic metamaterials. Science 342:323–324CrossRefGoogle Scholar
  21. 21.
    Maldovan M (2013) Sound and heat revolutions in phononics. Nature 503:209–217CrossRefGoogle Scholar
  22. 22.
    Gustafsson MV, Aref T, Kockum AF, Ekström MK, Johansson G, Delsing P (2014) Propagating phonons coupled to an artificial atom. Science 346:207–211CrossRefGoogle Scholar
  23. 23.
    Humphrey VF (2007) Ultrasound and matter-physical interactions. Prog Biophys Mol Biol 93:195–211CrossRefGoogle Scholar
  24. 24.
    Lepoint T, Lepoint-Mullie F (1998) Theoretical bases. In: Luche JL (ed) Synthetic organic sonochemistry. Plenum, New York, pp 1–49, Ch 1CrossRefGoogle Scholar
  25. 25.
    Nyborg WL (1998) Acoustic streaming. In: Hamilton MF, Blackstock DT (eds) Nonlinear acoustics. Academic, San Diego, pp 207–228Google Scholar
  26. 26.
    Valverde JM (2013) Acoustic streaming in gas-fluidized beds of small particle. Soft Matter 9:8792–8814CrossRefGoogle Scholar
  27. 27.
    Mason TJ, Peters D (2002) Practical sonochemistry. Power ultrasound uses and applications, 2nd edn. Woodhead Publishing, Oxford, pp 1–46Google Scholar
  28. 28.
    Fernández Rivas D (2012) Taming acoustic cavitation, PhD Thesis. University of Twente, The Netherlands, Ch 2, p 10. doi:10.3990/1.9789036534192Google Scholar
  29. 29.
    Mason TJ, Cobley AJ, Graves JE, Morgan D (2011) New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason Sonochem 18:226–230CrossRefGoogle Scholar
  30. 30.
    Portenlänger G, Heusinger H (1997) The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrason Sonochem 4:127–130CrossRefGoogle Scholar
  31. 31.
    Tran KVB, Kimura T, Kondo T, Koda S (2014) Quantification of frequency dependence of mechanical effects induced by ultrasound. Ultrason Sonochem 21:716–721CrossRefGoogle Scholar
  32. 32.
    Tudela I, Sáez V, Esclapez MD, Díez-García MI, Bonete P, González-García J (2014) Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review. Ultrason Sonochem 21:909–919CrossRefGoogle Scholar
  33. 33.
    Son Y, Lim M, Ashokkumar M, Khim J (2011) Geometric optimization of sonoreactors for the enhancement of sonochemical activity. J Phys Chem C 115:4096–4103CrossRefGoogle Scholar
  34. 34.
    Merouani S, Ferkous H, Hamdaoui O, Rezgui Y, Guemini M (2015) A method for predicting the number of active bubbles in sonochemical reactors. Ultrason Sonochem 22:51–58CrossRefGoogle Scholar
  35. 35.
    Alvarez M, Friend JR, Yeo LY (2008) Surface vibration induced spatial ordering of periodic polymeric patterns on a substrate. Langmuir 24:10629–10632CrossRefGoogle Scholar
  36. 36.
    Friend JR, Yeo LY, Arifin DR, Mechler A (2008) Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization. Nanotechnology 19:145301CrossRefGoogle Scholar
  37. 37.
    Shilton R, Tan MK, Yeo LY, Friend JR (2008) Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J Appl Phys 104:014910CrossRefGoogle Scholar
  38. 38.
    Wu C, Zaitsev VY, Zhigilei LV (2013) Acoustic enhancement of surface diffusion. J Phys Chem C 117:9252–9258CrossRefGoogle Scholar
  39. 39.
    Kelling S, Mitrelias T, Matsumoto Y, Ostanin VP, King DA (1997) Acoustic wave enhancement of the catalytic oxidation of carbon monoxide over Pt{110}. J Chem Phys 107:5609–5612CrossRefGoogle Scholar
  40. 40.
    Inoue Y (2007) Effects of acoustic waves-induced dynamic lattice distortion on catalytic and adsorptive properties of metal, alloy and metal oxide surfaces. Surf Sci Rep 62:305–336CrossRefGoogle Scholar
  41. 41.
    Zinovev AV, Veryovkin LV, Moore JF, Pellin MJ (2007) Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils. Anal Chem 79:8232–8241CrossRefGoogle Scholar
  42. 42.
    Dow AM, Wittrig AR, Kenttämaa HI (2012) Laser-induced acoustic desorption (LIAD) mass spectrometry. Eur J Mass Spectrom 18:77–92CrossRefGoogle Scholar
  43. 43.
    Lipeles R, Kivelson D (1980) Experimental studies of acoustically induced birefringence. J Chem Phys 72:6199–6208CrossRefGoogle Scholar
  44. 44.
    Nomura H, Matsuoka T, Koda S (2004) Ultrasonically induced birefringence in polymer solution. Pure Appl Chem 76:97–104CrossRefGoogle Scholar
  45. 45.
    Khunsin W, Amann A, Kocher-Oberlehner G, Romanov SG, Pullteap S, Seat HC, O’Reilly EP, Zentel R, Torres CMS (2012) Noise-assisted crystallization of opal films. Adv Funct Mater 22:1812–1821CrossRefGoogle Scholar
  46. 46.
    Avetissov I, Sadovskiy A, Belov S, Khomyakov A, Rekunov K, Kostikov V, Sukhanova E (2013) Thermodynamic features of axial vibrational control technique for crystal growth from the melt. CrystEngComm 15:2213–2219CrossRefGoogle Scholar
  47. 47.
    Ende DJA, Anderson SR, Salan JS (2014) Development and scale-up of cocrystals using resonant acoustic mixing. Org Process Res Dev 18:331–341CrossRefGoogle Scholar
  48. 48.
    Liu C, Wu P, Wang L (2013) Particle climbing along a vibrating tube: a vibrating tube that acts as a pump for lifting granular materials from a silo. Soft Matter 9:4762–4766CrossRefGoogle Scholar
  49. 49.
    Cravotto G, Cintas P (2009) Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem Soc Rev 38:2684–2697CrossRefGoogle Scholar
  50. 50.
    Yu X, Chen L, Zhang M, Yi T (2014) Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem Soc Rev 43:5346–5371CrossRefGoogle Scholar
  51. 51.
    Ye E, Chee PL, Prasad A, Fang X, Owh C, Yeo VJJ, Loh XJ (2014) Supramolecular soft biomaterials for biomedical applications. Mater Today 17:194–202CrossRefGoogle Scholar
  52. 52.
    Naota T, Koori H (2005) Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. J Am Chem Soc 127:9324–9325CrossRefGoogle Scholar
  53. 53.
    Bardelang D, Zaman MB, Moudrakovski IL, Pawsey S, Margeson JC, Wang D, Wu X, Ripmeester JA, Ratcliffe CI, Yu K (2008) Interfacing supramolecular gels and quantum dots with ultrasound: smart photoluminescent dipeptide gels. Adv Mater 20:4517–4520CrossRefGoogle Scholar
  54. 54.
    Anderson KM, Day GM, Paterson MJ, Byrne P, Clarke N, Steed JW (2008) Structure calculations of an elastic hydrogel from sonication of rigid small molecule components. Angew Chem Int Ed 47:1058–1062CrossRefGoogle Scholar
  55. 55.
    Ke D, Zhan C, Li ADQ, Yao J (2011) Morphological transformation between nanofibers and vesicles in a controllable bipyridine-tripeptide self-assembly. Angew Chem Int Ed 50:3715–3719CrossRefGoogle Scholar
  56. 56.
    Zhang M, Jiang M, Meng L, Liu K, Mao Y, Yi T (2013) Fabrication of multiplicate nanostructures via manipulation of the self-assembly between an adamantine based gelator and cyclodextrin. Soft Matter 9:9449–9454CrossRefGoogle Scholar
  57. 57.
    Datskos P, Chen J, Sharma J (2014) Synthesis of very small diameter silica nanofibers using sound waves. Chem Commun 50:7277–7279CrossRefGoogle Scholar
  58. 58.
    Koenig M, Torres T, Barone V, Brancato G, Guldi DM, Bottari G (2014) Ultrasound-induced transformation of fluorescent organic nanoparticles from a molecular rotor into rhomboidal nanocrystals with enhanced emission. Chem Commun 50:12955–12958CrossRefGoogle Scholar
  59. 59.
    Sun H, Zhang Y, Yan W, Chen W, Lan Q, Liu S, Jiang L, Chi Z, Chen X, Xu J (2014) A novel ultrasound-sensitive mechanofluorochromic AIE-compound with remarkable blue-shifting and enhanced emission. J Mater Chem C 2:5812–5817CrossRefGoogle Scholar
  60. 60.
    Kostarelos K, Novoselov KS (2014) Exploring the interface of graphene and biology. Science 344:261–263CrossRefGoogle Scholar
  61. 61.
    Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1226419. doi: 10.1126/science.1226419 CrossRefGoogle Scholar
  62. 62.
    Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modification of graphene-like materials. Chem Eur J 16:5246–5259CrossRefGoogle Scholar
  63. 63.
    Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczharski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630CrossRefGoogle Scholar
  64. 64.
    Buzaglo M, Shtein M, Kober S, Lovrincic R, Vilan A, Regev O (2013) Critical parameters in exfoliating graphite into graphene. Phys Chem Chem Phys 15:4428–4435CrossRefGoogle Scholar
  65. 65.
    Sesis A, Hodnett M, Memoli G, Wain AJ, Jurewicz I, Dalton AB, Casey JD (2013) Influence of acoustic cavitation on the controlled ultrasonic dispersions of carbon nanotubes. J Phys Chem B 117:15141–15150Google Scholar
  66. 66.
    Bracamonte MV, Lacconi GI, Urreta SE, Foa Torres LEF (2014) On the nature of defects in liquid-phase exfoliated graphene. J Phys Chem C 118:15455–15459CrossRefGoogle Scholar
  67. 67.
    Janowska I, Chizari K, Ersen O, Zafeiratos S, Soubane D, Da Costa V, Speisser V, Boeglin C, Houllé M, Bégin D, Plee D, Ledoux MJ, Pham-Huu C (2010) Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res 3:126–137CrossRefGoogle Scholar
  68. 68.
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRefGoogle Scholar
  69. 69.
    Cravotto G, Garella D, Calcio Gaudino E, Turci F, Bertarione S, Agostini G, Cesano F, Scarano D (2011) Rapid purification/oxidation of multi-walled carbon nanotubes under 300 kHz-ultrasound and microwave irradiation. New J Chem 35:915–919CrossRefGoogle Scholar
  70. 70.
    Zheng J, Liu HT, Wu B, Di CA, Guo YL, Wu T, Yu G, Liu YQ, Zhu DB (2012) Production of graphite chloride and bromide using microwave sparks. Sci Rep 2:662. doi: 10.1038/srep00662 Google Scholar
  71. 71.
    Economopoulos SP, Rotas G, Miyata Y, Shinohara H, Tagmatarchis N (2010) Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene. ACS Nano 4:7499–7507CrossRefGoogle Scholar
  72. 72.
    Kissel P, Murray DJ, Wulftange WJ, Catalano VJ, King BT (2014) A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat Chem 6:774–778CrossRefGoogle Scholar
  73. 73.
    Kory MJ, Wörle M, Weber T, Payamyar P, van de Poll SW, Dshemuchadse J, Trapp N, Schlüter AD (2014) Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat Chem 6:779–784CrossRefGoogle Scholar
  74. 74.
    Encina MV, Lissi E, Sarasúa M, Garagallo L, Radic D (1980) Ultrasonic degradation of polyvinylpyrrolidone: effect of peroxide linkages. J Polym Sci Polym Lett Ed 18:757–760CrossRefGoogle Scholar
  75. 75.
    Berkowski KL, Potisek SL, Hickenboth CR, Moore JS (2005) Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethylene glycol). Macromolecules 38:8975–8978CrossRefGoogle Scholar
  76. 76.
    Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427CrossRefGoogle Scholar
  77. 77.
    Luty T, Ordon P, Eckhardt CJ (2002) A model for mechanochemical transformations: applications to molecular hardness, instabilities, and shock initiation of reaction. J Chem Phys 117:1775–1785CrossRefGoogle Scholar
  78. 78.
    Tian Y, Boulatov R (2013) Comparison of the predictive performance of the Bell-Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem Commun 49:4187–4189CrossRefGoogle Scholar
  79. 79.
    Nguyen TQ, Liang QZ, Kausch HH (1997) Kinetics of ultrasonic and transient elongational flow degradation: a comparative study. Polymer 38:3783–3793CrossRefGoogle Scholar
  80. 80.
    Chen Y, Spiering AJH, Karthikeyan S, Peters GWM, Meijer EW, Sijbesma RP (2012) Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat Chem 4:559–562CrossRefGoogle Scholar
  81. 81.
    Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martinez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623–628CrossRefGoogle Scholar
  82. 82.
    Larsen MB, Boydston AJ (2014) Successive mechanochemical activation and small molecule release in an elastomeric material. J Am Chem Soc 136:1276–1279CrossRefGoogle Scholar
  83. 83.
    Gossweiler GR, Hewage GB, Soriano G, Wang Q, Welshofer GW, Zhao X, Craig SL (2014) Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett 3:216–219CrossRefGoogle Scholar
  84. 84.
    Diesendruck CE, Zhu L, Moore JS (2014) Alkyne mechanochemistry: putative activation by transoidal bending. Chem Commun 50:13235–13238CrossRefGoogle Scholar
  85. 85.
    McNutt M (2014) Editorial expression of concern. Science 344:1460CrossRefGoogle Scholar
  86. 86.
    Halford B (2014) Texas student falsified data. Chem Eng News December 15 issue, p 9Google Scholar
  87. 87.
    Li J, Shiraki T, Hu B, Wright RAE, Zhao B, Moore JS (2014) Mechanophore activation at heterointerfaces. J Am Chem Soc 136:15925–15928CrossRefGoogle Scholar
  88. 88.
    Balkenende DWR, Coulibaly S, Balog S, Simon YC, Fiore GL, Weder C (2014) Mechanochemistry with metallosupramolecular polymers. J Am Chem Soc 136:10493–10498CrossRefGoogle Scholar
  89. 89.
    Tsuda A, Nagamine Y, Watanabe R, Nagatani Y, Ishii N, Aida T (2010) Spectroscopic visualization of sound-induced liquid vibrations using a supramolecular nanofibre. Nat Chem 2:977–983CrossRefGoogle Scholar
  90. 90.
    Hotta Y, Suiko S, Motoyanagi J, Onishi H, Ihozaki T, Arakawa R, Tsuda A (2014) A physical operation of hydrodynamic orientation of an azobenzene supramolecular assembly with light and sound. Chem Commun 50:5615–5618CrossRefGoogle Scholar
  91. 91.
    O’Brien WD Jr (2007) Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 93:212–255CrossRefGoogle Scholar
  92. 92.
    Kennedy JE (2005) High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5:321–327CrossRefGoogle Scholar
  93. 93.
    Yu T, Zhang Y, He H, Zhou S, Liu Y, Huang P (2011) Anticancer potency of cytotoxic drugs after exposure to high-intensity focused ultrasound in the presence of microbubbles and hematoporphyrin. Mol Pharmaceutics 8:1408–1415CrossRefGoogle Scholar
  94. 94.
    Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organogelles to organs. Science 335:1458–1462CrossRefGoogle Scholar
  95. 95.
    Guo C, Jin Y, Dai Z (2014) Multifunctional ultrasound contrast agents for imaging guided photothermal therapy. Bioconjugate Chem 25:840–854CrossRefGoogle Scholar
  96. 96.
    Alvarez-Lorenzo C, Concheiro A (2014) Smart drug delivery systems: from fundamentals to the clinic. Chem Commun 50:7743–7765CrossRefGoogle Scholar
  97. 97.
    Tong R, Lu X, Xia H (2014) A facile mechanophore functionalization of an amphiphilic block copolymer towards remote ultrasound and redox dual stimulus responsiveness. Chem Commun 50:3575–3578CrossRefGoogle Scholar
  98. 98.
    Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 60:1193–1208CrossRefGoogle Scholar
  99. 99.
    Kang M, Huang G, Leal C (2014) Role of lipid polymorphism in acoustically sensitive liposomes. Soft Matter 10:8846–8854CrossRefGoogle Scholar
  100. 100.
    Santo KP, Berkowitz ML (2014) Shock wave induced collapse of arrays of nanobubbles located next to a lipid membrane: coarse-grained computer simulations. J Phys Chem B. doi: 10.1021/jp505720d Google Scholar
  101. 101.
    Podaru G, Ogden S, Baxter A, Shrestha T, Ren S, Thapa P, Dani RK, Wang H, Basel MT, Prakash P, Bossmann SH, Chikan V (2014) Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation. J Phys Chem B 118:11715–11722CrossRefGoogle Scholar
  102. 102.
    Toublan FJJ, Boppart S, Suslick KS (2006) Tumor targeting by surface-modified protein microspheres. J Am Chem Soc 128:3472–3473CrossRefGoogle Scholar
  103. 103.
    Baram-Pinto D, Shukla S, Richman M, Gedanken A, Rahimipour S, Sarid R (2012) Surface-modified protein nanospheres as potential antiviral agents. Chem Commun 48:8359–8361CrossRefGoogle Scholar
  104. 104.
    Skirtenko N, Tzanov T, Gedanken A, Rahimipour S (2010) One-step preparation of multifunctional chitosan microspheres by a simple sonochemical method. Chem Eur J 16:562–567CrossRefGoogle Scholar
  105. 105.
    Erriu M, Blus C, Szmukler-Moncler S, Buogo S, Levi R, Barbato G, Madonnaripa D, Denotti G, Piras V, Orrù G (2014) Microbial biofilm modulation by ultrasound: current concepts and controversies. Ultrason Sonochem 21:15–22CrossRefGoogle Scholar
  106. 106.
    Ensing GT, Roeder BL, Nelson JL, van Horn JR, van der Mei HC, Busscher HJ, Pitt WG (2005) Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo. J Appl Microbiol 99:443–448CrossRefGoogle Scholar
  107. 107.
    Bigelow TA, Northagen T, Hill TM, Sailer FC (2009) The destruction of Escherichia coli biofilms using high-intensity focused ultrasound. Ultrasound Med Biol 35:1026–1031CrossRefGoogle Scholar
  108. 108.
    Miller DL (1976) Instrument for microscopical observation of the biophysical effects of ultrasound. J Acoust Soc Am 60:1203–1212CrossRefGoogle Scholar
  109. 109.
    Iida Y, Tuziuti T, Yasui K, Kozuka T, Towata A (2008) Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field. Ultrason Sonochem 15:995–1000CrossRefGoogle Scholar
  110. 110.
    Fernandez Rivas D, Verhaagen B, Seddon JRT, Zijlstra AG, Jiang LM, van der Sluis LWM, Versluis M, Lohse D, Gardeniers HJGE (2012) Localized removal of layers of metal, polymer, or biomaterial by cavitating microbubbles. Biomicrofluidics 6:034114CrossRefGoogle Scholar
  111. 111.
    Fernández Rivas D (2012) Taming acoustic cavitation, PhD thesis, University of Twente, The Netherlands, Ch 7, pp 119–141Google Scholar
  112. 112.
    Ohhashi Y, Kihara M, Naiki H, Goto Y (2005) Ultrasonication-induced amyloid fibril formation of β2-microglobulin. J Biol Chem 280:32843–32848CrossRefGoogle Scholar
  113. 113.
    Carulla N, Caddy GL, Hall DR, Zurdo J, Gairí M, Feliz M, Giralt E, Robinson CV, Dobson CM (2005) Molecular recycling within amyloid fibrils. Nature 436:554–558CrossRefGoogle Scholar
  114. 114.
    Chatani E, Lee YH, Yagi H, Yoshimura Y, Naiki H, Goto Y (2009) Ultrasonication-dependent production and breakdown lead to minimum-sized amyloid fibrils. Proc Natl Acad Sci USA 106:11119–11124CrossRefGoogle Scholar
  115. 115.
    Okumura H, Itoh SG (2014) Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations. J Am Chem Soc 136:10549–10552CrossRefGoogle Scholar
  116. 116.
    Lee M, Baek I, Chang HJ, Yoon G, Na S (2014) The bond survival time variation of polymorphic amyloid fibrils in the mechanical insight. Chem Phys Lett 600:68–72CrossRefGoogle Scholar
  117. 117.
    Tanaka K, Yamamoto K, Kadokawa JI (2014) Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water. Carbohydr Res 398:25–30CrossRefGoogle Scholar
  118. 118.
    Editorial (2014) Mechanobiology in harness. Nat Mater 13:531Google Scholar
  119. 119.
    Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape–the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol. doi: 10.1038/nrm3903 Google Scholar
  120. 120.
    Alves-Pereira M, Castelo Branco NAA (2007) Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling. Prog Biophys Mol Biol 93:256–279CrossRefGoogle Scholar
  121. 121.
    Guix M, Mayorga-Martinez CC, Merkoçi A (2014) Nano/micromotors in (bio)chemical science applications. Chem Rev 114:6285–6322CrossRefGoogle Scholar
  122. 122.
    Gao W, Wang J (2014) The environmental impact of micro/nanomachines: a review. ACS Nano 8:3170–3180CrossRefGoogle Scholar
  123. 123.
    Hu J, Tay C, Cai Y, Du J (2005) Controlled rotation of sound-trapped small particles by an acoustic needle. Appl Phys Lett 87:094104CrossRefGoogle Scholar
  124. 124.
    Shilton RJ, Glass NR, Chan P, Yeo LY, Friend JR (2011) Rotational microfluidic motor for on-chip microcentrifugation. Appl Phys Lett 98:254103CrossRefGoogle Scholar
  125. 125.
    Wang W, Castro LA, Hoyos M, Mallouk TE (2012) Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6:6122–6132CrossRefGoogle Scholar
  126. 126.
    Takatori SC, Brady JF (2014) Swim stress, motion, and deformation of active matter: effect of an external field. Soft Matter 10:9433–9445CrossRefGoogle Scholar
  127. 127.
    Xu T, Soto F, Gao W, Garcia-Gradilla V, Li J, Zhang X, Wang J (2014) Ultrasound-modulated bubble propulsion of chemically powered microengines. J Am Chem Soc 136:8552–8555CrossRefGoogle Scholar
  128. 128.
    Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y, Wang J (2013) Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7:9232–9240CrossRefGoogle Scholar
  129. 129.
    Ahmed S, Wang W, Mair LO, Fraleigh RD, Li S, Castro LA, Hoyos M, Huang TJ, Mallouk TE (2013) Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29:16113–16118CrossRefGoogle Scholar
  130. 130.
    Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE (2014) Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed 53:3201–3204CrossRefGoogle Scholar
  131. 131.
    Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J (2012) Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed 51:7519–7522CrossRefGoogle Scholar
  132. 132.
    De Silva L, Yao L, Xu S (2014) Mechanically resolving noncovalent bonds using acoustic radiation force. Chem Commun 50:10786–10789CrossRefGoogle Scholar
  133. 133.
    Valverde JM, Ebri JMP, Quintanilla MAS (2013) Acoustic streaming enhances the multicyclic CO2 capture of natural limestone at Ca-looping conditions. Env Sci Technol 47:9538–9544CrossRefGoogle Scholar
  134. 134.
    Valverde JM, Raganati F, Quintanilla MAS, Ebri JMP, Ammendola P, Chirone R (2013) Enhancement of CO2 capture at Ca-looping conditions by high-intensity acoustic fields. Appl Energy 111:538–549CrossRefGoogle Scholar
  135. 135.
    Gallego-Juarez JA, Riera-Franco de Sarabia E, Rodriguez-Corral G, Hoffmann TL, Galvez-Moraleda JC, Rodriguez-Maroto JJ, Gomez-Moreno FJ, Bahillo-Ruiz A, Martin-Espigares M, Acha M (1999) Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants. Env Sci Technol 33:3843–3849CrossRefGoogle Scholar
  136. 136.
    Fernandez Rivas D, Betjes J, Verhaagen B, Bouwhuis W, Bor TC, Lohse D, Gardeniers HJGE (2013) Erosion evolution in mono-crystalline silicon surfaces caused by acoustic cavitation bubbles. J Appl Phys 113:064902CrossRefGoogle Scholar
  137. 137.
    Virot M, Pflieger R, Skorb EV, Ravaux J, Zemb T, Möhwald H (2012) Crystalline silicon under acoustic cavitation: from mechanoluminescence to amorphization. J Phys Chem C 116:15493–15499CrossRefGoogle Scholar
  138. 138.
    Ball P (2009) Flow–nature’s patterns. A tapestry in three parts. Oxford University Press, pp 1–20, Ch 1Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Departamento de Química Orgánica e InorgánicaUniversidad de ExtremaduraBadajozSpain
  2. 2.Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and SurfacesUniversity of TurinTurinItaly

Personalised recommendations