Halogen Bonding in Solution

  • Anna-Carin C. Carlsson
  • Alberte X. Veiga
  • Máté Erdélyi
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 359)

Abstract

Because of its expected applicability for modulation of molecular recognition phenomena in chemistry and biology, halogen bonding has lately attracted rapidly increasing interest. As most of these processes proceed in solution, the understanding of the influence of solvents on the interaction is of utmost importance. In addition, solution studies provide fundamental insights into the nature of halogen bonding, including, for example, the relative importance of charge transfer, dispersion, and electrostatics forces. Herein, a selection of halogen bonding literature is reviewed with the discussion focusing on the solvent effect and the electronic characteristics of halogen bonded complexes. Hence, charged and neutral systems together with two- and three-center bonds are presented in separate sub-sections. Solvent polarity is shown to have a slight stabilizing effect on neutral, two-center halogen bonds while strongly destabilizes charged, two-center complexes. It does not greatly influence the geometry of three-center halogen bonds, even though polar solvents facilitate dissociation of the counter-ion of charged three-center bonds. The charged three-center bonds are strengthened by increased environment polarity. Solvents possessing hydrogen bond donor functionalities efficiently destabilize all types of halogen bonds, primarily because of halogen vs hydrogen bond competition. A purely electrostatic model is insufficient for the description of halogen bonds in polar systems whereas it may give reasonable correlation to experimental data obtained in noninteracting, apolar solvents. Whereas dispersion plays a significant role for neutral, two-center halogen bonds, charged halogen bond complexes possess a significant charge transfer characteristic.

Keywords

Halogen bond Solution Solvation Solvent effect 

References

  1. 1.
    Guthrie F (1863) On the iodide of iodammonium. J Chem Soc 16:239–244Google Scholar
  2. 2.
    Lachman A (1903) A probable cause of the different colors of iodine solutions. J Am Chem Soc 25:50–55Google Scholar
  3. 3.
    Kleinberg J, Davidson AW (1948) The nature of iodine solutions. Chem Rev 42:601–609Google Scholar
  4. 4.
    Walker OJ (1935) Absorption spectra of iodine solutions and the influence of the solvent. Trans Faraday Soc 31:1432–1438Google Scholar
  5. 5.
    Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707Google Scholar
  6. 6.
    Mulliken RS (1950) Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J Am Chem Soc 72:600–608Google Scholar
  7. 7.
    Hassel O, Hvoslef J (1954) The structure of bromine 1,4-dioxanate. Acta Chem Scand 8:873Google Scholar
  8. 8.
    Hassel O (1970) Structural aspects of interatomic charge transfer bonding. Science 170:497–502Google Scholar
  9. 9.
    Bertran JF, Rodriguez M (1979) Detection of halogen bond formation by correlation of proton solvent shifts. 1. Haloforms in normal-electron donor solvents. Org Magn Resonance 12:92–94Google Scholar
  10. 10.
    Blackstock SC, Lorand JP, Kochi JK (1987) Charge transfer interactions of amines with tetrahalomethanes - X-ray crystal-structures of the donor-acceptor complexes of quinuclidine and diazabicyclo[2.2.2]octane with carbon tetrabromide. J Org Chem 52:1451–1460Google Scholar
  11. 11.
    Legon AC (1999) Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the halogen analogue B–XY of the hydrogen bond B–HX. Angew Chem Int Ed 38:2687–2714Google Scholar
  12. 12.
    Metrangolo P, Neukirch H, Pilati T et al (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395Google Scholar
  13. 13.
    Erdelyi M (2012) Halogen bonding in solution. Chem Soc Rev 41:3547–3557Google Scholar
  14. 14.
    Beale TM, Chudzinski MG, Sarwar MG et al (2013) Halogen bonding in solution: thermodynamics and applications. Chem Soc Rev 42:1667–1680Google Scholar
  15. 15.
    Bertran JF, Rodriguez M (1981) On the nature of haloform-aromatic complexes. Org Magn Resonance 16:79–81Google Scholar
  16. 16.
    Bertran JF, Rodriguez M (1980) Detection of halogen bond formation by correlation of proton solvent shifts. 2. Methylene halides in N-electron donor solvents. Org Magn Resonance 14:244–246Google Scholar
  17. 17.
    Metrangolo P, Panzeri W, Recupero F et al (2002) Perfluorocarbon-hydrocarbon self-assembly – Part 16. 19F NMR study of the halogen bonding between halo-perfluorocarbons and heteroatom containing hydrocarbons. J Fluor Chem 114:27–33Google Scholar
  18. 18.
    McKinney WJ, Popov AI (1969) Studies on chemistry of halogens and of polyhalides. 30. Influence of solvent properties on formation of pyridine-iodine charge transfer complexes. J Am Chem Soc 91:5215–5218Google Scholar
  19. 19.
    Bhaskar KR, Singh S (1967) Spectroscopic studies of N-donor-sigma-acceptor systems – pyridines. Spectrochim Acta A 23:1155–1159Google Scholar
  20. 20.
    Laurence C, Queigneccabanetos M, Wojtkowiak B (1983) 1-Iodoacetylenes. 4. Structure-reactivity relationships for the complexation of substituted 1-iodoacetylenes with Lewis-bases. Can J Chem 61:135–138Google Scholar
  21. 21.
    Laurence C, Queigneccabanetos M, Dziembowska T et al (1981) 1-Iodoacetylenes. 1. Spectroscopic evidence of their complexes with Lewis-bases - a spectroscopic scale of soft basicity. J Am Chem Soc 103:2567–2573Google Scholar
  22. 22.
    Laurence C, Queigneccabanetos M, Wojtkowiak B (1982) 1-Iodoacetylenes. 2. Formation-constants of their complexes with Lewis-bases. J Chem Soc Perkin Trans 2:1605–1610Google Scholar
  23. 23.
    Webb JA, Klijn JE, Hill PA et al (2004) Experimental studies of the 13C NMR of iodoalkynes in Lewis-basic solvents. J Org Chem 69:660–664Google Scholar
  24. 24.
    Cabot R, Hunter CA (2009) Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors. Chem Commun 2005–2007Google Scholar
  25. 25.
    Sarwar MG, Dragisic B, Salsberg LJ et al (2010) Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. J Am Chem Soc 132:1646–1653Google Scholar
  26. 26.
    Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43:5310–5324Google Scholar
  27. 27.
    Dimroth K, Bohlmann F, Reichard C et al (1963) Über Pyridinium-N-phenol-betaine und ihre Verwendung zur Charakterisierung der polarität von Losungsmitteln. Liebigs Ann Chem 661:1–37Google Scholar
  28. 28.
    Kamlet MJ, Abboud JL, Taft RW (1977) Solvatochromic comparison method. 6. π* scale of solvent polarities. J Am Chem Soc 99:6027–6038Google Scholar
  29. 29.
    Dong DC, Winnik MA (1982) The Py scale of solvent polarities - solvent effects on the vibronic fine-structure of pyrene fluorescence and empirical correlations with E T-value and Y-value. Photochem Photobiol 35:17–21Google Scholar
  30. 30.
    Li QZ, Li R, Zhou ZJ et al (2012) SX halogen bonds and H X hydrogen bonds in H2CS-XY (XY=FF, ClF, ClCl, BrF, BrCl, and BrBr) complexes: cooperativity and solvent effect. J Chem Phys 136:014302Google Scholar
  31. 31.
    Lu YX, Li HY, Zhu X et al (2011) How does halogen bonding behave in solution? A theoretical study using implicit solvation model. J Phys Chem A 115:4467–4475Google Scholar
  32. 32.
    Lu YX, Li HY, Zhu X et al (2012) Effects of solvent on weak halogen bonds: density functional theory calculations. Int J Quantum Chem 112:1421–1430Google Scholar
  33. 33.
    Hawthorne B, Fan-Hagenstein H, Wood ER et al (2013) Study of the halogen bonding between pyridine and perfluoroalkyl iodide in solution phase using the combination of FTIR and 19F NMR. Int J Spectrosc 2013:216518Google Scholar
  34. 34.
    Libri S, Jasim NA, Perutz RN et al (2008) Metal fluorides form strong hydrogen bonds and halogen bonds: measuring interaction enthalpies and entropies in solution. J Am Chem Soc 130:7842–7844Google Scholar
  35. 35.
    Forni A, Rendine S, Pieraccini S et al (2012) Solvent effect on halogen bonding: the case of the IO interaction. J Mol Graph Model 38:31–39Google Scholar
  36. 36.
    Ma N, Zhang Y, Ji B et al (2012) Structural competition between halogen bonds and lone-pairpi interactions in solution. Chemphyschem 13:1411–1414Google Scholar
  37. 37.
    Li QZ, Xu XS, Liu T et al (2010) Competition between hydrogen bond and halogen bond in complexes of formaldehyde with hypohalous acids. Phys Chem Chem Phys 12:6837–6843Google Scholar
  38. 38.
    Zhang Y, Ji BM, Tian AM et al (2012) Communication: competition between ππ interaction and halogen bond in solution: a combined 13C NMR and density functional theory study. J Chem Phys 136:141101Google Scholar
  39. 39.
    Zou WS, Han J, Jin WJ (2009) Concentration-dependent BrO halogen bonding between carbon tetrabromide and oxygen-containing organic solvents. J Phys Chem A 113:10125–10132Google Scholar
  40. 40.
    Sarwar MG, Dragisic B, Sagoo S et al (2010) A tridentate halogen-bonding receptor for tight binding of halide anions. Angew Chem Int Ed 49:1674–1677Google Scholar
  41. 41.
    Kilah NL, Wise MD, Serpell CJ et al (2010) Enhancement of anion recognition exhibited by a halogen-bonding rotaxane host system. J Am Chem Soc 132:11893–11895Google Scholar
  42. 42.
    Sarwar MG, Dragisic B, Dimitrijevic E et al (2013) Halogen bonding between anions and iodoperfluoroorganics: solution-phase thermodynamics and multidentate-receptor design. Chem Eur J 19:2050–2058Google Scholar
  43. 43.
    Walter SM, Kniep F, Rout L et al (2012) Isothermal calorimetric titrations on charge-assisted halogen bonds: role of entropy, counterions, solvent, and temperature. J Am Chem Soc 134:8507–8512Google Scholar
  44. 44.
    Parra RD (2012) Dimers and trimers of formamidine and its mono-halogenated analogues HN=CHNHX, (X=H, Cl, Br, or I): a comparative study of resonance-assisted hydrogen and halogen bonds. Comput Theor Chem 998:183–192Google Scholar
  45. 45.
    Waentig P (1910) On the state of dissolved iodine. Z Phys Chem 68:513–571Google Scholar
  46. 46.
    Popov AI, Rygg RH (1957) Studies on the chemistry of halogens and of polyhalides. XI. Molecular complexes of pyridine, 2-picoline and 2,6-lutidine with iodine and iodine halides. J Am Chem Soc 79:4622–4625Google Scholar
  47. 47.
    Haque I, Wood JL (1967) The infra-red spectra of pyridine-halogen complexes. Spectrochim Acta A 23:959–967Google Scholar
  48. 48.
    Tassaing T, Besnard M (1997) Ionization reaction in iodine/pyridine solutions: what can we learn from conductivity measurements, far-infrared spectroscopy, and Raman scattering? J Phys Chem A 101:2803–2808Google Scholar
  49. 49.
    Tassaing T, Besnard M (1997) Vibrational spectroscopic studies of the chemical dynamics in charge transfer complexeses of the type iodine-pyridine 1. Experimental results. Mol Phys 92:271–280Google Scholar
  50. 50.
    Zingaro RA, VanderWerf CA, Kleinberg J (1951) Evidence for the existence of unipositive iodine ion in solutions of iodine in pyridine. J Am Chem Soc 73:88–90Google Scholar
  51. 51.
    Reid C, Mulliken RS (1954) Molecular compounds and their spectra. IV. The pyridine-iodine system. J Am Chem Soc 76:3869–3874Google Scholar
  52. 52.
    Popov AI, Pflaum RT (1957) Studies on the chemistry of halogens and of polyhalides. X. The reactions of iodine monochloride with pyridine and with 2,2′-bipyridine. J Am Chem Soc 79:570–572Google Scholar
  53. 53.
    Creighton JA, Haque I, Wood JL (1966) The iododipyridinium ion. Chem Commun 229Google Scholar
  54. 54.
    Audrieth LF, Birr EJ (1933) Anomalous electrolytes. I. The electrical conductivity of solutions of iodine and cyanogen iodide in pyridine. J Am Chem Soc 55:668–673Google Scholar
  55. 55.
    Kleinberg J, Colton E, Sattizahn J et al (1953) The behavior of iodine species in pyridine and quinoline. J Am Chem Soc 75:442–445Google Scholar
  56. 56.
    Kortüm G, Wilski H (1953) Über die elektrische Leitfähigkeit von Jod-Pyridin-Lösungen. Z Phys Chem 202:35–55Google Scholar
  57. 57.
    Ginn SGW, Wood JL (1965) The structure of the triiodide ion. Chem Commun 262–263Google Scholar
  58. 58.
    Ginn SGW, Wood JL (1966) Intermolecular vibrations of charge transfer complexes. Trans Faraday Soc 62:777–787Google Scholar
  59. 59.
    Haque I, Wood JL (1967) The infra-red spectra of γ-picoline-halogen complexes. Spectrochim Acta A 23:2523–2533Google Scholar
  60. 60.
    Bell RP, Gelles E (1951) The halogen cations in aqueous solution. J Chem Soc 2734–2740Google Scholar
  61. 61.
    Larsen DW, Allred AL (1965) Halogen complexes. II. The types and mean lifetimes of complexes formed by iodine and 2,4,6-trimethylpyridine. J Am Chem Soc 87:1219–1226Google Scholar
  62. 62.
    Schuster II, Roberts JD (1979) Halogen complexes of pyridines: a proton and carbon-13 nuclear magnetic resonance study. J Org Chem 44:2658–2662Google Scholar
  63. 63.
    Carlsohn H (1932) Habilitationsschrift: Über eine neue Klasse von Verbindungen des positive Einwertigen Jod. Verlag von S. Hirzel, LiepzigGoogle Scholar
  64. 64.
    Carlsohn H (1935) Beiträge zur Chemie des Broms, I. Mitteil.: Darstellung von Brom (I)-dipyridin-perchlorat und Brom (I)-dipyridin-nitrat. Chem Ber 68B:2209–2211Google Scholar
  65. 65.
    Uschakow MI, Tchistow WO (1935) Über salzartige Eigenschaften der Halogene. Einwerkungsprodukte von Brom auf Silbersalze. Chem Ber 68B:824–830Google Scholar
  66. 66.
    Kleinberg J (1946) The positive character of the halogens. J Chem Educ 23:559–562Google Scholar
  67. 67.
    Zingaro RA, Goodrich JE, Keinberg J et al (1949) Reactions of the silver salts of carboxylic acids with iodine in the presence of some tertiary amines. J Am Chem Soc 71:575–576Google Scholar
  68. 68.
    Zingaro RA, Van der Werf CA, Kleinberg J (1950) Further observation on the preparation and reactions of positive iodine salts. J Am Chem Soc 72:5341–5342Google Scholar
  69. 69.
    Schmidt H, Meinert H (1959) Zur Darstellung von Salzen mit positiv einwertigen Halogen-Kationen. Angew Chem 71:126–127Google Scholar
  70. 70.
    Kleinberg J (1963) Unipositive halogen complexes. Inorg Synth 7:169–176Google Scholar
  71. 71.
    Hassel O, Hope H (1961) Structure of the solid compound formed by addition of two molecules of iodine to one molecule of pyridine. Acta Chem Scand 15:407–416Google Scholar
  72. 72.
    Haque I, Wood JL (1968) The vibrational spectra and structure of the bis(pyridine)iodine(I), bis(pyridine)bromine(I), bis(γ-picoline)iodine(I) and bis(γ-picoline)bromine(I) cations. J Mol Struct 2:217–238Google Scholar
  73. 73.
    Sabin JR (1971) A theoretical study of the bis(pyridine)iodine(I) cation. J Mol Struct 7:407–419Google Scholar
  74. 74.
    Carter S, Gray NAB, Wood JL (1971) The electronic spectra of the bis(pyridine)iodine(I) and related cations. J Mol Struct 7:481–485Google Scholar
  75. 75.
    Baruah SK (2004) Infrared studies of some sensitive vibrational modes of pyridines on complex formation with halogens and interhalogens. Asian J Chem 16:706–710Google Scholar
  76. 76.
    Okitsu T, Yumitate S, Sato K et al (2013) Substituent effect of bis(pyridines)iodonium complexes as iodinating reagents: control of the iodocyclization/oxidation process. Chem Eur J 19:4992–4996Google Scholar
  77. 77.
    Baruah SK, Baruah PK (2004) Studies of nuclear magnetic resonance spectra of positive halogen salts of pyridine and substituted pyridines. Asian J Chem 16:688–694Google Scholar
  78. 78.
    Perrin CL (2009) Symmetry of hydrogen bonds in solution. Pure Appl Chem 81:571–583Google Scholar
  79. 79.
    Perrin CL (2010) Are short, low-barrier hydrogen bonds unusually strong? Acc Chem Res 43:1550–1557Google Scholar
  80. 80.
    Carlsson A-CC, Gräfenstein J, Laurila JL et al (2012) Symmetry of [N-X-N]+ halogen bonds in solution. Chem Commun 48:1458–1460Google Scholar
  81. 81.
    Carlsson A-CC, Gräfenstein J, Budnjo A et al (2012) Symmetric halogen bonding is preferred in solution. J Am Chem Soc 134:5706–5715Google Scholar
  82. 82.
    Carlsson A-CC, Uhrbom M, Karim A et al (2013) Solvent effects on halogen bond symmetry. CrystEngComm 15:3087–3092Google Scholar
  83. 83.
    Saunders M, Jaffe MH, Vogel P (1971) A new method for measuring equilibrium deuterium isotope effects. Isomerization of 3-deuterio-2,3-dimethylbutyl-2-ium ion. J Am Chem Soc 93:2558–2559Google Scholar
  84. 84.
    Siehl H-U (1987) Isotope effects on NMR spectra of equilibrating systems. Adv Phys Org Chem 23:63–163Google Scholar
  85. 85.
    Georgiuo DC, Butler P, Browne EC et al (2013) On the bonding in bis-pyridine iodonium cations. Aust J Chem 66:1179–1188Google Scholar
  86. 86.
    Anderson GM, Winfield JM (1986) Preparation and properties of bis(acetonitrile)iodine(I) hexafluoromolybdate(V) and hexafluorouranate(V). J Chem Soc Dalton Trans 337–340Google Scholar
  87. 87.
    Tytko K-H, Schmeisser M (1973) Chemische Charakterisierung des [py2X]+-Ions (X=Br, J). Z Naturforsch B Chem Sci 28:731–735Google Scholar
  88. 88.
    Tornieporth-Oetting I, Klapötke T (1990) Die Reaktivität des I3 +-Kations gegenüber Ammoniak, Nitrilen und Pyridin. Z Anorg Allg Chem 586:93–98Google Scholar
  89. 89.
    Neverov AA, Xiaomei Feng H, Hamilton K et al (2003) Bis(pyridine)-based bromonium ions. Molecular structures of bis(2,4,6-collidine)bromonium perchlorate and bis(pyridine)bromonium triflate and the mechanism of the reactions of 1,2-bis(2′-pyridylethynyl)benzenebrominum triflate and bis(pyridine)bromonium triflate with acceptor olefins. J Org Chem 68:3802–3810Google Scholar
  90. 90.
    Barluenga J (1999) Transferring iodine: more than a simple functional group exchange in organic synthesis. Pure Appl Chem 71:431–436Google Scholar
  91. 91.
    Snyder SA, Treitler DS, Brucks AP (2011) Halonium-induced cyclization reactions. Aldrichim Acta 44:27–40Google Scholar
  92. 92.
    Uschakow MJ, Tschistow WO (1935) Über salzartige Eigenschaften der Halogene. Einwirkungsprodukte von Brom auf Silbersalze. Ber Deutsch Chem Ges A (68):824–830Google Scholar
  93. 93.
    Diner UE, Lown JW (1971) Addition of iodonium nitrate to unsaturated hydrocarbons. Can J Chem 49:403–415Google Scholar
  94. 94.
    Barluenga J, Gonzalez JM, Campos PJ et al (1985) I(Py)2BF4, a new reagent in organic-synthesis – general-method for the 1,2-iodofunctionalization of olefins. Angew Chem Int Ed 24:319–320Google Scholar
  95. 95.
    Lemieux RU, Morgan AR (1965) Synthesis of beta-D-glucopyranosyl 2-deoxy-alpha-D-arabino-hexopyranoside. Can J Chem 43:2190–2197Google Scholar
  96. 96.
    Simonot B, Rousseau G (1993) Preparation of 7-membered and medium-ring lactones by iodo lactonization. J Org Chem 58:4–5Google Scholar
  97. 97.
    Chalker JM, Thompson AL, Davis BG (2010) Safe and scalable preparation of Barluenga’s reagent. Org Synth 87:288Google Scholar
  98. 98.
    Barluenga J, González-Bobes F, Murguía MC et al (2004) Bis(pyridine)iodonium tetrafluoroborate (IPy2BF4): a versatile oxidizing reagent. Chem Eur J 10:4206–4213Google Scholar
  99. 99.
    Neverov AA, Brown RS (1998) Mechanistic evaluation of the transfer of Br+ from bis(sym-collidine)bromonium triflate to acceptor alkenes. J Org Chem 63:5977–5982Google Scholar
  100. 100.
    Cui X-L, Brown RS (2000) Mechanistic evaluation of the halocyclization of 4-penten-1-ol by some bis(2-substituted pyridine) and bis(2,6-disubstituted pyridine)bromonium triflates. J Org Chem 65:5653–5658Google Scholar
  101. 101.
    Grossman RB, Trupp RJ (1998) The first reagent-controlled asymmetric halolactonizations. Dihydroquinidine-halogen complexes as chiral sources of positive halogen ion. Can J Chem 76:1233–1237Google Scholar
  102. 102.
    Sabin JR (1972) Some calculations on lighter bis(pyridine)halogen(I) cations. J Mol Struct 11:33–55Google Scholar
  103. 103.
    Wolters LP, Bickelhaupt FM (2012) Halogen bonding versus hydrogen bonding: a molecular orbital perspective. ChemstryOpen 1:96–105Google Scholar
  104. 104.
    Bakshi PK, James MA, Cameron TS et al (1996) Polyhalide anions in crystals. 1. Triiodides of the Me4N+, Me4P+, quinuclidinium, 1-azoniapropellane, and 1,4-diazoniabicyclo[2.2.2]octane (DabcoH2 2+) cations, and 1,10-phenanthrolinium+ tribromide. Can J Chem 74:559–573Google Scholar
  105. 105.
    Robertson KN, Cameron TS, Knop O (1996) Polyhalide anions in crystals. 2. I3− asymmetry and N-H…I bonding: triiodides of the Me2NH2+, Ph2I+, tropanium, N, N, N′, N′-Me(4)-1,2-ethanediammonium, N, N, N′, N′-Me(4)-1,3-propanediammo-nium, N-Me-piperazinium2+, and N, N′-Me2-piperazinium2+ cations, and Me2NH2I. Can J Chem 74:1572–1591Google Scholar
  106. 106.
    Hayward GC, Hendra PJ (1967) Far infra-red and Raman spectra of trihalide ions IBr2 and I3 . Spectrochim Acta A 23:2309–2314Google Scholar
  107. 107.
    Person WB, Anderson GR, Fordemwalt JN et al (1961) Infrared and Raman spectra, force constants, and structures of some polyhalide ions - ICI2 , ICI4 , BrCl2 , and Br3 . J Chem Phys 35:908–914Google Scholar
  108. 108.
    Maki AG, Forneris R (1967) Infrared and Raman spectra of some trihalide ions - ICl2 , IBr2 , I3 , I2Br and BrICl. Spectrochim Acta A 23:867–880Google Scholar
  109. 109.
    Pimentel GC (1951) The bonding of trihalide and bifluoride ions by the molecular orbital method. J Chem Phys 19:446–448Google Scholar
  110. 110.
    Gabes W, Gerding H (1972) Vibrational-spectra and structures of trihalide ions. J Mol Struct 14:267–279Google Scholar
  111. 111.
    Sasaki K, Aida K (1980) IR-spectra of charge transfer complexes between ICl, IBr and aminopyridines. J Inorg Nucl Chem 42:13–15Google Scholar
  112. 112.
    Kiefer W, Bernstei HJ (1972) UV-laser excited resonance Raman spectrum of I3 ion. Chem Phys Lett 16:5–9Google Scholar
  113. 113.
    Kaya K, Mikami N, Ito M et al (1972) Resonance Raman effect of I3 ion by ultraviolet laser excitation. Chem Phys Lett 16:151–153Google Scholar
  114. 114.
    Johnson AE, Myers AB (1995) Emission cross-sections and line-shapes for photodissociating triiodide in ethanol - experimental and computational studies. J Chem Phys 102:3519–3533Google Scholar
  115. 115.
    Johnson AE, Myers AB (1996) A comparison of time- and frequency-domain resonance Raman spectroscopy in triiodide. J Chem Phys 104:2497–2507Google Scholar
  116. 116.
    Johnson AE, Myers AB (1996) Solvent effects in the Raman spectra of the triiodide ion: observation of dynamic symmetry breaking and solvent degrees of freedom. J Phys Chem 100:7778–7788Google Scholar
  117. 117.
    Al-Hashimi NA (2004) Spectroscopic studies of the reaction of iodine with 2,3-diaminopyridine. Spectrochim Acta A 60:2181–2184Google Scholar
  118. 118.
    Margulis CJ, Coker DF, Lynden-Bell RM (2001) Symmetry breaking of the triiodide ion in acetonitrile solution. Chem Phys Lett 341:557–560Google Scholar
  119. 119.
    Sato H, Hirata F, Myers AB (1998) Theoretical study of the solvent effect on triiodide ion in solutions. J Phys Chem A 102:2065–2071Google Scholar
  120. 120.
    Zhang FS, Lynden-Bell RM (2003) Solvent-induced symmetry breaking. Phys Rev Lett 90:185505Google Scholar
  121. 121.
    Zhang FS, Lynden-Bell RM (2003) Temperature and solvent dependence of vibrational relaxation of triiodide: a simulation study. J Chem Phys 119:6119–6131Google Scholar
  122. 122.
    Zhang FS, Lynden-Bell RM (2005) Solvent-induced symmetry breaking: varying solvent strength. Phys Rev E 71:021502Google Scholar
  123. 123.
    Zhang FS, Lynden-Bell RM (2005) Interactions of triiodide cluster ion with solvents. Eur Phys J D 34:129–132Google Scholar
  124. 124.
    Karm A, Reitti M, Carlsson A-CC et al (2014) The nature of the [N-Cl-N]+ and [N-F-N]+ halogen bonds in solution. Chem Sci 5:3226–3233Google Scholar
  125. 125.
    Suzaki Y, Saito T, Ide T et al (2014) A rhomboid-shaped organic host molecule with small binding space. Unsymmetrical and symmetrical inclusion of halonium ions. Dalton Trans 43:6643–6649Google Scholar
  126. 126.
    Koskinen L, Hirva P, Kalenius E et al (2015) Halogen bonds with coordinative nature: halogen bonding in a S-I+-S iodonium complex. CrystEngComm 17:1231–1236Google Scholar
  127. 127.
    Hakkert SB, Erdelyi M (2015) Halogen bond symmetry: the N-X-N bond. J Phys Org Chem 28:226–233Google Scholar
  128. 128.
    Robinson SW, Mustoe CL, White NG et al (2015) Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition. J Am Chem Soc 137:499–507Google Scholar
  129. 129.
    Jungbauer SH, Bulfield D, Kniep F et al (2014) Toward molecular recognition: three-point halogen bonding in the solid state and in solution. J Am Chem Soc 136:16740–16743Google Scholar
  130. 130.
    Lim JY, Beer PB (2015) Superior perrhenate anion recognition in water by a halogen bonding acyclic receptor. Chem Commun 51:3686–3688Google Scholar
  131. 131.
    Robertson CC, Perutz RN, Brammer L et al (2014) A solvent-resistant halogen bond. Chem Sci 5:4179–4183Google Scholar
  132. 132.
    Kodiah BN, Arto V, Sandip B, Fangfang P, Rissanen K (2015) Org Chem Frontiers doi:10.1039/C4QO00326H
  133. 133.
    Dumele O, Wu D, Trapp N, Goroff N, Diedrich F (2014) Halogen bonding of (iodoethynyl)benzene derivatives in solution. 16:4722–4725Google Scholar
  134. 134.
    Thorson RA, Woller GR, Driscoll ZL, Geiger BE, Moss CA, Schlapper AL, Speetzen ED, Bosch E, Erdelyi M, Bowling NP (2015) Intramolecular halogen bonding in solution: 15N, 13C and 19F NMR studies of temperature and solvent effects. doi:10.1002/ejoc.201403671
  135. 135.
    Vargas Jetzsch A (2015) Applications of halogen bonding in solution. Pure Appl Chem 87:15–41Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anna-Carin C. Carlsson
    • 1
  • Alberte X. Veiga
    • 1
  • Máté Erdélyi
    • 1
  1. 1.Department of Chemistry and Molecular BiologyGothenburg UniversityGothenburgSweden

Personalised recommendations