Advertisement

Characteristics of a σ-Hole and the Nature of a Halogen Bond

  • Michal H. Kolář
  • Palanisamy Deepa
  • Haresh Ajani
  • Adam Pecina
  • Pavel Hobza
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 359)

Abstract

The nature of halogen bonding in 128 complexes was investigated using advanced quantum mechanical calculations. First, isolated halogen donors were studied and their σ-holes were described in terms of size and magnitude. Later, both partners in the complex were considered and their interaction was described in terms of DFT-SAPT decomposition. The whole set of complexes under study was split into two categories on the basis of their stabilisation energy. The first subset with 38 complexes possesses stabilisation energies in the range 7–32 kcal/mol, while the second subset with 90 complexes has stabilisation energies smaller than 7 kcal/mol. The first subset is characterised by small intermolecular distances (less than 2.5 Å) and a significant contraction of van der Waals (vdW) distance (sum of vdW radii). Here the polarisation/electrostatic energy is dominant, mostly followed by induction and dispersion energies. The importance of induction energy reflects the charge-transfer character of the respective halogen bonds. Intermolecular distances in the second subset are large and the respective contraction of vdW distance upon the formation of a halogen bond is much smaller. Here the dispersion energy is mostly dominant, followed by polarisation and induction energies. Considering the whole set of complexes, we conclude that the characteristic features of their halogen bonds arise from the concerted action of polarisation and dispersion energies and neither of these energies can be considered as dominant. Finally, the magnitude of the σ-hole and DFT-SAPT stabilisation energy correlates only weakly within the whole set of complexes.

Keywords

CCSD(T) DFT-SAPT Dispersion energy Electrostatic potential Halogen bond Noncovalent interactions σ-Hole σ-Hole magnitude σ-Hole size 

Notes

Acknowledgements

This work was part of the Research Project RVO: 61388963 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. It was also supported by the Czech Science Foundation [P208/12/G016] and the operational program Research and Development for Innovations of the European Social Fund (CZ 1.05/2.1.00/03/0058). MHK acknowledges the kind support provided by the Alexander von Humboldt Foundation.

Supplementary material

330940_1_En_606_MOESM1_ESM.doc (5.1 mb)
(DOC 134 kb)

References

  1. 1.
    Hobza P, Müller Dethlef K (2009) Non-covalent interactions. Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  3. 3.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  4. 4.
    Politzer P, Murray JS (2013) ChemPhysChem 14:278–294CrossRefGoogle Scholar
  5. 5.
    Murray J, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  6. 6.
    Řezáč J, Riley KE, Hobza P (2012) J Chem Theory Comput 8:4285–4292CrossRefGoogle Scholar
  7. 7.
    Kozuch S, Martin JML (2013) J Chem Theory Comput 9:1918–1931CrossRefGoogle Scholar
  8. 8.
    Deepa P, Sedlak R, Hobza P (2014) Phys Chem Chem Phys 16:6679CrossRefGoogle Scholar
  9. 9.
    Desiraju GR, Ho PS, Kloo L, Legon AC, Marguardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) IUPAC definition of halogen bond. Pure Appl Chem 8:1711–1713Google Scholar
  10. 10.
    Riley KE, Hobza P (2013) Phys Chem Chem Phys 15:17742CrossRefGoogle Scholar
  11. 11.
    Kolář M, Hostaš J, Hobza P (2014) Phys Chem Chem Phys 16:9987CrossRefGoogle Scholar
  12. 12.
    Kolář M, Carloni P, Hobza P (2014) Phys Chem Chem Phys 16:19111CrossRefGoogle Scholar
  13. 13.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  14. 14.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  15. 15.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  16. 16.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6169CrossRefGoogle Scholar
  17. 17.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  19. 19.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930CrossRefGoogle Scholar
  20. 20.
    Hesselmann A, Jansen G (2002) Chem Phys Lett 357:464–470CrossRefGoogle Scholar
  21. 21.
    Hesselmann A, Jansen G (2002) Chem Phys Lett 362:319–325CrossRefGoogle Scholar
  22. 22.
    Misquitta AJ, Szalewicz K (2002) Chem Phys Lett 357:301–306CrossRefGoogle Scholar
  23. 23.
    Jansen G, Hesselmann A (2001) J Phys Chem A 105:11156–11157CrossRefGoogle Scholar
  24. 24.
    Hesselmann A, Jansen G (2003) Chem Phys Lett 367:778–784CrossRefGoogle Scholar
  25. 25.
    Hesselmann A, Jansen G, Schütz M (2005) J Chem Phys 122:014103–014119CrossRefGoogle Scholar
  26. 26.
    Hesselmann A, Jansen G, Schütz M (2006) J Am Chem Soc 128:11730–11731CrossRefGoogle Scholar
  27. 27.
    Podeszwa R, Bukowski R, Szalewicz K (2006) J Phys Chem A 110:10345–10354CrossRefGoogle Scholar
  28. 28.
    Williams HL, Chabalowski CF (2001) J Phys Chem A 105:646–659CrossRefGoogle Scholar
  29. 29.
    Werner H-J, Knowles PJ, Manby FR, Schuetz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DLO, Deegan MJ, Dobbyn AJ, Eckert F, Goll F, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Koeppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflueger K, Pitzer K, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2010) MOLPRO, version 2010.1, a package of ab initio programs. See http://www.molpro.net
  30. 30.
    TURBOMOLE V6.3 2011, a development of the University of Karlsruhe and the Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; http://www.turbomole.com
  31. 31.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918CrossRefGoogle Scholar
  32. 32.
    Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) Chem Eur J 12:8952–8960CrossRefGoogle Scholar
  33. 33.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  34. 34.
    Munusamy E, Sedlak R, Hobza P (2011) ChemPhysChem 12:3253CrossRefGoogle Scholar
  35. 35.
    Riley KE, Řezáč J, Hobza P (2013) J Mol Model 19:2879CrossRefGoogle Scholar
  36. 36.
    Sedlak R, Deepa P, Hobza P (2014) J Phys Chem A 118:3846–3855CrossRefGoogle Scholar
  37. 37.
    Lu YX, Fan J-C, Zaho W-N, Jiang Y-J, Yu Q-S (2009) J Comput Chem 30:725CrossRefGoogle Scholar
  38. 38.
    Wang W (2011) J Phys Chem A 115:9294–9299CrossRefGoogle Scholar
  39. 39.
    Chudzinski MG, Taylor MS (2012) J Org Chem 77:3483–3491CrossRefGoogle Scholar
  40. 40.
    Trnka J, Sedlak R, Kolář M, Hobza P (2013) J Phys Chem A 117:4331–4337CrossRefGoogle Scholar
  41. 41.
    Mukherjee A, Desiraju GR (2011) Cryst Growth Des 11:3735–3739CrossRefGoogle Scholar
  42. 42.
    Cincic D, Friscic T, Jones W (2008) J Am Chem Soc 130:7524–7525CrossRefGoogle Scholar
  43. 43.
    Cauliez P, Polo V, Roisnel T, Llusar R, Fourmigue M (2010) CrystEngComm 12:558–566CrossRefGoogle Scholar
  44. 44.
    Cincic D, Friscic T, Jones W (2011) CrystEngComm 13:3224–3231CrossRefGoogle Scholar
  45. 45.
    Jay JI, Padgett CW, Walsh RDB, Hanks TW, Pennington WT (2001) Cryst Growth Des 1:501–507CrossRefGoogle Scholar
  46. 46.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (2007) Mol Phys 19:553–566CrossRefGoogle Scholar
  48. 48.
    Hesselmann A (2011) J Phys Chem A 115:11321–11330CrossRefGoogle Scholar
  49. 49.
    Riley K, Murray J, Fanfrlík J, Řezáč J, Solá R, Concha M, Ramos F, Politzer P (2011) J Mol Model 17:3309–3318CrossRefGoogle Scholar
  50. 50.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2008) J Chem Theory Comput 5:155–163CrossRefGoogle Scholar
  51. 51.
    Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher J-M, Hartmann G, Banner DW, Haap W, Diederich F (2011) Angew Chem Int Ed 50:314–318CrossRefGoogle Scholar
  52. 52.
    Fanfrlík J, Kolář M, Kamlar M, Hurný D, Ruiz FX, Cousido-Siah A, Mitschler A, Řezáč J, Munusamy E, Lepšík M, Matějíček P, Veselý J, Podjarny A, Hobza P (2013) ACS Chem Biol 8:2484–2492CrossRefGoogle Scholar
  53. 53.
    El Kerdawy A, Murray JS, Politzer P, Bleiziffer P, Heßelmann A, Görling A, Clark T (2013) J Chem Theory Comput 9:2264–2275CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michal H. Kolář
    • 1
    • 2
    • 3
  • Palanisamy Deepa
    • 1
  • Haresh Ajani
    • 1
  • Adam Pecina
    • 1
  • Pavel Hobza
    • 1
    • 4
  1. 1.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich GmbHJülichGermany
  3. 3.Computational BiophysicsGerman Research School for Simulation Sciences GmbHJülichGermany
  4. 4.Department of Physical Chemistry, Regional Centre of Advanced Technologies and MaterialsPalacky UniversityOlomoucCzech Republic

Personalised recommendations